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Abstract

In this paper we prove some LΦ − LΦ and LΦ − L∞ inequalities for quasi-minima of scalar integral functionals
defined in Orlicz-Sobolev space W1LΦ (Ω), where Φ is a N-function and Φ ∈ △2. Moreover, if Φ ∈ △′ or if
Φ ∈ △2 ∩ ∇2, we prove that quasi-minima are Hölder continuous functions.
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1. Introduction

In this paper we show a regularity theorem for quasi-minima of scalar integral functionals of the Calculus of
Variations with general growth conditions.

Let us consider functionals as the following form

F [u,Ω] =
∫
Ω

f (x, u (x) ,∇u (x)) dx (1.1)

where f : Ω × R × RN → R is a Carathéodory function satisfying the inequalities

c1Φ (|z|) − b (x)Φ (|s|) − a (x) ≤ f (x, s, z) ≤ c2Φ (|z|) + b (x)Φ (|s|) + a (x) (1.2)

for each z ∈ RN , s ∈ R and for LN-a. e. x ∈ Ω, where c1 and c2 are two positive real constants, with c1 < c2, Ω is
an open subset of RN , N ≥ 2, b (x), a (x) ∈ Lβ (Ω) with β = N

1−Nϵ and 0 < ϵ < 1
N . The functional (1.1) is defined on

the Orlicz-Sobolev space W1
0 LΦ (Ω) + g where g ∈ W1LΦ (Ω), Φ is a N-function which satisfies some additional

hypotheses that we well show later.

The first result of this paper is the following maximal LΦ − LΦ inequality.

Theorem 1. Let Φ be a N-function and Φ ∈ △2. If u ∈ W1LΦ (Ω) is a quasi-minimum of the functional (1.1) with
the growths (1.2) then u is locally bounded onΩ. Furthermore, for each x0 ∈ Ω and 0 < R ≤ min (R0, d (x0, ∂Ω) , 1)
there exists an universal constant cM = cM (α,N,m,H, χ) such that for any h0 ∈ R

ess − sup
Q R

2
(x)

(
v − h0

R

)
≤ 2Φ−1

cM

(
V (h0,R)

RN

)α  1
RN

∫
A(h0,R)

Φ

(
v − h0

R

)
dy


 (1.3)

where R0, H, χ are positive real constants introduced in Theorem 4 [Caccioppoli’s Inequality] , v = u − χR Nϵ
m ,

h0 = k0 − χR
Nϵ
m , V (h0,R) = LN (A (h0,R)) and α = −1+

√
5

2 .

Since Φ is not a homogeneity function, the Inequality (1.3) resolves so many tipical homogeneity problems of the
general growth conditions and it is the first necessary step to extend the results introduced in (Giaquinta et al.,
1982; Granucci, 2014; Lieberman, 1991; Mascolo et al., 1996; Moscariello et al., 1991).

As first consequence of the Theorem 1 we get the following regularity theorem.
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Theorem 2. Let Φ ∈ △2 ∩ ∇2 if u ∈ W1LΦ (Ω) is a quasi-minimum of the functional (1.1) then u is locally hölder
continuous.

In (1996) E. Mascolo and G. Papi have determined an Harnack inequality for the minimizer of the functional
(1.1) under the following conditions: f (z) = Φ (|z|) where Φ is a N-function and Φ ∈ △2 ∩ ∇2. We observe that
Φ ∈ △2 ∩ ∇2 implies

c3tp − c4 < Φ (t) < c5tm + c6 for t > 0 (1.4)

with real positive constants c3, c4, c5,c6 and 1 < p ≤ m. Classical regularity theorem for functionals with standard
growth conditions (p = m) has been proved in (Giaquinta, et al., 1982) (we refer also to (Ambrosio, Lecture Notes
on Partial Differential Equations) and (Giusti, 1994)). In (Moscariello, et al., 1991), G. Moscariello and L. Nania
proved the local boundedness of the minimizer of functional (1.1) with f (z) = Φ (|z|), Φ ∈ △2 and the growth
conditions (1.4) with 1 < p ≤ m < N p

N−p , moreover in (1991) G. Moscariello and L. Nania proved the hölder
continuity of the minimizer of functional (1.1) with f (z) = Φ (|z|), Φ ∈ △2 ∩∇2. In 1991, G. M. Lieberman proved
an Harnack inequality for the minimizer of the functional (1.1) with Φ ∈ C2 suth that

c7 ≤
tΦ̈ (t)
Φ̇ (t)

≤ c8 for t > 0

with 0 < c7 < c8. Moreover in (2000) V. S. Klimov studies this problem whenΦ satisfies ∇2 but not a △2 condition.

Therefore our technique allows to unify the approaches to the regularity of quasi-minima with general growth, in-
troduced in (Lieberman, 1991; Mascolo et al., 1996; Moscariello et al., 1991), with those introduced in (Giaquinta
et al., 1982). Moreover, if we assume that the following hypotheses are given:

H 1) Φ globally satisfies the △′ - condition in [0,+∞),

H 2) there exists a constant cH2 > 0

Φ̇ (t) Φ̇
(

1
t

)
≤ cH2 (1.5)

for every t ∈ (0, 1),

H 3) there exists a constant cH3 > 0
Φ−1 (t) ≤ cH3 t

1
m (1.6)

for every t ∈ (0, 1),

then we get the following regularity theorem.

Theorem 3. If u ∈ W1LΦ (Ω) is a quasi-minimum of the functional (1.1) and Φ fulfils H 1, H 2 and H 3 then u is
locally hölder continuous.

The class of functions to which we can apply Theorem 2 and Theorem 3 is slightly wider that the one discussed in
(Granucci, 2014; Lieberman, 1991; Mascolo et al., 1996; Moscariello et al., 1991). This makes us think that the
introduced techniques are the first step to prove the regularity in the general case Φ ∈ △2. Moreover, the author
thinks that hypothesis H2 and H3 are removable. The author, using Theorem 1 and some new tricks, hopes to
exstend Theorem 2 and Theorem 3 under the general growth condition Φ ∈ △′ and, probably, also in the case
Φ ∈ △2.

2. Definitions

We now introduce some definitions.

Definition 1. A continuous and convex function Φ : [0,+∞)→ [0,+∞) is called N-function if it satisfies

Φ (0) = 0 and Φ (t) > 0 if t > 0;
lim
t→o+

Φ(t)
t = 0;

lim
t→+∞

Φ(t)
t = +∞.

(2.1)
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Let Φ be a N-function then there exists a real valued function p defined on [0,+∞) and having the following
properties: p (0) = 0, p (t) > 0 if t > 0, p is increasing and right continuous on (0,+∞) such that

Φ (t) =

t∫
0

p (s) ds for every t ∈ (0,+∞)

and
Φ̇+ (t) = p (t) a.e. on (0,+∞) .

Definition 2. Let p be a real valued function defined on [0,+∞) and having the following properties: p (0) = 0,
p (t) > 0 if t > 0, p is increasing and right continuous on (0,+∞). We define

p̃ (s) = sup
p(t)≤s

(t)

and

Φ̃ (t) =

t∫
0

p̃ (s) ds.

The N-functions Φ and Φ̃ are complementary N-functoins.

Particularly from Definition 2 we get the following Young inequality

ab ≤ Φ̃ (a) + Φ (b) . (2.2)

Let us introduce an important class of N-functions.

Definition 3. A N-function Φ is of class △2 globally in (0,+∞) if exists k > 1 such that

Φ (2t) ≤ kΦ (t) ∀t ∈ (0,+∞) . (2.3)

Definition 4. A N-function Φ is of class △m
2 globally in (0,+∞), with m > 1, if for every λ > 1

Φ (λt) ≤ λmΦ (t) ∀t ∈ (0,+∞) . (2.4)

Definition 5. A N-function Φ is of class ∇2 globally in (0,+∞) if exists l > 1 such that

Φ (t) ≤ Φ (lt)
2l

∀t ∈ (0,+∞) . (2.5)

Definition 6. A N-function Φ is of class ∇r
2 globally in (0,+∞), with r > 1, if for every λ > 1

λrΦ (t) ≤ Φ (λt) ∀t ∈ (0,+∞) . (2.6)

The N-functions Φ ∈ △m
2 are characterized by the following result.

Lemma 1. Let Φ be a N-function and let Φ̇+ be its right derivative. For m > 1 the following properties are
equivalent:

(i) Φ (λt) ≤ λmΦ (t), for every t ≥ 0, for every λ > 1;

(ii) tΦ̇+ (t) ≤ mΦ (t), for every t ≥ 0;

(iii) the function Φ(t)
tm is nonincreasing on (0,+∞).

The N-functions Φ ∈ ∇r
2 are characterized by the following result.

Lemma 2. LetΦ be a N-function and let Φ̇− be its left derivative. For r > 1 the following properties are equivalent:
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(i)’ Φ (λt) ≥ λrΦ (t), for every t ≥ 0, for every λ > 1;

(ii)’ tΦ̇− (t) ≥ rΦ (t), for every t ≥ 0;

(iii)’ the function Φ(t)
tm is nondecreasing on (0,+∞).

We observe that
∆2 =

∪
m>1

△m
2

and
∇2 =

∪
r>1

∇r
2.

Moreover we get
tΦ̇ (t) ≤ tΦ̇+ (t) ≤ mΦ (t) , for every t ≥ 0;

where Φ̇ is the weak derivative of Φ.

The following condition is very important to us.

Definition 7. We say that the N-function Φ satisfies the △′- condition if there exist positive constants - c and t0 -
such that

Φ (ts) ≤ c4Φ (t)Φ (s) (2.7)

for every t, s ≥ t0.

Particularly, the regularity Theorem 2 is based on the following class of N-functions:

Definition 8. We say that the N-function Φ globally satisfies the △′ - condition in [0,+∞) if (2.7) holds for every
t, s ≥ 0.

Lemma 3. If the N-function Φ satisfies the △′- condition then it also satisfies the △2- condition.

Example 1. The N-functions
Φ1 (t) = tp with p > 1
Φ2 (t) = tp (|ln (t)| + 1) with p > 1
Φ3 (t) = (1 + t) ln (1 + t) − t

satisfy the △′ -condition. Moreover Φ1 and Φ2 satisfy the △′ -condition globally in [0,+∞) and belong to the class
∇2 globally in [0,+∞). The function Φ3 does not satisfy △′-condition for all t, s ≥ 0 and Φ3 < ∇2. Assuming Φ
equivalent to Φ3, we show that a regularity theorem is valid.

For details see (Adams, 1975), (Krasnoswl’kiı̆ et al., 1961) and (Rao et al., 1991).

Now we can introduce Orlicz spaces and Orlicz Sobolev Spaces, LΦ and W1LΦ. Let Ω ⊆ RN be a bounded and
open set, the Orlicz class KΦ (Ω) is the set of all measurable functions u : Ω → R satisfying

∫
Ω

Φ (|u|) dLN < +∞.

The Orlicz space LΦ (Ω) is defined to be the linear hull of KΦ (Ω), thus it consists of all measurable functions u
such that λu ∈ KΦ (Ω) for some λ > 0. Moreover, the equality KΦ (Ω) ≡ LΦ (Ω) holds if and only if Φ ∈ △2.

Definition 9. If Ω ⊂ RN is a bounded open set and Φ ∈ △2 then

W1LΦ (Ω) =
{
u ∈ LΦ (Ω) : ∂iu ∈ LΦ (Ω) for i = 1, ...,N

}
where ∂iu are the weak derivatives of u for i = 1, ...,N.

Lemma 4. Let Φ ∈ △2, then LΦ (Ω) and W1LΦ (Ω) are Banach spaces with the following norms

∥u∥Φ,Ω = inf

k > 0 :
∫
Ω

Φ

(
|u|
k

)
dLN ≤ 1


and

∥u∥1,Φ,Ω = ∥u∥Φ,Ω +
N∑

i=1

∥∂iu∥Φ,Ω .

For details see (Adams, 1975), (Krasnoswl’kiı̆ et al., 1961) and (Rao et al., 1991).
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3. Caccioppoli Inequalities

3.1 Lemmas

In order to proof the Caccioppoli’s inquality (3.18) we need the following Lemmas.

Lemma 5. Let g (t), h (t) be a non-negative and increasing functions on [0,+∞) then

g (t) h (s) ≤ g (t) h (t) + g (s) h (s)

for every s, t ∈ [0,+∞).

Lemma 6. Let f be a nonnegative bounded function defined in [τ0, τ1], τ0 ≥ 0. Suppose that for all t, s with
τ0 ≤ t < s ≤ τ1 we have

f (t) ≤ θ f (s) + Φ
( A

s − t

)
+ B (3.1)

where A, B, θ are nonnegative constants, 0 ≤ θ < 1, Φ is a N-function and Φ ∈ △m
2 with m > 1. Then for all ϱ, R,

τ0 ≤ ϱ < R ≤ τ1 we have

f (ϱ) ≤ c
[
Φ

(
A

R − ϱ

)
+ B

]
(3.2)

where c is a constant depending only on θ and m.

Proof. Consider the sequence {ti}i∈N defined by t0 = ϱ and ti+1 = ti + (1 − λ) λi (R − ϱ) where 0 < λ < 1. By (3.1)
we get

f (t0) ≤ θ f (t1) + Φ
(

A
(1 − λ) (R − ϱ)

)
+ B, (3.3)

since Φ ∈ △m
2 with m > 1 it follows

f (t0) ≤ θ f (t1) +
1

(1 − λ)mΦ

(
A

R − ϱ

)
+ B (3.4)

and

f (ti) ≤ θ f (ti+1) +
1

(1 − λ)m λmiΦ

(
A

R − ϱ

)
+ B. (3.5)

By (3.5) we have

f (t0) ≤ θk f (tk) +
[

1
(1 − λ)mΦ

(
A

R − ϱ

)
+ B

] k−1∑
i=0

(
θλ−m)i . (3.6)

If we now choose λ in such a way that θλ−m < 1 and go to the limit for k → +∞ we get (3.2) with c = cθ,m =
(1 − λ)−m (1 − θλ−m)−1. �

Lemma generalizes the Lemma 6.1 of (Giusti, 1994).

Lemma 7. Let z (k, ·) be a nonnegative bounded function defined in [τ0, τ1], τ0 ≥ 0. Suppose that for all t, s with
τ0 ≤ t < s ≤ τ1 we have

z (k, t) ≤ θz (k, s) + A
∫

A(k,s)

Φ

(
u − k
s − t

)
dx + B (3.7)

where A, B, θ are nonnegative constants, 0 ≤ θ < 1, Φ is a N-function and Φ ∈ △m
2 with m > 1. Then for all ϱ, R,

τ0 ≤ ϱ < R ≤ τ1 we have

z (k, ϱ) ≤ c


∫

A(k,R)

Φ

(
u − k
R − ϱ

)
dx + B

 (3.8)

where c is a constant depending only on θ and m.
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Proof. Consider the sequence {ti}i∈N defined by t0 = ϱ and ti+1 = ti + (1 − λ) λi (R − ϱ) where 0 < λ < 1. By (3.7)
we get

z (k, t0) ≤ θz (k, t1) + A
∫

A(k,t1)

Φ

(
u − k
t1 − t0

)
dx + B, (3.9)

since Φ ∈ △m
2 with m > 1 it follows

z (k, t0) ≤ θz (k, t1) +
A

(1 − λ)m

∫
A(k,t1)

Φ

(
u − k
R − ϱ

)
dx + B (3.10)

and by iteration we obtain

z (k, t0) ≤ θ jz
(
k, t j

)
+

A
(1 − λ)m I j +

B
(1 − λ)m II j (3.11)

where

I j =

j∑
i=1


(
θ

λm

)i−1 ∫
A(k,ti)

Φ

(
u − k
R − ϱ

)
dx

 (3.12)

and

II j =

j∑
i=1

(
θ

λm

)i−1

. (3.13)

Since ti < R for all i ≥ 1 we get A (k, ti) ⊂ A (k,R),
∫

A(k,ti)
Φ

(
u−k
R−ϱ

)
dx ≤

∫
A(k,R)

Φ
(

u−k
R−ϱ

)
dx and

I j ≤ II j

∫
A(k,R)

Φ

(
u − k
R − ϱ

)
dx. (3.14)

for all i ≥ 1. By (3.11), (3.12), (3.13) and (3.14) it follows

z (k, t0) ≤ θ jz
(
k, t j

)
+

1
(1 − λ)m

A
∫

A(k,R)

Φ

(
u − k
R − ϱ

)
dx + B


j−1∑
i=0

(
θ

λm

)i

(3.15)

If we now choose λ in such a way that θλ−m < 1 and go to the limit for k → +∞ we get (4.8) with c = cθ,m =
(1 − λ)−m (1 − θλ−m)−1. �

Lemma 6 and Lemma 7 generalize Lemma 6.1 of (Giusti, 1994)

3.2 Caccioppoli’s Inequality

Now we can proof the Caccioppoli’s inequality.

Definition 10. A function u ∈ W1
locLΦ (Ω) is a quasi-minimum of the functional (1.1), with costant Q ≥ 1, if for

every function φ ∈ W1
locLΦ (Ω), with the support K ⊂ Ω, then

F (u,K) ≤ QF (u + φ,K) .

Definition 11. Let u ∈ W1
locLΦ (Ω) it is a sub-quasi-minimum of the functional (1.1), with constant Q ≥ 1, if for all

not-positive function φ ∈ W1
locLΦ (Ω), with support K ⊂ Ω, we have

F (u,K) ≤ QF (u + φ,K) . (3.16)

Definition 12. Let u ∈ W1
locLΦ (Ω) it is a super-quasi-minimum of the functional (1.1), with constant Q ≥ 1, if for

all not-negative function φ ∈ W1
locLΦ (Ω), with support K ⊂ Ω, we have

F (u,K) ≤ QF (u + φ,K) . (3.17)

Remark 1. Quasi-minima are at the same time sub - and a super-quasi-minima.
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If u ∈ W1
locLΦ (Ω), k is a real number and QR (x0) is a cube strictly contained in Ω we set

A (k,R) = {x ∈ QR : u (x) > k} = {u > k} ∩ QR,
B (k,R) = {x ∈ QR : u (x) < k} = {u < k} ∩ QR.

Remark 2. We have |A (R, k)| = |QR| − |B (R, k)| for almost every k ∈ R, so that when necessary we can assume
without loss of generality that all the vcalues k under consideration will satisfy this relation.

For dettails refer (Ambrosio; E De Giorgi, 1957; Giaquinta et al., 1982) and (Giusti, 1994).

Theorem 4. (Caccioppoli’s inequality) Let u ∈ W1
locLΦ (Ω) be a sub-quasi-minimum for the functional (1.1) and

let the growths (1.2) hold. If Φ ∈ △2; then there exists a real number R0 > 0 such that for every x0 ∈ Ω, every

R, ϱ ∈ R with 0 < ϱ < R < min
{
R0,

d(x0,∂Ω)
2
√

2N

}
and every k ≥ k0 ≥ 0 we have∫

A(k,ϱ)
Φ (|∇u|) dx ≤ cCac,1

∫
A(k,R)

Φ
(

u−k
R−ϱ

)
dx+

+cCac,2

[
R−ϵNΦ (k) + ∥a∥β

]
|A (k,R)|1− 1

N +ϵ
(3.18)

where cCac,1 = c12 (N,m,Q) and cCac,2 = c13 (N,m,Q) are two positive real constant.

Proof. The proof follows using the Lemma 6, the techniques introduced in (Giusti et al., 1994; Mascolo et al.,
1996) and the Lemma 8. �

Remark 3. Let u ∈ W1
locLΦ (Ω) be a sub-quasi-minimum for the functional (1.1) and let the growths (1.2) hold. If

Φ ∈ △2; then −u will be a sub-quasi-minimum for the functional

F [u,Ω] =
∫
Ω

f (x, u (x) ,∇u (x)) dx (3.19)

with f (x, s, z) = f (x,−s,−z). Since f satisfies conditions (1.2) then (4.18) holds for −u and for every k ≤ −k0 ≤ 0
we have ∫

B(k,ϱ)
Φ (|∇u|) dx ≤ cCac,1

∫
B(k,R)

Φ
(

k−u
R−ϱ

)
dx+

+cCac,2G̃ (R, k)
(3.20)

where
G̃ (R, k) =

[
R−ϵNΦ (k) + ∥a∥β

]
|B (k,R)|1− 1

N +ϵ .

and cCac,1 = c12 (N,m,Q) and cCac,2 = c13 (N,m,Q) are two positive real costants.

Theorem 5. If u ∈ W1
locLΦ (Ω) is a quasi-minimum for the functional (1.1) and let the growths (1.2) hold. If

Φ ∈ △2; then there exists a real number R0 > 0 such that for every x0 ∈ Ω, for every R, ϱ ∈ R with 0 < ϱ < R <

min
{
R0,

d(x0,∂Ω)
2
√

2N

}
, for every k ∈ R the function u satisfies the Caccioppoli Inequality (4.18) and (4.44).

We can now introduce the adequate De Giorgi classes relating to the functional (1.1).

Definition 13. LetΦ be a N-function andΦ ∈ △2. Let u ∈ W1
locLΦ (Ω); we say that u ∈ DG+

Φ
(Ω,H1,H2, χ, ϵ,R0, k0)

if for every couple of concentric cubes Qϱ ⊂ QR ⊂ QR0 b Ω, with ϱ < R < R0, and for every k ≥ k0 ≥ 0 we have∫
A(k,ϱ)

Φ (|∇u|) dx ≤ H1
∫

A(k,R)
Φ

(
u−k
R−ϱ

)
dx+

+H2

[
R−ϵNΦ (k) + χ

]
|A (k,R)|1− 1

N +ϵ .
(3.21)

Definition 14. LetΦ be a N-function andΦ ∈ △2. Let u ∈ W1
locLΦ (Ω); we say that u ∈ DG−

Φ
(Ω,H1,H2, χ, ϵ,R0, k0)

if for every couple of concentric cubes Qϱ ⊂ QR ⊂ QR0 b Ω, with ϱ < R < R0, and for every k ≤ −k0 ≤ 0 we have∫
B(k,ϱ)

Φ (|∇u|) dx ≤ H1
∫

B(k,R)
Φ

(
k−u
R−ϱ

)
dx+

+H2

[
R−ϵNΦ (k) + χ

]
|B (k,R)|1− 1

N +ϵ .
(3.22)
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Definition 15. Let Φ be a N-function and Φ ∈ △2. Let u ∈ W1
locLΦ (Ω),we say that u ∈ DGΦ (Ω,H1,H2, χ,R0) if

u ∈ DG±
Φ

(Ω,H1,H2, χ,R0), that is

DGΦ (Ω,H1,H2, χ, ϵ,R0) = DG+Φ (Ω,H1,H2, χ, ϵ,R0) ∩ DG−Φ (Ω,H1,H2, χ, ϵ,R0) .

Remark 4. The relationships (4.45) and (4.46) can be written this way:∫
A(k,ϱ)

Φ (|∇u|) dx ≤ H1
∫

A(k,R)
Φ

(
u−k
R−ϱ

)
dx+

+H2R−ϵN
[
Φ

(
k + χ1R

Nϵ
m

)]
|A (k,R)|1− 1

N +ϵ
(3.23)

and ∫
B(k,ϱ)

Φ (|∇u|) dx ≤ H1
∫

B(k,R)
Φ

(
k−u
R−ϱ

)
dx+

+H2R−ϵN
[
Φ

(
k + χ1R

Nϵ
m

)]
|B (k,R)|1− 1

N +ϵ .
(3.24)

where χ1 = Φ
−1 (χ). Therefore, replacing v = u − χ1R

Nϵ
m and h = k − χ1R

Nϵ
m , we get∫

A(h,ϱ)

Φ (|∇v|) dx ≤ H1

∫
A(h,R)

Φ

(
v − h
R − ϱ

)
dx + H2R−ϵNΦ (h) |A (h,R)|1− 1

N +ϵ (3.25)

and ∫
B(h,ϱ)

Φ (|∇v|) dx ≤ H1

∫
B(h,R)

Φ

(
h − v
R − ϱ

)
dx + H2R−ϵNΦ (h) |B (h,R)|1− 1

N +ϵ . (3.26)

In the sequel it will be useful to associate to u the function

wR (y) =
u (Ry)

R
(3.27)

and we get the following Caccioppoli’s inequality.

Corollary 1. If u ∈ W1
locLΦ (Ω) is a quasi-minimum for the functional (1.1) and let the growths (1.2) hold. If

Φ ∈ △2 and 1 ≥ σ > τ ≥ 1
2 then∫

A(h/R,τ)

Φ (|∇wR|) dy ≤ H1

∫
A(h/R,σ)

Φ

(
wR − h/R
σ − τ

)
dy + H̃2Φ (h) |A (h, σ)|1− 1

N +ϵ (3.28)

and ∫
B(h/R,τ)

Φ (|∇wR|) dy ≤ H1

∫
B(h/R,σ)

Φ

(
h/R − wR

σ − τ

)
dy + H̃2Φ (h) |B (h, σ)|1− 1

N +ϵ (3.29)

where H̃2 = 2ϵN H2.

Proof. Let wR (y) = u(Ry)
R then ∫

A(h/R,τ)

Φ (|∇wR|) dy =
1

RN

∫
A(h,τR)

Φ (|∇u|) dx (3.30)

and ∫
A(h/R,σ)

Φ

(
wR − h/R
σ − τ

)
dy =

1
RN

∫
A(h,σ)

Φ

(
u − h
σR − τR

)
dx (3.31)

by Caccioppoli inequalities (3.23) and (3.24) we obtain (3.28) and (3.29). �
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4. LΦ − L∞ Inequalities I

Let us remember the following lemma:

Lemma 8. Let both λ > 0 and {xi}i∈N a set of positive real numbers, such that

xi+1 ≤ CBix1+λ
i (4.1)

with C > 0 and B > 1. Then, if x0 ≤ C−
1
λ B−

1
λ2 , we have

xi ≤ B−
i
λ x0 (4.2)

and consequently, in particular, we have
lim

i→+∞
xi = 0. (4.3)

Proof. Refer to Lemma 7.1 of (Giusti, 1994). �

Theorem 6. If u ∈ DG+
Φ

(Ω,H1,H2, χ, ϵ,R0) then u is locally bounded from above in Ω. Furthermore, for every

x0 ∈ Ω and 0 < R ≤ min
(
R0,

d(x0,∂Ω)
2
√

2N
, 1

)
there exists an universal constant c14 = c14 (N,m,H1,H2, χ) such that

ess − sup
Q R

2

(
v − h0

R

)
≤ 2Φ−1

 c14

|QR|

∫
QR

Φ

(
(v − h0)+

R

)
dx

 (4.4)

where v = u − χRNϵ , h = k − χRNϵ and h0 = k0 − χRNϵ .

Proof. Let 1
2 ≤ τ < σ ≤ 1 and ζ = ηmax

{
v(Ry)−h

R , 0
}
= η

(
v(Ry)−h

R

)
+

where η ∈ C∞c
(
Q σ+τ

2

)
with 0 ≤ η ≤ 1 on Q σ+τ

2
,

η = 1 on Qτ and |∇η| ≤ 2
(σ−τ) on Q σ+τ

2
. Setting

I =


∫

Q τ+σ
2

(Φ (ζ))
N

N−1 dy


N−1

N

(4.5)

using Holder and Sobolev inequalities it follows∫
A(h,τ)

Φ

((
v (Ry) − h

R

)
+

)
dy ≤ |A (h, τ)| 1N I (4.6)

and

I ≤ CS N


∫

Q τ+σ
2

Φ̇ (ζ) |∇ζ | dy

 (4.7)

then we have ∫
A(h,τ)

Φ
((

v(Ry)−h
R

)
+

)
dy ≤ c |A (h, τ)| 1N ·

·
∫

Q τ+σ
2

Φ̇ (ζ) |∇ζ | dy (4.8)

where c = CS N . Since

|∇ζ | ≤ η |∇wR| +
(

v (Ry) − h
R

)
+

|∇η| (4.9)

and
Φ̇ (a) b ≤ Φ̇ (b) b + Φ̇ (a) a ≤ m (Φ (a) + Φ (b)) (4.10)
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we get ∫
Q τ+σ

2

Φ̇ (ζ) |∇ϖ| dy ≤

≤
∫

Q τ+σ
2

Φ̇ (ζ)
(
η |∇wR| +

(
v(Ry)−h

R

)
+
|∇η|

)
dy.

(4.11)

Setting

II =
∫

Q τ+σ
2

Φ̇ (ζ)
(
η |∇wR| +

(
v (Ry) − h

R

)
+

|∇η|
)

dy (4.12)

it follows
II ≤

∫
Q τ+σ

2

ηΦ̇ (ζ) |∇wR| dy+

+
∫

Q τ+σ
2

Φ̇ (ζ)
(

v(Ry)−h
R

)
+
|∇η| dy

≤
∫

Q τ+σ
2

Φ̇
((

v(Ry)−h
R

)
+

)
|∇wR| dy+

+ 4
σ−τ

∫
Q τ+σ

2

Φ̇
((

v(Ry)−h
R

)
+

) (
v(Ry)−h

R

)
+

dy

≤ m
∫

Q τ+σ
2

Φ
((

v(Ry)−h
R

)
+

)
dy + m

∫
Q τ+σ

2

Φ (|∇wR|) dy+

+ 4m
σ−τ

∫
Q τ+σ

2

Φ
((

v(Ry)−h
R

)
+

)
dy

≤
(
m + 4m

σ−τ

) ∫
A(h,σ)

Φ
((

v(Ry)−h
R

)
+

)
dy + m

∫
Q τ+σ

2

Φ (|∇wR|) dy

(4.13)

Using (3.28) we obtain ∫
A(h,τ)

Φ
((

v(Ry)−h
R

)
+

)
dy ≤ CS N |A (h, τ)| 1N

((
m + 4m

σ−τ

)
·

·
∫

A(h,σ)
Φ

((
v(Ry)−h

R

)
+

)
dy+

+mH1
∫

A(h,σ)
Φ

(
wR−h/R
σ−τ

)
dx+

+mH̃2Φ (h) |A (h, σ)|1− 1
N +ϵ

)
≤ mCS N |A (h, τ)| 1N

((
1 + 4

σ−τ +
H1

(σ−τ)m

)
·

·
∫

A(h,σ)
Φ

((
v(Ry)−h

R

)
+

)
dy+

+H̃2Φ (h) |A (h, σ)|1− 1
N +ϵ

)
.

(4.14)

Since

|A (k, τ)| ≤ 1

Φ
(

k−h
R

) ∫
A(k,τ)

Φ

(
v (Ry) − k

R

)
dy (4.15)

we have ∫
A(h,τ)

Φ
((

v(Ry)−h
R

)
+

)
dy ≤

[(
1 + 4

σ−τ +
H1

(σ−τ)m

)
|A (k, τ)| 1N −ϵ + H̃2Φ(h)

Φ( k−h
R )

]
·

·mCS N ·
 1
Φ( k−h

R )
∫

A(k,τ)
Φ

(
v−k
R

)
dy

ϵ ∫
A(h,σ)

Φ
((

v(Ry)−h
R

)
+

)
dy

(4.16)

Since ∫
A(h,σ)

Φ

((
v (Ry) − h

R

)
+

)
dy ≤

∫
A(k,σ)

Φ

(
v (Ry) − k

R

)
dy (4.17)
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by (4.16) we get ∫
A(h,τ)

Φ
((

v(Ry)−h
R

)
+

)
dy ≤

(
1

Φ( k−h
R )

)ϵ  ∫
A(k,σ)

Φ
(

v−k
R

)
dy

1+ϵ

·

·mCS N ·
[(

1 + 4
σ−τ +

H1
(σ−τ)m

)
|A (k, τ)| 1N −ϵ + H̃2Φ(h)

Φ( k−h
R )

]
.

(4.18)

Let h̃ = h
R and k̃ = k

R then
∫

A(h,τ)
Φ

((
v(Ry)−h

R

)
+

)
dy =

∫
A(h̃,τ)

Φ
((

wR − h̃
)
+

)
dy, by (4.18) it follows

∫
A(h̃,τ)

Φ
((

wR − h̃
)
+

)
dy ≤

(
1

Φ(k̃−h̃)

)ϵ  ∫
A(k̃,σ)

Φ
((

wR − k̃
)
+

)
dy


1+ϵ

·

·mCS N ·
[(

1 + 4
σ−τ +

H1
(σ−τ)m

)
R1−ϵN +

H̃2Φ(h̃)
Φ(k̃−h̃)

]
.

(4.19)

Let us define
k̃0 =

d
R

k̃i+1 = k̃i + Φ
−1

(
Φ( d

R )
2im

)
for i ≥ 1

and
ri =

1
2

(
1 + 2−i

)
for i ∈ N.

by inequality (4.19) we have

Ui ≤ mCS N

[(
1 + 4

ri−ri+1
+ H1

(ri−ri+1)m

)
R1−ϵN +

H̃2Φ(k̃i)
Φ(k̃i+1−k̃i)

]
·

·
(

1
Φ(k̃i+1−k̃i)

)ϵ
U1+ϵ

i+1

(4.20)

and

Ui ≤ mCS N

cR1−ϵN +
H̃2Φ

(
k̃i

)
Φ

(
k̃i+1 − k̃i

) 
 1

Φ
(

d
R

) ϵ 2mϵiU1+ϵ
i+1 (4.21)

where Ui =
∫

A(k̃i,ri)
Φ

((
wR − k̃i

)
+

)
dy. SinceΦ−1

(
1

2m t
)
≤ 1

2Φ
−1 (t) for t > 0 then k̃i =

d
R+

i∑
j=1
Φ−1

(
Φ( d

R )
2 jm

)
≤ d

R+
i∑

j=1

d
R
2 j ≤

2 d
R , it follows

Ui ≤ mCS N

[
ξ + 2mH̃2

]  1

Φ
(

d
R

) ϵ 2m(ϵ+1)iU1+ϵ
i+1 (4.22)

Applying Lemma 8 get that lim
i→+∞

Ui = 0 if

U0 ≤
(
mCS N

[
ξ + 2mH̃2

])− 1
ϵ
Φ

(
d
R

)
2−

m(ϵ+1)
ϵ2 ,

that is

2
m(ϵ+1)
ϵ2

(
mCS N

[
ξ + 2mH̃2

]) 1
ϵ

∫
A( d

R ,1)

Φ

((
wR −

d
R

)
+

)
dy ≤ Φ

(
d
R

)
. (4.23)

It is easy to check that (4.23) is satisfies if we choose

Φ−1

2 m(ϵ+1)
ϵ2

(
mCS N

[
ξ + 2mH̃2

]) 1
ϵ

∫
A(0,1)

Φ ((wR)+) dy

 ≤ d
R

. (4.24)

SinceΦ−1
(

1
2m t

)
≤ 1

2Φ
−1 (t) for t > 0 then k̃i =

d
R +

i∑
j=1
Φ−1

(
Φ( d

R )
2 jm

)
≤ d

R +
i∑

j=1

d
R
2 j ≤ 2 d

R , it follows A
(
k̃i, ri

)
⊃ A

(
2 d

R ,
1
2

)
,

hence, since lim
i→+∞

Ui = 0, we have
∣∣∣∣A (

2 d
R ,

1
2

)∣∣∣∣ = 0, which gives

sup
Q 1

2

{wR} ≤ 2
d
R
= 2Φ−1

2 m(ϵ+1)
ϵ2

(
mCS N

[
ξ + 2mH̃2

]) 1
ϵ

∫
A(0,1)

Φ ((wR)+) dy

 (4.25)
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and therefore (4.4). �

Theorem 7. If u ∈ DGΦ (Ω,H1,H2, χ, ϵ,R0) then u is locally bounded on Ω. Furthermore, for each x0 ∈ Ω and

0 < R ≤ min
(
R0,

d(x0,∂Ω)
2
√

2N
, 1

)
there exists an universal constant c15 = c15 (N,m,H1,H2, χ) such that

ess − sup
Q R

2

(|u (x)|) ≤ 2RΦ−1

 c15

|QR|

∫
QR

Φ

(
|u|
R

)
dx

 + k0 + χR
Nϵ
m (4.26)

Proof. If u ∈ DG−
Φ

(Ω,H1,H2, χ, ϵ,R0, κ0) then −u ∈ DG+
Φ

(Ω,H1,H2, χ, ϵ,R0) and the proof follows by Theorem
6. �

Theorem 8. Let u ∈ W1
locLΦ (Ω) be a quasi-minimum of the functional (1.1) with the growths (1.2). If Φ ∈ △2; then

there exists a real number R0 > 0 such that for every x0 ∈ Ω, for every R, ϱ ∈ R with 0 < ϱ < R < min
{
R0,

d(x0,∂Ω)
2
√

2N

}
,

for every k ∈ R the following inequalities hold

ess − sup
Q R

2

(u − k) ≤ 2RΦ−1

 c14
|QR |

∫
QR

Φ
(

(u−k)+
R

)
dx

 + χR Nϵ
m

ess − inf
Q R

2

(k − u) ≤ 2RΦ−1

 c14
|QR |

∫
QR

Φ
(

(k−u)−
R

)
dx

 + χR Nϵ
m

(4.27)

and

ess − sup
Q R

2

(u − k) ≤ 2Φ−1

 c14
|QR |

∫
QR

Φ ((u − k)+) dx

 + χR Nϵ
m

ess − inf
Q R

2

(k − u) ≤ 2Φ−1

 c14
|QR |

∫
QR

Φ ((k − u)−) dx

 + χR Nϵ
m

(4.28)

Proof. Inequalities (4.27) follow by Theorem 6. Inequalities (4.28) follow using the demostration methods pre-
sented in (Mascolo et al., 1996). �

Remark 5. Inequalties (4.27) and (4.28) are equivalent if Φ (t) = tp with p > 1.

Moreover the following lemma is valid.

Lemma 9. If u ∈ DG+
Φ

(Ω,H1,H2, χ, ϵ,R0) then u is locally bounded above on Ω. Let v = u − χR Nϵ
m the we get the

foolowing LΦ − LΦ estimation: for each x0 ∈ Ω and 0 < R ≤ min
(
R0,

d(x0,∂Ω)
2
√

2N
, 1

)
there exists an universal constant

c16 = c16 (N,m,H1,H2, χ) such that for any k > k0

ess − sup
Qϱ

(
v − k

R

)
≤ 2Φ−1

 c16

(R − ϱ)N

∫
QR

Φ

(
(v − k)+

R

)
dx

 (4.29)

for each Qϱ ⊂ QR e 0 < ϱ < R. Furthermore, for each x0 ∈ Ω and R ≤ min
(
R0,

d(x0,∂Ω)
2
√

2N
, 1

)
there exists an universal

constant c16 = c16 (N,m,H1,H2, χ) such that for any k > k0

ess − sup
Qϱ

(u − k) ≤ 2RΦ−1

 c16

(R − ϱ)N

∫
QR

Φ

(
(u − k)+

R

)
dx

 + k0 + χR
Nϵ
m (4.30)

for each Qϱ ⊂⊂ QR e 0 < ϱ < R.
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Proof. Observe that for every 0 < t < 1 there exists x0 ∈ QtR such that

ess − sup
QtR

{
v − k

R

}
≤ ess − sup

Q (1−t)R
2

(x0)

{
v − k

R

}
(4.31)

therefore (4.27) gives

ess − sup
QtR

{
v − k

R

}
≤ 2Φ−1

 c16

(1 − t)N RN

∫
QR

Φ

(
(v − k)+

R

)
dx

 (4.32)

by (4.32) it follows (4.29) and (4.30). �

Using Theorem 4 and Theorem 6 we get the following theorem.

Theorem 9. Let u ∈ W1
locLΦ (Ω) be a quasi-minimum of the functional (1.1) with the growths (1.2). If Φ ∈ △2; then

there exists a real number R0 > 0 such that for every x0 ∈ Ω, for every R, ϱ ∈ R with 0 < ϱ < R < min
{
R0,

d(x0,∂Ω)
2
√

2N

}
,

for every k ∈ R the following Caccioppoli inequalities hold∫
A(k,ϱ)

Φ (|∇u|) dx ≤ c̃Cac,1
∫

A(k,R)
Φ

(
u−k
R−ϱ

)
dx+

+c̃Cac,2 |A (k,R)|1− 1
N +ϵ

(4.33)

and ∫
B(k,ϱ)

Φ (|∇u|) dx ≤ c̃Cap,1
∫

B(k,R)
Φ

(
k−u
R−ϱ

)
dx+

+c̃Cac,2 |B (k,R)|1− 1
N +ϵ

(4.34)

where c̃Cac,1 = c1 (N,m, γ,Q,M) and c̃Cac,2 = c2 (N,m, γ,Q,M) are two real positive constants with M = 2 supQ2R
(u).

Proof. The proof follows from the Theorem 4 and Theorem 6 as in (Giusti, 1994). �

Remark 6. The preceding relationships (4.33) and (4.34) they are worth with the same constants for u − A if
|A| + supQ2R

(u) ≤ M.

5. LΦ − L∞ Inequalities II

5.1 The maximal LΦ − LΦ inequality

Lemma 10. LetΦ ∈ △2. If u ∈ DGΦ (Ω,H1,H2, χ, ϵ,R0) then there exists an universal constant c17 = c17(N,m,H1,H2, χ)
such that for each k, h > k0 and k > h we have∫

A(k,ϱ)

Φ

(
v − k

R

)
dx ≤ c17

V (h, ϱ)
(τ − ϱ)N

∫
A(h,τ)

Φ

(
v − h

R

)
dx (5.1)

where v = u − χR Nϵ
m .

Proof. Assuming that 1 < s < N and k0 < h < k; let ϱ and τ be two real numbers such that R
2 ≤ ϱ < τ ≤ R. Let

η ∈ C∞c
(
Q ϱ+τ

2

)
with 0 ≤ η ≤ 1 on Q ϱ+τ

2
, η = 1 on Qϱ and |∇η| ≤ 2

(τ−ϱ) on Q ϱ+τ
2

. Let us then define ζ = η (v−k)+
R , from

Theorem 8 we know that (Φ (ζ))
N−1
N−α ∈ W1,1

(
Q ϱ+τ

2

)
and using Hölder inequality we obtain

∫
A(k,ϱ)

Φ

(
v − k

R

)
dx ≤ |A (k, ϱ)| s

N


∫

A(k,ϱ)

(
Φ

(
v − k

R

)) N
N−s

dx


N−s

N

. (5.2)

Since ∫
A(k,ϱ)

(
Φ

(
v − k

R

)) N
N−s

dx ≤
∫

Q ϱ+τ
2

[
(Φ (ζ))

N−1
N−s

] N
N−1 dx (5.3)
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then from Sobolev Inequality and Chain Rule Theorem it follows ∫
Q ϱ+τ

2

[
(Φ (ζ))

N−1
N−s

] N
N−1 dx


N−s

N

≤

≤

CS N
N−1
N−s

∫
Q ϱ+τ

2

(Φ (ζ))
s−1
N−s Φ̇ (ζ)

(
|∇η| (v−k)+

R +
η
R |∇ (v − k)+|

)
dx


N−s
N−1

.

(5.4)

Since

|A (k, τ)| ≤ R
Φ (k − h)

∫
A(τ,h)

Φ

(
v − h

R

)
dx (5.5)

then, using Lemma 1 (i), Lemma 5, Lemma 9 and relations (3.18), (5.4) and (5.5), we have ∫
Q ϱ+τ

2

[
(Φ (ζ))

N−1
N−s

] N
N−1 dx


N−s

N

≤

CS N
N−1
N−s

 c16

(τ−ϱ)N

∫
Qτ

Φ
(

(v−k)+
R

)
dx


s−1
N−s

·

·

 ∫
Q ϱ+τ

2

Φ̇ (ζ)
(
|∇η| (v−k)+

R +
η
R |∇ (v − k)+|

)
dx




N−s
N−1

≤

≤

2CS N
N−1
N−s

 c16

(τ−ϱ)N

∫
Qτ

Φ
(

(v−k)+
R

)
dx


s−1
N−s

·

·

( m
τ−ϱ +

m
R

) ∫
Qτ

Φ
(

(v−k)+
R

)
dx + m

R

∫
Q ϱ+τ

2

Φ (|∇ (v − k)+|) dx




N−s
N−1

≤

≤
(
2CS N

N−1
N−s

) N−s
N−1

(
c16

(τ−ϱ)N

) s−1
N−1

 ∫
A(τ,h)

Φ
(

v−h
R

)
dx


s−1
N−1

·

·

( m
τ−ϱ +

m
R

) ∫
A(τ,h)

Φ
(

v−k
R

)
dx + m

R

∫
A( ϱ+τ2 ,k)

Φ (|∇v|) dx


N−s
N−1

.

It follows  ∫
Q ϱ+τ

2

[
(Φ (ζ))

N−1
N−s

] N
N−1 dx


N−s

N

≤

≤
(

m
τ−ϱ +

m
R +

mH
R(τ−ϱ)m +

mH̃2R−ϵN[Φ(k)+χ]|B(k,R)|−
1
N +ϵ

RΦ(k−h)

) N−s
N−1

·

·
(
2CS N

N−1
N−s

) N−s
N−1

(
c16

(τ−ϱ)N

) s−1
N−1

 ∫
A(τ,h)

Φ
(

v−h
R

)
dx

.
(5.6)

Using relation (5.2) and (5.6) we obtain∫
A(k,ϱ)

Φ
(

(v−k)+
R

)
dx ≤

≤ G (s) |A (k, ϱ)| s
N

 ∫
A(τ,h)

Φ
(

v−h
R

)
dx

 for every s ∈ (1,N) ,
(5.7)

where

G (s) =
(
2CS N

N−1
N−s

) N−s
N−1

(
c16

(τ−ϱ)N

) s−1
N−1 ·

·
(

m
τ−ϱ +

m
R +

mH
R(τ−ϱ)m +

mH̃2R−ϵN[Φ(k)+χ]|B(k,R)|−
1
N +ϵ

RΦ(k−h)

) N−s
N−1

(5.8)

is a continuous function in s ∈ (1,N). From s→ N− we obtain (5.1). �
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5.2 The Maximal LΦ − L∞ Inequality

Theorem 10. Let Φ be a N-function and Φ ∈ △2. If u ∈ DGΦ (Ω,H1,H2, χ, ϵ,R0)) then u is locally bounded
on Ω. Furthermore, for each x0 ∈ Ω and 0 < R ≤ min (R0, d (x0, ∂Ω) , 1) there exists an universal constant
cM = cM (α,N,m,H, χ) such that for any h0 ∈ R

ess − sup
Q R

2
(x)

(
v − h0

R

)
≤ 2Φ−1

cM

(
V (h0,R)

RN

)α  1
RN

∫
A(h0,R)

Φ

(
v − h0

R

)
dy


 (5.9)

where v = u − χR Nϵ
m , h0 = k0 − χR

Nϵ
m , V (h0,R) = LN (A (h0,R)) and α = −1+

√
5

2 .

Proof. Let us consider the following sequences:

k0 = d
ki+1 = ki + Φ

−1
(
Φ(d)
2im

)
for i ≥ 1

and
ri =

R
2

(
1 + 2−i

)
for i ∈ N.

Let us define

ϑ (k, r) = (V (k, r))α
∫

A(k,r)

Φ

(
v − k

R

)
dx; (5.10)

and ϑi = ϑ (ki, ri). From relations (5.1) and (5.10) we obtain

ϑi+1 ≤ c182(n+mα)iR−N (Φ (d))−α (ϑi)1+α

where α = −1+
√

5
2 is a solution of α = 1

1+α ; remembering that

ϑ0 = |A (d,R)|α
∫

A(d,R)
Φ

(
v−d
R

)
dx

≤ |A (0,R)|α
∫

A(0,R)
Φ

(
v
R

)
dx

and considering

|A (0,R)|α
∫

A(0,R)

Φ (v) dx ≤ 1

(c14)α 2
1+α
α2

R
N
αΦ (d) ,

that is

d ≥ Φ−1

C (2, α) R−
N
α |A (0,R)|α

∫
A(0,R)

Φ

( v
R

)
dx


where C (2, α) = (c18)α 2

1+α
α2 , then from Lemma 8 it comes

lim
i→+∞

ϑi = 0. (5.11)

Given that Φ−1 (amt) ≤ aΦ−1 (t) for each t > 0 and a < 1 (Refer [Mascolo et al., 1996]) then we have

ki = d +
i∑

j=0

Φ−1
(
Φ (d)
2mi

)
≤ 2d

so, for each i > 0, we obtain A
(
2d, R

2

)
⊂ A (ki, ri) and∣∣∣∣∣A (

2d,
R
2

)∣∣∣∣∣α ∫
A(2d, R2 )

Φ

(
v − 2d

R

)
dx ≤ ϑi.
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From relation (5.11) it follows
ess − sup

Q R
2

{ v
R

}
≤ 2d

given

d = Φ−1

C (2, α) R−
N
α |A (0,R)|α

∫
A(0,R)

Φ

( v
R

)
dx


we have

ess − sup
Q R

2

{ v
R

}
≤ 2Φ−1

C (2, α) R−
N
α |A (0,R)|α

∫
A(0,R)

Φ

( v
R

)
dx

 .

Since α = −1+
√

5
2 then R

N
α = RN

√
5+1
2 = RN+Nα, consequently we obtain

ess − sup
Q R

2

{ v
R

}
≤ 2Φ−1

C (2, α) R−N
(
|A (0,R)|

RN

)α ∫
A(0,R)

Φ

( v
R

)
dx


and (6.9). �

Now we can prove Theorem 1.

Proof. (Proof of Theorem 1) It follows using Theorem 9 and Teorem 10. �

6. Decay Lemma

We divide this paragraph into two parts.

Moreover we suppose 0 < R ≤ min (R0, d (x0, ∂Ω) , 1) and

osc (u, r) = M(r) − m(r)

where M(r) = M(u, r) = supQr
(u) and m(r) = m (u, r) = infQr (u).

6.1 Case One

If Φ ∈ △2 ∩ ∇2 then the following theorem hold.

Lemma 11. We assume that u is a bounded function and (4.33) is valid for every k ∈ R. We set 2k0 = M (2R) +
m (2R) and we assume that |A (k0,R)| ≤ γ |QR| for some γ ∈ (0, 1). If for some integer ν we have

osc (u, 2R) ≥ 2ν+1χΦ−1
(
RϵN

)
then, if kν = M (2R) − 2−ν−1osc (u, 2R), we obtain

|A (kν,R)| ≤
(

c17√
ν
+ c18

1
2m̃
√
ν

)
RN

where c17 and c18 are universal constants.

Proof. We consider ν ∈ N, then we define

ki = M (2R) − 2−i−1osc (u, 2R) for i = 1, ..., ν
hi = M (2R) − 2−iosc (u, 2R) for i = 1, ..., ν

and

vi (x) =


ki−hi

R if u > ki
u(x)−hi

R if hi < u ≤ ki

0 if u ≤ hi

for i = 1, ..., ν.
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In particular, we have that Φ (vi (x)) ∈ W1,1 (QR) and vi = 0 on QR\A (R, κ0) where k0 = h1 =
M(2R)+m(2R)

2 for all
i = 1, ..., ν. Using the Hölder Inequality we have

|A (ki,R)|Φ
(

ki−ki−1
R

)
≤

∫
A(ki−1,R)

Φ (vi) dx

≤ |A (ki−1,R)| 1N
 ∫
A(ki−1,R)

[Φ (vi)]
N

N−1 dx


N−1

N

.

Since Φ (vi) = 0 on QR\A (R, κ0) where k0 = h1 =
M(2R)+m(2R)

2 for all i = 1, ..., ν, using the Sobolev Inequality it
follows

|A (ki,R)|Φ
(

ki−ki−1
R

)
≤ cS N

∫
∆i

Φ̇ (u − ki−1) |∇u| dx.

For every ε > 0, ∫
∆i

Φ̇ (u − ki−1) |∇u| dx = m
∫
∆i

Φ̇ (u − ki−1)
εm

ε |∇u| dx

then, since Φ is a N-function from the Young inequality ab ≤ Φ̃ (a) + Φ (b), we get

|A (ki,R)|Φ (ki − ki−1) ≤ mcS N
∫
∆i

Φ̃
(
Φ̇(u−ki−1)
εm

)
dx + mcS N

∫
∆i

Φ (ε |∇u|) dx.

Since Φ ∈ △2 ∩ ∇2 then Φ̃ ∈ △2 ∩ ∇2 and

Φ̃
(
Φ̇(u−ki−1)
εm

)
≤ 1
εm̃ Φ̃

(
(u−ki−1)Φ̇(u−ki−1)

m(u−ki−1)

)
≤ Φ̃

(
Φ(u−ki−1)
(u−ki−1)

)
from the inequality

Φ̃

(
Φ (t)

t

)
< Φ (t)

(see inequality (6), page 230 of [Adams, 1975]) we have

|A (ki,R)|Φ
(

ki − ki−1

R

)
≤ mcS N

ε
R

∫
∆i

Φ

(
u − ki−1

R

)
dx +

+mcS Nc2
4ε

∫
∆i

Φ (|∇u|) dx.

Using the Caccioppoli’s inequality (4.33) we obtain

|A (ki,R)|Φ
(

ki−ki−1
R

)
≤ cS N m

εm̃ |∆i|Φ
(

osc(u,2R)
2iR

)
+

+mcS Nc2
4ε (H + χ)Φ

(
osc(u,2R)

2iR

)
RN

and
|A (kν,R)| ≤ 2m

(cS Nm
εm̃ |∆i| + mcS Nc2

4ε (H + χ) RN
)

. (6.1)

Using (6.1) we have

ν |A (kν,R)| ≤ 2m

(
cS N m
εm̃

ν∑
i=1
|∆i| + mcS Nc2

4ε (H + χ) RNν

)
≤ 2m cS N m

εm̃ |A (k0,R)| + ν2mmcS Nc2
4ε (H + χ) RN

and
|A (kν,R)| ≤ 2m cS Nm

νεm̃ |A (k0,R)| + 2mmcS Nc2
4ε (H + χ) RN .

Fixed ε = ν−
1

2m̃ it follows

|A (kν,R)| ≤
(

2mcS Nm
√
ν
+ mcS Nc2

4 (H + χ) 2m 1
2m̃
√
ν

)
RN .

�
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6.2 Case Two

If Φ satisfies the hypotheses H-1, H-2 and H-3 then the following theorem hold.

Lemma 12. We assume that u is a bounded function and (4.33) is valid for every k ∈ R. We set 2k0 = M (2R) +
m (2R) and we assume that |A (k0,R)| ≤ γ |QR| for some γ ∈ (0, 1). If for some integer ν we have

osc (u, 2R) ≥ 2ν+1χΦ−1
(
RϵN

)
then, if kν = M (2R) − 2−ν−1osc (u, 2R), we obtain

|A (kν,R)| ≤
(

c17√
ν
+ c18Φ̇

(
1
√
ν

))
RN

where c17 and c18 are universal constants.

Proof. We consider ν ∈ N, then we define

ki = M (2R) − 2−i−1osc (u, 2R) for i = 1, ..., ν
hi = M (2R) − 2−iosc (u, 2R) for i = 1, ..., ν

and

vi (x) =


ki − hi if u > ki

u (x) − hi if hi < u ≤ ki

0 if u ≤ hi

for i = 1, ..., ν.

In particular, we have that Φ (vi (x)) ∈ W1,1 (QR) and vi = 0 on QR\A (R, κ0) where k0 = h1 =
M(2R)+m(2R)

2 for all
i = 1, ..., ν. Using the Hölder Inequality we have

|A (ki,R)|Φ (ki − ki−1) ≤
∫

A(ki−1,R)
Φ (vi) dx

≤ |A (ki−1,R)| 1N
 ∫
A(ki−1,R)

[Φ (vi)]
N

N−1 dx


N−1

N

.

Since Φ (vi) = 0 on QR\A (R, κ0) where k0 = h1 =
M(2R)+m(2R)

2 for all i = 1, ..., ν, using the Sobolev Inequality it
follows

|A (ki,R)|Φ (ki − ki−1) ≤ cS N
∫
∆i

Φ̇ (u − ki−1) R |∇u| dx.

For every ε > 0, ∫
∆i

Φ̇ (u − ki−1) R |∇u| dx =
m
ε

∫
∆i

Φ̇ (u − ki−1)
m

εR |∇u| dx

then, since Φ is a N-function from the Young inequality ab ≤ Φ̃ (a) + Φ (b), we get

|A (ki,R)|Φ (ki − ki−1) ≤ mcS N
ε

∫
∆i

Φ̃
(
Φ̇(u−ki−1)

m

)
dx + mcS N

ε

∫
∆i

Φ (εR |∇u|) dx.

Since
Φ̃

(
Φ̇(u−ki−1)

m

)
≤ Φ̃

(
(u−ki−1)Φ̇(u−ki−1)

m(u−ki−1)

)
≤ Φ̃

(
Φ(u−ki−1)
(u−ki−1)

)
from the inequality

Φ̃

(
Φ (t)

t

)
< Φ (t)

(see inequality (6), page 230 of [Adams, 1975]) we have

|A (ki,R)|Φ (ki − ki−1) ≤ mcS N

ε

∫
∆i

Φ (u − ki−1) dx +

+
mcS Nc2

4

ε
Φ (ε)Φ (R)

∫
∆i

Φ (|∇u|) dx.
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Using the Caccioppoli’s inequality (4.33) we obtain

|A (ki,R)|Φ (ki − ki−1) ≤ cS N m
ε |∆i|Φ

(
osc(u,2R)

2i

)
+

+
mcS N c2

4
ε
Φ (ε)Φ (R)Φ

(
1
R

)
(H + χ)Φ

(
osc(u,2R)

2i

)
RN

and

|A (kν,R)| ≤ 2m

cS Nm
ε
|∆i| + m

cS Nc2
4

ε
Φ (ε)Φ (R)Φ

(
1
R

)
(H + χ) RN

 . (6.2)

Using (6.2) we have

ν |A (kν,R)| ≤ 2m

(
cS N m
ε

ν∑
i=1
|∆i| + m cS N c2

4
ε
Φ (ε)Φ (R)Φ

(
1
R

)
(H + χ) RNν

)
≤ 2m cS N m

ε |A (k0,R)| + ν 2mmcS N c2
4

ε
Φ (ε)Φ (R)Φ

(
1
R

)
(H + χ) RN

and

|A (kν,R)| ≤ 2m cS Nm
νε
|A (k0,R)| +

2mmcS Nc2
4

ε
Φ (ε) Φ̇ (R) Φ̇

(
1
R

)
(H + χ) RN .

Since, for the hypotesis H2, Φ̇ (R) Φ̇
(

1
R

)
≤ cH2 we get

|A (kν,R)| ≤ 2m cS Nm
νε
|A (k0,R)| + mcS Nc2

4Φ̇ (ε) cH2 (H + χ) 2mRN .

Fixed ε = ν−
1
2 it follows

|A (kν,R)| ≤
(

2mcS Nm
√
ν
+ mcS Nc2

4cH2 (H + χ) 2mΦ̇

(
1
√
ν

))
RN .

�

7. Proof of the Regularity Theorem

Let us start remembering the following lemma:

Lemma 13. Let φ (t) be a positive and increasing function. We assume that there exists a number τ ∈ (0, 1) such
that

φ (τR) ≤ τδφ (R) + BRβ, for 0 < R < R0

with 0 < β < δ and B ≥ 0. Then for every ϱ < R < R0 we get

φ (ϱ) ≤ C
[(
ϱ

R

)β
φ (R) + Bϱβ

]
where C > 0 is a constant depending only on τ, δ and β.

Proof. See Lemma 7.3 of (Giusti, 1994). �

7.1 Case One

If Φ ∈ △2 ∩ ∇2 then our proof is founded upon the following result:

Theorem 11. If u is a bounded function such that (4.33) and (4.34) hold for every k ∈ R; then u is locally hölder
continuous on Ω.

Proof. Let us consider 0 < R ≤ min (R0, d (x0, ∂Ω) , 1) and 2k0 = M (2R) +m (2R), then, without losing generality,
we can assume that |A (k0,R)| ≤ 1

2 |QR| since otherwise we would have |B (k0,R)| = |QR| − |A (k0,R)| ≤ 1
2 |QR| and
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we can consider −u instead of u. Let us consider kν = M (2R) − 2−ν−1osc (u, 2R), where ν is an integer that we fix
later in appropriate way, then we have kν > k0 and from (1.4) it follows

sup
B R

2

(u − kν) ≤ 2RΦ−1

 c8

RN

(
|A (kν,R)|

RN

)α ∫
A(kν,R)

Φ

(
(u − kν)+

R

)
dx

 +
+2Φ−1

(
RNϵ

)
.

Using Lemma 11, if
osc (u, 2R) ≥ 2ν+1χΦ−1

(
RNϵ

)
for some integer ν, then we get

|A (kν,R)| ≤
(

c17√
ν
+ c18

1
2m̃
√
ν

)
RN

and

sup
B R

2

(u − kν) ≤ 2RΦ−1

 c8

RN

((
c17√
ν
+ c18

1
2m̃
√
ν

)
RN

)α ∫
A(kν,R)

Φ

(
(u − kν)+

R

)
dx

 +
+c19Φ

−1
(
RNϵ

)
,

where c19 = 2Φ−1 (1). Let us take c20 = max {c17, c18} and ζ (ν) = max
{

1√
ν
, 1

2m̃√ν

}
then c17√

ν
+ c18

1
2m̃√ν ≤ 2c20ζ (ν).

Now we consider 2c20ζ (ν) ≤
(

1
22mC(N,α)

) 1
α and we get

ζ (ν) ≤ 1
2c20

(
1

22mC (N, α)

) 1
α

(7.1)

From the relation (7.1) it follows 1√
ν
≤ 1

2c20

(
1

22mC(N,α)

) 1
α or Φ̇

(
1√
ν

)
≤ 1

2c20

(
1

22mC(N,α)

) 1
α then

(
2c20

(
22mC (N, α)

) 1
α

)2
≤ ν

or, since Φ̇ is incresing and invertible, Φ̇−1

 1
2c20

(
1

22mC (N, α)

) 1
α



−2

≤ ν.

Then we choose
ν ≥ max {A + 1, B + 1} ,

where A =
[(
Φ̇−1

(
1

2c20

(
1

22mC(N,α)

) 1
α

))−2]
and B =

[(
2c20

(
22mC (N, α)

) 1
α

)2]
are the integer part of

(
Φ̇−1

(
1

2c20

(
1

22mC(N,α)

) 1
α

))−2

and
(
2c20

(
22mC (N, α)

) 1
α

)2
. If osc (u, 2R) ≥ 2ν+1χR, since Φ−1 (amt) ≤ aΦ−1 (t) for every t > 0 and every a < 1

(Refer [Mascolo et al., 1996]), we have

sup
B R

2

(u − kν) ≤ 2RΦ−1

 1
22mRN

∫
A(kν,R)

Φ
(

(u−kν)+
R

)
dx

 + c19Φ
−1

(
RNϵ

)
≤ 1

2 RΦ−1

 1
RN

∫
A(kν,R)

Φ
(

(u−kν)+
R

)
dx

 + c19Φ
−1

(
RNϵ

)
≤ 1

2 sup
BR

(u − kν) + c19Φ
−1

(
RNϵ

)
≤ 1

2 sup
B2R

(u − kν) + c19Φ
−1

(
RNϵ

)
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from which, using the hypothesis H3, it follows

osc
(
u,

R
2

)
≤

(
1 − 1

2ν+2

)
osc (u, 2R) .

In conclusion, either the function osc (u,R) verifies the previous relationship, or else

osc (u, 2R) ≤ 2ν+1χΦ−1
(
RNϵ

)
.

Anyway we have

osc
(
u,

R
2

)
≤

(
1 − 1

2ν+2

)
osc (u, 2R) + c202νχR

Nϵ
m .

Let us consider τ = 1
4 and δ = logτ

(
1 − 1

2ν+2

)
then we have

osc
(
u,

R
2

)
≤

(
1 − 1

2ν+2

)
osc (u, 2R) + c202νχRγ

with γ < min
{
δ, Nϵ

m

}
. Now we can apply Lemma 13 and we have

osc (u, ϱ) ≤ c21

[(
ϱ

R

)γ
osc (u,R) + c22χϱ

γ
]

for every 0 < ϱ < R < min (1, dist(x0, ∂Ω)). �

From the previous theorem we conclude with the proof of the Theorem 2.

Proof. (Proof of Theorem 2) It comes from Theorem 11 since quasi-minima confirm relation (4.33) and (4.34). �

7.2 Case Two

If Φ satisfies the hypotheses H-1, H-2 and H-3 then our proof is founded upon the following result:

Theorem 12. If u is a bounded function such that (4.33) and (4.34) hold for every k ∈ R; then u is locally hölder
continuous on Ω.

Proof. Let us consider 0 < R ≤ min (R0, d (x0, ∂Ω) , 1) and 2k0 = M (2R) +m (2R), then, without losing generality,
we can assume that |A (k0,R)| ≤ 1

2 |QR| since otherwise we would have |B (k0,R)| = |QR| − |A (k0,R)| ≤ 1
2 |QR| and

we can consider −u instead of u. Let us consider kν = M (2R) − 2−ν−1osc (u, 2R), where ν is an integer that we fix
later in appropriate way, then we have kν > k0 and from (1.4) it follows

sup
B R

2

(u − kν) ≤ 2Φ−1

 c8

RN

(
|A (kν,R)|

RN

)α ∫
A(kν,R)

Φ ((u − kν)+) dx

 +
+2Φ−1

(
RNϵ

)
.

Using Lemma 12 if
osc (u, 2R) ≥ 2ν+1χΦ−1

(
RNϵ

)
for some integer ν, then we get

|A (kν,R)| ≤
(

c17√
ν
+ c18Φ̇

(
1
√
ν

))
RN

and

sup
B R

2

(u − kν) ≤ 2Φ−1

 c8

RN

(
c17√
ν
+ c18Φ̇

(
1
√
ν

))α ∫
A(kν,R)

Φ ((u − kν)+) dx

 +
+c19Φ

−1
(
RNϵ

)
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where c19 = 2Φ−1 (1). Let us take c20 = max {c17, c18} and ζ (ν) = max
{

1√
ν
, Φ̇

(
1√
ν

)}
then c17√

ν
+ c18Φ̇

(
1√
ν

)
≤

2c20ζ (ν). Now we consider 2c20ζ (ν) ≤
(

1
22mC(N,α)

) 1
α and we get

ζ (ν) ≤ 1
2c20

(
1

22mC (N, α)

) 1
α

(7.2)

From the relation (7.2) it follows 1√
ν
≤ 1

2c20

(
1

22mC(N,α)

) 1
α or Φ̇

(
1√
ν

)
≤ 1

2c20

(
1

22mC(N,α)

) 1
α then

(
2c20

(
22mC (N, α)

) 1
α

)2
≤ ν

or, since Φ̇ is incresing and invertible, Φ̇−1

 1
2c20

(
1

22mC (N, α)

) 1
α



−2

≤ ν.

Then we choose
ν ≥ max {C + 1,D + 1} ,

where C =
[(
Φ̇−1

(
1

2c20

(
1

22mC(N,α)

) 1
α

))−2]
and D =

[(
2c20

(
22mC (N, α)

) 1
α

)2]
are the integer part of

(
Φ̇−1

(
1

2c20

(
1

22mC(N,α)

) 1
α

))−2

and
(
2c20

(
22mC (N, α)

) 1
α

)2
. If osc (u, 2R) ≥ 2ν+1χR, since Φ−1 (amt) ≤ aΦ−1 (t) for every t > 0 and every a < 1

(Refer [Mascolo et al., 1996]), we have

sup
B R

2

(u − kν) ≤ 2Φ−1

 1
22mRN

∫
A(kν,R)

Φ ((u − kν)+) dx

 + c19Φ
−1

(
RNϵ

)
≤ 1

2Φ
−1

 1
RN

∫
A(kν,R)

Φ ((u − kν)+) dx

 + c19Φ
−1

(
RNϵ

)
≤ 1

2 sup
BR

(u − kν) + c19Φ
−1

(
RNϵ

)
≤ 1

2 sup
B2R

(u − kν) + c19Φ
−1

(
RNϵ

)
from which, using the hypothesis H3, it follows

osc
(
u,

R
2

)
≤

(
1 − 1

2ν+2

)
osc (u, 2R) .

In conclusion, either the function osc (u,R) verifies the previous relationship, or else

osc (u, 2R) ≤ 2ν+1χΦ−1
(
RNϵ

)
.

Anyway we have

osc
(
u,

R
2

)
≤

(
1 − 1

2ν+2

)
osc (u, 2R) + c202νχR

Nϵ
m .

Let us consider τ = 1
4 and δ = logτ

(
1 − 1

2ν+2

)
then we have

osc
(
u,

R
2

)
≤

(
1 − 1

2ν+2

)
osc (u, 2R) + c202νχRγ

with γ < min
{
δ, Nϵ

m

}
. Now we can apply Lemma 13 and we have

osc (u, ϱ) ≤ c21

[(
ϱ

R

)γ
osc (u,R) + c22χϱ

γ
]

for every 0 < ϱ < R < min (1, dist(x0, ∂Ω)). �
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From the previous theorem we conclude with the proof of the Theorem 3.

Proof of the Main Theorem. (Proof of Theorem 3) It comes from Theorem 15 since quasi-minima confirm relation
(4.33) and (4.34). �
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