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Abstract

In this paper we prove some L® — L® and L® — L™ inequalities for quasi-minima of scalar integral functionals
defined in Orlicz-Sobolev space W'L® (Q), where ® is a N-function and ® € A,. Moreover, if ® € A" or if
® € Ay N'V,, we prove that quasi-minima are Holder continuous functions.
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1. Introduction

In this paper we show a regularity theorem for quasi-minima of scalar integral functionals of the Calculus of
Variations with general growth conditions.

Let us consider functionals as the following form

T[u,Q]sz(x,u(x),Vu(x)) dx (1.1)
Q

where f: QxR x RV — R is a Carathéodory function satisfying the inequalities
@z = b ()@ (Is) —a(x) < f(x,5,2) < 2P (|z)) + b () D (Is]) + a (x) 1.2)

for each z € RV, s € R and for LV-a. e. x € Q, where ¢; and ¢, are two positive real constants, with ¢; < ¢, Q is
an open subset of RY, N > 2, b (x), a (x) € L (Q) with f = 12— and 0 < € < 1. The functional (1.1) is defined on
the Orlicz-Sobolev space Wy L® (Q) + g where g € W'L® (Q), ® is a N-function which satisfies some additional
hypotheses that we well show later.

The first result of this paper is the following maximal L? — L® inequality.

Theorem 1. Let ® be a N-function and ® € A,. If u € W'L® (Q) is a quasi-minimum of the functional (1.1) with
the growths (1.2) then u is locally bounded on Q. Furthermore, for each xy € Q and 0 < R < min (R, d (x9,0Q), 1)
there exists an universal constant cy = cy (o, N,m, H, ) such that for any hy € R

V—/’lo -1 V(hQ,R) ¢ 1 V—h()
ess — QS;JE)( R ) <20 cm (R—N R_N () T dy (13)
2 A(ho,R)

where Ry, H, x are positive real constants introduced in Theorem 4 [Caccioppoli’s Inequality] , v = u —XR%,

ho = ko — xR, V (ho,R) = L (A (ho, R)) and a = =55,

Since @ is not a homogeneity function, the Inequality (1.3) resolves so many tipical homogeneity problems of the
general growth conditions and it is the first necessary step to extend the results introduced in (Giaquinta et al.,
1982; Granucci, 2014; Lieberman, 1991; Mascolo et al., 1996; Moscariello et al., 1991).

As first consequence of the Theorem 1 we get the following regularity theorem.
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Theorem 2. Let ® € Ay NV, if u € W'L® (Q) is a quasi-minimum of the functional (1.1) then u is locally holder
continuous.

In (1996) E. Mascolo and G. Papi have determined an Harnack inequality for the minimizer of the functional
(1.1) under the following conditions: f (z) = ® (|z]) where ® is a N-function and ® € A, N V,. We observe that
® € A NV, implies

c3t? —cy < O(1) < cs5t™ +ce fort >0 (1.4)

with real positive constants c3, ¢4, ¢5,c6 and 1 < p < m. Classical regularity theorem for functionals with standard
growth conditions (p = m) has been proved in (Giaquinta, et al., 1982) (we refer also to (Ambrosio, Lecture Notes
on Partial Differential Equations) and (Giusti, 1994)). In (Moscariello, et al., 1991), G. Moscariello and L. Nania
proved the local boundedness of the minimizer of functional (1.1) with f(z) = ®(|z]), ® € A, and the growth
conditions (1.4) with 1 < p < m < ]f,v% moreover in (1991) G. Moscariello and L. Nania proved the holder
continuity of the minimizer of functional (1.1) with f (z) = @ (Jz]), ® € A, N V;. In 1991, G. M. Lieberman proved

an Harnack inequality for the minimizer of the functional (1.1) with ® € C? suth that

< t(.D © <
D (1)

with 0 < ¢7 < cg. Moreover in (2000) V. S. Klimov studies this problem when @ satisfies V, but not a A, condition.

c7 cg fort>0

Therefore our technique allows to unify the approaches to the regularity of quasi-minima with general growth, in-
troduced in (Lieberman, 1991; Mascolo et al., 1996; Moscariello et al., 1991), with those introduced in (Giaquinta
et al., 1982). Moreover, if we assume that the following hypotheses are given:

H 1) @ globally satisfies the A'- condition in [0, +c0),
H 2) there exists a constant ¢y, > 0
q’)(z)cb(%) <cn, (L5)
forevery t € (0, 1),
H 3) there exists a constant cy, > 0
O (1) < cpytn (1.6)
forevery t € (0, 1),

then we get the following regularity theorem.

Theorem 3. Ifu € W'L® (Q) is a quasi-minimum of the functional (1.1) and ® fulfils H 1, H 2 and H 3 then u is
locally holder continuous.

The class of functions to which we can apply Theorem 2 and Theorem 3 is slightly wider that the one discussed in
(Granucci, 2014; Lieberman, 1991; Mascolo et al., 1996; Moscariello et al., 1991). This makes us think that the
introduced techniques are the first step to prove the regularity in the general case ® € A,. Moreover, the author
thinks that hypothesis H2 and H3 are removable. The author, using Theorem 1 and some new tricks, hopes to
exstend Theorem 2 and Theorem 3 under the general growth condition ® € A’ and, probably, also in the case
D e A,

2. Definitions

‘We now introduce some definitions.
Definition 1. A continuous and convex function @ : [0, +c0) — [0, +00) is called N-function if it satisfies

D0)=0and @) >0ift>0;

O _ .

Jim == =0, @2.1)
. @) _

tlggo ;oo
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Let ® be a N-function then there exists a real valued function p defined on [0, +c0) and having the following

properties: p(0) =0, p(¢) > 0if t > 0, p is increasing and right continuous on (0, +o0) such that

t

®@) = fp (s) ds for every ¢ € (0, +00)
0

and
@, () = p () a.e. on (0, +00).

Definition 2. Let p be a real valued function defined on [0, +00) and having the following properties: p (0)
p(@® >0ift >0, pisincreasing and right continuous on (0, +o0). We define

p(s)= sup (1)
p(O<s

and
t

() = fﬁ(s) ds.

0
The N-functions ® and ® are complementary N-functoins.
Particularly from Definition 2 we get the following Young inequality
ab < @ (a) + © (b).

Let us introduce an important class of N-functions.
Definition 3. A N-function © is of class £, globally in (0, +00) if exists k > 1 such that

O (2t) < kD (1) Yt € (0, +00)
Definition 4. A N-function @ is of class AT globally in (0, +00), with m > 1, if for every 4 > 1

D) < A"D(1) Vt € (0, +00).

Definition 5. A N-function © is of class V, globally in (0, +c0) if exists | > 1 such that

009 < 22

> VYt € (0, +00).

Definition 6. A N-function ® is of class V', globally in (0, +o0), with r > 1, if for every A > 1

AD@) <) Yt € (0, +00).

The N-functions ® € A% are characterized by the following result.

=0,

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

Lemma 1. Let ® be a N-function and let ®, be its right derivative. For m > 1 the following properties are

equivalent:

(i) @A) < A"D (1), for every t > 0, for every A > 1;
(ii) 1D, (1) < m® (t), for everyt > 0;
()

(iii) the function - IS nonincreasing on (0, +00).

The N-functions ® € V, are characterized by the following result.

Lemma 2. Let ® be a N-function and let ®_ be its left derivative. For r > 1 the following properties are equivalent:
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i) O (At) > A0 (1), for every t > 0, for every 1 > 1;
(i)’ tD_ () > r® (1), for every t > 0;

(iii)’ the function Q;Lmt) is nondecreasing on (0, +c0).

AZ:UAZL

m>1

v, = v

r>1

We observe that
and

Moreover we get
tO (1) < tO, (t) <md(r), foreveryt > 0;

where & is the weak derivative of ®.
The following condition is very important to us.

Definition 7. We say that the N-function ® satisfies the A'- condition if there exist positive constants - ¢ and ty -
such that
D(ts) < cs@ () D(s) 2.7

foreveryt,s > t.

Particularly, the regularity Theorem 2 is based on the following class of N-functions:

Definition 8. We say that the N-function ® globally satisfies the A'- condition in [0, +c0) if (2.7) holds for every
t,s > 0.

Lemma 3. If the N-function ® satisfies the A'- condition then it also satisfies the A,- condition.

Example 1. The N-functions
D, () =1 with p > 1
O, ()=t (In(®)| + 1) with p > 1
O;()=0+)In(1+1)—¢

satisfy the A'-condition. Moreover ®, and ®, satisfy the A'-condition globally in [0, +o0) and belong to the class
V, globally in [0, +c0). The function ®3 does not satisfy A -condition for all t,s > 0 and ®3 ¢ V,. Assuming ®
equivalent to @3, we show that a regularity theorem is valid.

For details see (Adams, 1975), (Krasnoswl’kii et al., 1961) and (Rao et al., 1991).

Now we can introduce Orlicz spaces and Orlicz Sobolev Spaces, L? and W'L®. Let Q € R" be a bounded and
open set, the Orlicz class K® (Q) is the set of all measurable functions u : @ — R satisfying fCD (u) dLN < +o0.
o

The Orlicz space L® (Q) is defined to be the linear hull of K® (Q), thus it consists of all measurable functions u
such that Au € K® (Q) for some 1 > 0. Moreover, the equality K® () = L? (Q) holds if and only if ® € A,.

Definition 9. If Q c RY is a bounded open set and ® € A, then
WILY (Q) = {u e L* (Q) : du € L (Q) fori=1,...N|
where 0;u are the weak derivatives of u fori =1,...,N.

Lemma 4. Let ® € Ay, then L® (Q) and W'L® (Q) are Banach spaces with the following norms

[l .0 =inf[k>0 : f@(%) ary <1

Q

and

N
il 0. = ldllog + ) 0o

i=1
For details see (Adams, 1975), (Krasnoswl’kii et al., 1961) and (Rao et al., 1991).
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3. Caccioppoli Inequalities
3.1 Lemmas

In order to proof the Caccioppoli’s inquality (3.18) we need the following Lemmas.

Lemma 5. Let g(t), h(t) be a non-negative and increasing functions on [0, +0) then
g§Wh(s) <g@h(1)+g(s)h(s)
for every s, t € [0, +00).
Lemma 6. Let f be a nonnegative bounded function defined in [19,71], 79 = 0. Suppose that for all t, s with

79 <t < s <711 we have

f(r)sé'f(s)+<1>( é )+B (3.1)

s—1
where A, B, 0 are nonnegative constants, 0 < 6 < 1, ® is a N-function and © € Ag with m > 1. Then for all o, R,
70 <0 < R < 11 we have
)
+B
R-o

Proof. Consider the sequence {t;};cy defined by o = pand #;,; = t; + (1 — 2) A' (R — o) where 0 < A < 1. By (3.1)
we get

fl@=<c [‘D( (3.2

where c is a constant depending only on 0 and m.

A
<46 O ———F——|+ B, 33
[ ) <6f @)+ ((1—4)(R—Q))+ (3.3)
since ® € AT with m > 1 it follows
f() <6f )+ ! (0] A +B (3.4
V=T Ay T \R-0 '
and
f@) <0f (i) + ! D A +B (3.5)
R -y i T \R=0) T '
By (3.5) we have
1 A k=1 '
<é ——®|—|+B o™y 3.6
f o) <01 w0+ | (R_Q)+ ZO( ) (3.6)
If we now choose A in such a way that 4™ < 1 and go to the limit for k — +oco we get (3.2) with ¢ = ¢y, =
(1= -6 o

Lemma generalizes the Lemma 6.1 of (Giusti, 1994).

Lemma 7. Let F (k,-) be a nonnegative bounded function defined in [1o,T1], 79 = 0. Suppose that for all t, s with
79 <t < s < T we have

s—1

F(k,t)SQF(k,s)+Af(D(u )dx+B (3.7)
A(k,s)

where A, B, 0 are nonnegative constants, 0 < 6 < 1, ® is a N-function and © € Ag with m > 1. Then for all o, R,
70 <0 < R < 11 we have

F (ko) < c f(b(;_k)dx+B (3.8)
-0
(k,R)

where c is a constant depending only on 0 and m.
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Proof. Consider the sequence {t;};cy defined by tp = pand t;,; = t; + (1 — ) A* (R — o) where 0 < A < 1. By (3.7)
we get

F(k,to)SGF(k,tl)JrAfd)(tu_t)dx+B, (3.9)
Alk,ty) e
since ® € AT with m > 1 it follows
A u—k
k,tp) <0F (k,t;) + ——— (o) dx+ B 3.10
Pk <o st | (R_Q) . (3.10)
Alk,ty)
and by iteration we obtain
) A B
k,t9) < 0'F (k,t; I 11; 3.11
F ko) < OF (ki) + =l + gl b
where
J i-1
0 u—k
I = — ) d 3.12
! Z;(/lm) f (R—Q)x G12)
= Alk,t;)
and

11, = Zj:(%) . (3.13)

Since ; < Rforall i > 1 we get A(k,t) CA(k,R), [ ®(4%)dr< [ ®(4Z%)dx and

A(k,t;) ke A(k,R)
iy
L <1 f CD(I': )dx. (3.14)
A(k,R) ¢

forall i > 1. By (3.11), (3.12), (3.13) and (3.14) it follows
1 u—k Syoy

A(k,R) =
If we now choose A in such a way that 647" < 1 and go to the limit for k — +oc0 we get (4.8) with ¢ = ¢y, =
A=D1 =-061m)". O
Lemma 6 and Lemma 7 generalize Lemma 6.1 of (Giusti, 1994)
3.2 Caccioppoli’s Inequality
Now we can proof the Caccioppoli’s inequality.

Definition 10. A function u € W}DCL(D (Q) is a quasi-minimum of the functional (1.1), with costant Q > 1, if for
every function ¢ € WIIOCL‘D (Q), with the support K C Q, then

Fw,K)<QF (u+¢,K).

Definition 11. Leru € Wlt L,L(D (Q) it is a sub-quasi-minimum of the functional (1.1), with constant Q > 1, if for all
not-positive function ¢ € W) L® (Q), with support K C Q, we have

loc

Fw,K)<QF (u+¢,K). (3.16)

Definition 12. Let u € W! L® (Q) it is a super-quasi-minimum of the functional (1.1), with constant Q > 1, if for

loc

all not-negative function ¢ € W) L® (Q), with support K C Q, we have

loc
Fu,K)<QF (u+¢,K). (3.17)
Remark 1. Quasi-minima are at the same time sub - and a super-quasi-minima.
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Ifue WIIOCL‘I) (Q), k is a real number and Qg (xp) is a cube strictly contained in Q we set

A(,R)={x€ Qp :u(x)>k}={u>k}n Qg
B(k,R) ={x€ Qr : u(x) <k} ={u<k}n QOk.

Remark 2. We have |A (R, k)| = |Or| — |B (R, k)| for almost every k € R, so that when necessary we can assume
without loss of generality that all the vcalues k under consideration will satisfy this relation.

For dettails refer (Ambrosio; E De Giorgi, 1957; Giaquinta et al., 1982) and (Giusti, 1994).

Theorem 4. (Caccioppoli’s inequality) Let u € W' L® (Q) be a sub-quasi-minimum for the functional (1.1) and

loc

let the growths (1.2) hold. If ® € A,; then there exists a real number Ry > 0 such that for every xy € Q, every

R,0 € Rwith0 < ¢ < R < min {Ro, d;"fﬁn} and every k > ko > 0 we have

J ©Vu) dx  <ccan [ O(4E) dx+
Alk,0) A(k.R) (3.18)

+CCaca [RND (k) + llallg| 1A (k. R~

where ccye = 12 (N,m, Q) and ccyen = 13 (N, m, Q) are two positive real constant.

Proof. The proof follows using the Lemma 6, the techniques introduced in (Giusti et al., 1994; Mascolo et al.,
1996) and the Lemma 8. m]

Remark 3. Let u € W! L®(Q) be a sub-quasi-minimum for the functional (1.1) and let the growths (1.2) hold. If

loc
D € Ay, then —u will be a sub-quasi-minimum for the functional

?[u, Q] = f]_‘(x,u(x),Vu (x)) dx (3.19)
Q

with ]_‘ (x,8,2) = f(x,—s,—2). Since 7 satisfies conditions (1.2) then (4.18) holds for —u and for every k < —ko <0
we have f f ( . )
O (Vul) dx < ccaca O (2) dx+
B(k,0) B(k.R) fe (3.20)
+CCac,2G (R, k)

where 1
GRK) =[RNO®K) + lallg] 1B ke, R)|' .
and ccqe = c12 (N, m, Q) and ccqcp = 13 (N, m, Q) are two positive real costants.
Theorem 5. Ifu € WIIOCL(D (Q) is a quasi-minimum for the functional (1.1) and let the growths (1.2) hold. If
D € Ay; then there exists a real number Ry > 0 such that for every xy € Q, for every R,0 € Rwith0 < o < R <

min {Ro, d(zx"—\/%m} for every k € R the function u satisfies the Caccioppoli Inequality (4.18) and (4.44).

We can now introduce the adequate De Giorgi classes relating to the functional (1.1).

Definition 13. Let ® be a N-function and ® € A,. Letu € WllocLCD (Q); we say that u € DG:{) (Q,Hy, Hy, x, €,Ro, ko)
if for every couple of concentric cubes Q, C Qr C Qg, € Q, with 0 < R < Ro, and for every k > ko > 0 we have
[ o(Vuhdx <H, [ CD(,‘;%’;) dx+
Alko) A(LR) 1 (3.21)
+Hy [R™NO (k) + x| 1A (k, RV .

Definition 14. Let ® be a N-function and ® € A,. Letu € WZIOCL‘D (€); we say that u € DG (Q, Hy, Ha, x, €, Ro, ko)
if for every couple of concentric cubes Q, C Qr C Qg, € Q, with 0 < R < Ro, and for every k < —ko < 0 we have

[ o(Vuhdx <H, [ cb(,’g;_g) dx+

B(k.0) B(k.R) 1 (3.22)
+Hy [R™NO (k) + x| 1B (k, R)' V.
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Definition 15. Let ® be a N-function and ® € A,. Letu € WIIUCL‘D (Q),we say that u € DG¢ (Q, Hy, Ha, x, Ro) if

u € DGy (Q, Hy, Hy, x, Ry), that is

DG(D (Q, HlsHZ’X’ E’RO) = DG:[-) (93 H19H29X’ E’RO) N DGC_[) (Q9 Hl’ H2aX9 E,R()).

Remark 4. The relationships (4.45) and (4.46) can be written this way:

[ o@vuhdx <H [ ®(4E)dx+
A(k,0) A(k,R)
+H RN (k + x R )| 1A (k. B)|' 7+

and
[ oV dx <H, [ ®(&%)dx+
B(k,0) B(k,R)
+H RN [ (k + ) 1R )] 1B (k. R)|'77 <.

[

where y, = @' (y). Therefore, replacing v = u _XlR% andh =k —,\(IR%, we get

[omnacsm [ ozt o tremnonrr
-0

Ah.0) A(hR)
and
[omnacsm [ o322 o taromsorre.
B(h,0) B(h,R) 0

In the sequel it will be useful to associate to u the function

u (Ry)
R

wg () =

and we get the following Caccioppoli’s inequality.

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

Corollary 1. Ifu € WIIOCLCD (Q) is a quasi-minimum for the functional (1.1) and let the growths (1.2) hold. If

<I>€A2and120'>72%then

| ommparsm [ (D(WR_—hT/R)dY+I:12<D(h)|A(h,U)|1_']V+E

o —
A(h/R.T) A(h/R.)

and

| owmmparsm [ (D(h/ol_e—__:}R)dy+ﬁz<D(h)|B(h,0')|1_’l’+E

B(h/R,7T) B(h/R,0)

where Hy, = 2N H,.

Proof. Letwg (y) = @ then

1
O (|Vwgl) dy = o5 f @ (|Vul) dx

A(h/R7) Ah,TR)
and
wg — h/R 1 f u—nh
f ( o-T ) VTRV oR—tR) ™"
A(h/R,0) A(h,0)

by Caccioppoli inequalities (3.23) and (3.24) we obtain (3.28) and (3.29).
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4. L® — L™ Inequalities I

Let us remember the following lemma:

Lemma 8. Let both A > 0 and {x;},cn a set of positive real numbers, such that

Xip1 < CB'x]™ 4.1

with C > 0 and B > 1. Then, if xo < C‘TIIB_A%, we have

x; < B 1xg “4.2)
and consequently, in particular, we have
lim x; = 0. 4.3)
1—+00
Proof. Refer to Lemma 7.1 of (Giusti, 1994). O

Theorem 6. Ifu € DG;) (Q,Hy, Hy, x, €,Ry) then u is locally bounded from above in ). Furthermore, for every

xo € Qand 0 < R < min (Ro, d(;[’—\/’%g), 1) there exists an universal constant c\4 = c14 (N, m, Hy, Hy, x) such that

ess — sup(v — ho) <207 | 24 f(l)(m) dx 4.4)
og \ R |QR|Q R
R

where v = u — YRV, h = k — yR"¢ and hy = ko — yR™.

Proof. Let % <t<o<land{ = nmax{@,O} = n(%k where 17 € C‘g"(QuTn)withO <p<lonQes,
n=1onQ;and |Vy| < == on Q. Setting

(o-7)
%
1-| [ @ e 45)
HTU
using Holder and Sobolev inequalities it follows
Ry)—-h |
f (D((V(L) ) dy <|Ah, DIV 1 (4.6)
R +
Alhy)
and
r<c| [ o@maa @.7)

T+
2

then we have
[ o) )dy <clAG DI -
A(h,T)

- [ d@Iva dy “8)
Qrge
where ¢ = Csy. Since
Ry) — h
va < il +(“E2=2) oy “9)
and
D@b<DdDB)b+D(@)a<m(®(a)+ D)) (4.10)
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we get
[ & Valdy <
T”
< [ @@ (nIVwrl + (“B), 1Vl) dy
Qo
Setting
. v(Ry)—h
1= [ @@+ (") wn)
Qan i
it follows

< [ n® @ Vwrl dy+
Qric
2

+ [ o0 (), 1Val dy
Orio

< ] @((V<R;>‘h)+) [Vwe| dy+

ot | OS5, o

<m (I)(( (Rje ) )dy+m [ ®(Vwel) dy+
Q”T(r Qi e

IQ
+

Qric
<(m+z) | cb(("(R;:‘h)) dy+m [ ®(Vwel) dy
A(h,o) Orc

Using (3.28) we obtain

J Q((WL) dy SCSNIA(h,r)|%((m+ {,‘.‘T’”)

A(h,T)
T o((52) ) e
A(h,o)

+mH, f @(WR h/R) dx+
A(h,o)

+mH,® (h) |A (h, o—)|1"+f)

<mCsylA (DI ((1+ 24 +

- o((F),) v

A(h,o)

+EL® (W) A (h, )| 77+).

(o— T)’”)'

Since
Ry) —k
A KD —— f @(V( 2 )dy
(T)A(k;r)
we have
A(hf,r) o ((“5),) dy < [(1 ot ) A Dl 4 HE?T(:';]
'mCSN'((I,(IE—h) f ‘D(%) dy) f ®(<%>+) dy
7 AtkT) A(h,o)
Since
v(Ry) - h v(Ry) —k
[ o(*5) Jors [ o(*5F) o
Alh,o) Alk,o)
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4.12)

(4.13)

(4.14)

(4.15)

(4.16)

4.17)
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by (4.16) we get

o)) ars (i o)) s

AlhyT) (k)
mCsw-|(1+ 75 + 2 A G e+ x|
Leth =% and k = £ then ((V(R)) h) ) = f () ((WR - h)+) dy, by (4.18) it follows
A(h ) A(h,T)
I+e
- . -
T o)) o= s | 0(0n-0.) o]
A(h7) ) (4.19)
4 1-eN | H0(h)
-mCsy (1 + ot T),,,)R € + 0
Let us define ~
ko=4
- - d
fio =+ 07 (%) foriz
and !
ri = 5(1+2_i) fori e N.
by inequality (4.19) we have
(k)
U,‘ SmCSN[1+%+ﬁ RISN = ~_]'
( . i~Tisl (ri=ris1) ) (D(k,ﬂ*k,) (420)
1 U.1+€
() o8
and o .
R (ki) 1 1+
Ui <mCsy|cR ™" + — ~ y 2mey e (4.21)
® (ki — ki) | (@ (4)

d id
where U; = f (D((WR—k) )dy Since @~ ( )< 1o~ (1) fort > Othenk; = 1%+jzld)‘ (‘Dz(,m))sl%+z 35 <
A(k r,) -
24 it follows

U; <mCsy [¢ + 2" [(D(ld)] prlerigylee (4.22)
%

Applying Lemma 8 get that 11m U;=0if

U = (nCsn e+ 2] oo

that is p J
mie+1) m i
2"3" (mCsw [§+ 2 Hz]) f ) (wR - 1_?)+) dy < CD(]—Q) (4.23)
A(g1)
It is easy to check that (4.23) is satisfies if we choose
1| 5 et s 1 d
7|27 (mCsy [ +2"Hs)) © ((we),) dy| < . (4.24)

<24 it followsA(fci,Vi) > A(Z%’ %)’

R

- i d i
Since 0 (1) < J0°! () for 1 > 0 then; = -+ @' (%) <diy
Z

hence, since lim U; = 0, we have ‘A (21%, %)| = 0, which gives
1—+00

d 1 mlE+l
sup{wgr} <2— =207 |2 <2
Ql R

(mCsy |6 +2"])" f © ((wg),) dy (4.25)

A(0,1)
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and therefore (4.4). ]

Theorem 7. If u € DGy (2, Hy, H,, x, €, Ry) then u is locally bounded on Q. Furthermore, for each xo € Q and

0 <R <min (RO, d(zx"—\/’%m, 1) there exists an universal constant c¢is = ci5 (N,m, Hy, Hy, x) such that

ess — sup (Ju (0)]) < 2RO~ | L3 f @(M) dx|+ko + YR (4.26)
0k |QR|Q R
R

Proof. If u € DG (Q, Hy, Ha, x, €, Ry, ko) then —u € DG:;) (Q,Hy, Hy, x, €, Ry) and the proof follows by Theorem
6. O

Theorem 8. Letu € WIIOCL‘D (Q) be a quasi-minimum of the functional (1.1) with the growths (1.2). If ® € A,; then

there exists a real number Ry > 0 such that for every xo € Q, for every R,0 € Rwith0 < ¢ < R < min {RO, d(;”—‘%?)},
for every k € R the following inequalities hold
es3— sup (u — k) < 2R [lQ_l [ (%582 |+
% or (4.27)
: —-1] ¢ (k—u)_ Ne
ess—lgnkf(k— u) < 2RO (ﬁ ch(T) dx) + YR
2 Or
and
ess—sup (u—k) < 207" | 2 [ O ((u—k),) dx] + YR
% o (4.28)

. 1] ¢ Ne
ess — 1anf k—u) <2® (@lzlgf D ((k—u).) dx] + YR
2 R

Proof. Inequalities (4.27) follow by Theorem 6. Inequalities (4.28) follow using the demostration methods pre-
sented in (Mascolo et al., 1996). m]

Remark 5. Inequalties (4.27) and (4.28) are equivalent if @ (t) = " with p > 1.

Moreover the following lemma is valid.

Lemma 9. Ifu € DGy (Q, Hy, Hs, x, €, Ry) then u is locally bounded above on Q. Let v = u —XR% the we get the

d(x0,0Q)
2V2N

foolowing L® — L2 estimation: for each xy € Q and 0 < R < min (Ro, 1) there exists an universal constant

ci16 = c16 (N, m, Hy, Hy, x) such that for any k > k

v—k ~ ¢ (v—k)
—sup|—— | < 207! 16 f@( +)d 4.29
ess Slle( 7 )S (R—Q)NQ 7 X (4.29)

d(x0.09Q)
22V

foreach Q, C Qr e 0 <o < R. Furthermore, for each xo € Q and R < min (Ro, 1) there exists an universal

constant ci¢ = c16 (N, m, Hy, Hy, x) such that for any k > ko

-k Ne
ess—sup(u—k) < 2RD™! <16 f(D((M R )+) dx|+ko+xyRm (4.30)

. R-o)"
0, (R-0) o

foreach Q, cC Qre0 <p <R
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Proof. Observe that for every 0 < ¢ < 1 there exists xy € Qg such that

-k -k
ess — sup {V } <ess— sup {v } 4.31)
O R Qw(xo) R
therefore (4.27) gives
-k -k
ess — sup{v }s 207 | 8 f@(u) dx (4.32)
ox \ R (1-n"RVN R
Or
by (4.32) it follows (4.29) and (4.30). |

Using Theorem 4 and Theorem 6 we get the following theorem.

Theorem 9. Let u € W! L® (Q) be a quasi-minimum of the functional (1.1) with the growths (1.2). If ® € Ay; then

loc
d(x0.0Q) }

there exists a real number Ry > 0 such that for every xo € Q, for every R,0 € Rwith(0 < 0 < R < min {Ro, ol

for every k € R the following Caccioppoli inequalities hold
J ©(Vul) dx  <Tean [ O(4E) dxr

A(k,0) A(k.R) l (4.33)
+Ccaca |A (k, R)|'"N €

IN

and

[ ©(Vul) dx  <Tcapn [ O(EE) dx+

R_
B(k,0) B(k,R) ]Q 4.34)
+EC(4€,2 |B (k, R)|17N+E

where Ccqer = ¢1 (N,m,y, Q, M) and Ccacr = ¢2 (N, m, 7y, Q, M) are two real positive constants with M = 2 supy, (u).

Proof. The proof follows from the Theorem 4 and Theorem 6 as in (Giusti, 1994). O

Remark 6. The preceding relationships (4.33) and (4.34) they are worth with the same constants for u — A if
|Al + supy,, (1) < M.

5. L® — L™ Inequalities II

5.1 The maximal L® — L® inequality

Lemma 10. Let ® € A;. Ifu € DG (Q, Hy, Hy, x, €, Ry) then there exists an universal constant c17 = c17(N,m, Hy, Ha, x)
such that for each k,h > ky and k > h we have

v—k V (h,0) v—nh
ftb( R )dx§cl7(T_Q)N fCD( R )dx (CR))

A(k,0) A(h,T)

Ne
where v =u— YR .

Proof. Assuming that 1 < s < N and kg < h < k; let o and 7 be two real numbers such that § <o <7<R Let

necCy (ngj) with0 <np <1lon Q%, n=1onQ,and |Vy| < (TEQ) on Q%. Let us then define ¢ = n%, from

Theorem 8 we know that (® (£))¥« € W! (Q%) and using Holder inequality we obtain

N—s
N

i 1 s
f(D(VT)deIA(k,Q)IN f(CD(VR )) dx| . (5.2)
A(k,0) (k.0)
Since .
V—k N-s N-1 %
f (cp( m )) dx < f [@ @)= |"" ax (5.3)
A(k,0) Q%
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then from Sobolev Inequality and Chain Rule Theorem it follows

N-—s
N

<

{ [ @& a

ot
2

=
g

<|CsyiEt [ (@ @) d @) (1l S + BV (v - k),]) dx
Qoir

—_—
7
L

Since N
R v —
Ak, T)| < ———— O|l— | d
kDS gy | ( R ) g
A(t,h)
then, using Lemma 1 (i), Lemma 5, Lemma 9 and relations (3.18), (5.4) and (5.5), we have

N-s

L [ @] a x\ N

ot
2

s—1

—s

< |CsyiL (mgfq)(%) dx]

N=s
N-1

<

[ [ @@Vl "% + 31V -k, ) dx]
0

[taxs
2

s—1

-5

< 2CSN%:§ ((TLI;J)N f‘l)((v k>*) dx )

N—s
N-1
[(ﬂg +2) oY) dx+ 2 [ @V -hk) dx] <
O: Qosr
2
Lf Cl16 % 1 Lll
(2CSNN S) (m) L(Th)q) T) dx]
L:,IV
[(g +2) [ o(F)ax+2 [ oV dx] .
A(t,h) A(%E k)
It follows .
v N
[ J @@= dx| <
Qo
: N=s
=
Nes s-1
(2csna=) ¥ () (th) o () d ]
Using relation (5.2) and (5.6) we obtain
[ oY) dx <
Alko)
<G(@s)|A (k,g)ﬁ [4 f QJ(T’) x] for every s € (1,N),
()

where

s—1

G(S) = (ZCSN%;_i)N_l ((Til;)N)N_I .

=

—s

-0 R(t—0)" RO(k—h)

m o om mH mA R [D(k)+x |IBRR) W
(— +R+ +
is a continuous function in s € (1, N). From s — N~ we obtain (5.1).
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5.2 The Maximal L® — L* Inequality

Theorem 10. Let ® be a N-function and ® € 1,. If u € DGo (Q, Hy, Hy, x, €, Ry)) then u is locally bounded
on Q. Furthermore, for each xo € Q and 0 < R < min (R, d (xg,0Q), 1) there exists an universal constant

cy = ey (@, N,m, H, ) such that for any hy € R

V—h() —1 V(h(),R) “ 1 f V—h()
- <20 — | | =% d d
o= on () o5 | R
2 A(ho,R)

where v = u— xR, hy = ko — xR, V (ho,R) = LY (A (ho,R)) and & = =55,

Proof. Let us consider the following sequences:
ko=d

kivi = ki + o-! ((I;EZ)) fori>1

and
= g(l +2-") fori € N.

Let us define

9k, r) = (V (k, )" f cD(VI;k) dx:
A(k,r)

and ¥; = ¥ (k;, r;). From relations (5.1) and (5.10) we obtain
Fisr < 12" RN (@ () (90"

where @ = ‘1%6 is a solution of @ = T—; remembering that

g0 =AW@RI" [ (L) dx
A(d,R)
<IAQORI" [ ©(F)dx
A(O,R)
and considering

R:®(d),

l+a

|A(0,R)|Qf(1)(v) dx <
(c14)" 2%

A(O,R)

that is

d> o' |CcmRTIA0,R) f@(}%)dx
A(O,R)

Lia .
where C (2, @) = (c18)* 2«* , then from Lemma 8 it comes

lim 19,' =0.

i—+00

Given that @' (a1) < a®~! (f) for each t > 0 and a < 1 (Refer [Mascolo et al., 1996]) then we have

i ®
ki=d+) qr'(%)szd
J=0

so, for each i > 0, we obtain A (2d, g) c A (k;, r;) and

‘A(zd,ﬁ)' f d)(v_2d)dxsﬁ,-.
2 R

A(2d.%)
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From relation (5.11) it follows
%
ess — sup{—} <2d

Or R
2
given
d=0"C2a)R ¥ AO.R f ® (1%) dx
AO.R)
we have
ess — sup{ﬁ} <207 {C(2,0)R¥ A0, R f @(3) dxl.
ox R R
£ AQ.R)
Since @ = *1%@ then R* = RN5* = RN+Ne consequently we obtain
A (0,R)|\"
ess — sQuF{%} <207 |c @ a) RN (' (RN )|) f CD(I%) dx
2 AQOR)
and (6.9). m]
Now we can prove Theorem 1.
Proof. (Proof of Theorem 1) It follows using Theorem 9 and Teorem 10. O

6. Decay Lemma
We divide this paragraph into two parts.
Moreover we suppose 0 < R < min (R, d (x9,02), 1) and

osc(u,r) = M(r) — m(r)

where M(r) = M(u,r) = supg, (u) and m(r) = m(u, r) = infy, (u).
6.1 Case One
If ® € A, NV, then the following theorem hold.

Lemma 11. We assume that u is a bounded function and (4.33) is valid for every k € R. We set 2kg = M (2R) +
m (2R) and we assume that |A (ko, R)| < ¥ |Qrl| for some y € (0, 1). If for some integer v we have

osc(u,2R) > 2V+1X(D—1 (REN)

then, ifk, = M (2R) — 27"'osc (u, 2R), we obtain
C17 1 N
A(k,,R)| <|— +c1s—=|R
|A (k,, R)| ( NG 18 ZW)
where c17 and c1g are universal constants.

Proof. We consider v € N, then we define

ki=MQR) - 2-{—'osc w,2R) fori=1,..,v
h; = M(2R) —27'osc (u,2R) fori=1,...,v

and
A iy > kg
vi(x) = ”él){h" ifhj<u<k fori=1,..,v.
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In particular, we have that ® (v; (x)) € WU (Qg) and v; = 0 on Qg\A (R, kp) wWhere ky = h; = w for all

i = 1,...,v. Using the Holder Inequality we have

AG BRI (A=) < [ ®@)dx
Aki-1,R) v
N
[ [@E)IFT dx

A(ki-1,R)

< |A (ki_1,R)|*

Since ® (v;) = 0 on Or\A (R, ko) where ko = ; = MERMCR) for a1 = 1, ..., v, using the Sobolev Inequality it

follows .
1A (ki R @ (A1) < s [ & (u — ki) [Vul dx.
A;

For every & > 0,

. b (u— ki
f(l)(u —ki_1)|Vu| dx = meele dx
em

A,’ Ai

then, since ® is a N-function from the Young inequality ab < ) (a) + ® (b), we get

em

A (i, RN (ki — kie) - < mesy [ (252 dx + mesy [ @ (e[Vul) dx.
A;

i

Since ® € A, NV, then e Ay NV, and

Bltuh) < ud (ko)
< (T
from the inequality
5(@70)) <D

(see inequality (6), page 230 of [Adams, 1975]) we have

ki—k;_ —k;_
|A<k,~,R>|cD(’T") < ’”CSNRch(%) dx+

&

+mcSNc4 f(l) (IVu)) dx.
A;
Using the Caccioppoli’s inequality (4.33) we obtain

|A(kl’R)|q)(k,*R#) csnm |A|(D(osc(u2R))+

8/"
+mcs NC48 (H+y)® (—OSC;‘I’QZR))RN

and cenm
1A (ky, R)| < 2’”( = ) ©.1)
Using (6.1) we have
v
vIAk,,R)| <2m (Ci—’;’,m > 1Al + mesyeie (H + x) RNV)
i=1
< 2SR A (ko, R)| + v2mmcs1vc4s (H + )RV
and conmm
A (ky, R)| < 2" =2 |A (ko, R)| + 2"'mcsncie (H + x) RY.
vem
Fixed & = v~ it follows
2m 1
A (k,, R)| < (M + mesy e (H +x) 2" — )RN.
v W
O
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6.2 Case Two
If @ satisfies the hypotheses H-1, H-2 and H-3 then the following theorem hold.

Lemma 12. We assume that u is a bounded function and (4.33) is valid for every k € R. We set 2ko = M (2R) +
m (2R) and we assume that |A (ko, R)| < vy |Qr| for some y € (0, 1). If for some integer v we have

osc(u,2R) > 2V+1X(D—1 (REN)

then, ifk, = M (2R) — 27" Losc (u, 2R), we obtain
c17 1 N
A(k,,R)| <|—= +c135®|—||R
=2 e[ 1)

where cy7 and c1g are universal constants.

Proof. We consider v € N, then we define

ki=M Q2R)—-2""osc(u,2R) fori=1,..,v
h; = M(2R) —27'osc (u,2R) fori=1,...,v

and

ki — h; ifu>k;
vix) =3 ux)—h; ifhj<u<k fori=1,..,v.

In particular, we have that ® (v; (x)) € W"! (Qg) and v; = 0 on Qg\A (R, ko) where kg = hy = MERIMCR for 4]
i = 1,...,v. Using the Holder Inequality we have

A i, R D@ (ki —kie) < [ ©(v)dx
A(ki-1,R)
%
[ (@@ dx
A(ki-1,R)

<A (ki 1, RV

Since @ (v;) = 0 on Qg\A (R, kp) where kg = hy = w for all i = 1,...,v, using the Sobolev Inequality it

follows .
A (ki, R @ (k; — ki) < csy [ @ (u— ki) RIVul dx.

A;
For every € > 0,
) D —ki
f(D(u —k_)R|Vu| dx=" stR Vul dx
E m
A A

then, since ® is a N-function from the Young inequality ab < ) (a) + @ (b), we get

A ki R @ (ki — ki) < 2 [ (ko) gy 4+ 295 [ @ (eR [Vu) dx.
A A;

Since
= D(u—k;_y) T [ (u—ki)Pu—ki_1)
O (o) < ?(q)( k) )
u—k;_
s (D( (u_ki—ll) )
from the inequality
—(D(t
) (?) <D(r)

(see inequality (6), page 230 of [Adams, 1975]) we have

nmcsny

|A (ki, )| O (ki — ki) <

fd)(u—ki_l) dx +
A;

mcs

2
8N°4c1> (&) D (R) f O (|Vul) dx.
A;
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Using the Caccioppoli’s inequality (4.33) we obtain

A (i, R @ (ki — kiy) < S |A| @ (242R)) 4

+SYE D (6) D (R) D () (H + ) @ (2280 g

and
CsNC 4

A (K, R)| < 2’“(%@“ D (e )<I>(R><D( )(Hw)RN] 6.2)

Using (6.2) we have

VIAG. R < 2’”(“”’" S 1Al +mE25 0 (o) (R)D (4) (H + ) RY )
< 27N A (o, R + IR () @ (R) D () (H + x) RY

and

conm 2" meg N> , (1
A (ky, R)| < 2’”% |A (ko, R)| + T“@(a)@(R)d»(I—e)m +x)RY.

Since, for the hypotesis H2, ® (R) ® (I—IQ) < cp, we get

CcsNm

A (ky, R)| < 2" == |A (ko, R)| + mcs ;@ (&) cu, (H + x) 2"R".

Fixed & = v it follows

2mCSNm

NG

1
|A (k,, R)| < ( + mCSNcﬁcH2 (H+y)2"0 (_)) RN
W

7. Proof of the Regularity Theorem

Let us start remembering the following lemma:

Lemma 13. Let ¢ (f) be a positive and increasing function. We assume that there exists a number T € (0, 1) such
that

©(TR) < °¢(R) + BRP, for 0 < R < R

with 0 < 8 < 6 and B > 0. Then for every o < R < Ry we get

pl0) < C[(I%)ﬁw(R)JrBQB

where C > 0 is a constant depending only on 1, § and 5.
Proof. See Lemma 7.3 of (Giusti, 1994). ]

7.1 Case One

If ® € A, NV, then our proof is founded upon the following result:

Theorem 11. If u is a bounded function such that (4.33) and (4.34) hold for every k € R; then u is locally holder
continuous on Q.

Proof. Let us consider 0 < R < min (Ry, d (x9,9Q), 1) and 2ky = M (2R) + m (2R), then, without losing generality,
we can assume that |A (ko, R)| < % |Qr| since otherwise we would have |B (kg, R)| = |Qr| — |A (kg, R)| < % |Qg| and
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we can consider —u instead of u. Let us consider k, = M (2R) — 27" Losc (u, 2R), where v is an integer that we fix
later in appropriate way, then we have k, > ko and from (1.4) it follows

| es (1AG RN =),
S;lkp(u—kv) < 2RO R_N(T [t dx | +
B Ak,R)

+207" (RV).

Using Lemma 11, if
osc (u,2R) > 2y @! (RNG)

for some integer v, then we get

€17 N
A kv,R <|—=+c¢
| ( )| (\/— 18

1
——|R
W)

and

_ 1 . (u—k,)
-k) < 2RD™! N ey RN f o) Rz
sBuEp(u k,) < RN ((W+C13 B R dx|+

2 A(ky,R)
+619(D_1 (RNE) ,

where cjg = 207! (1). Let us take ¢y = max {c7,c1g} and ¢ (v) = max{ } then % + C1ga= < 20200 (V).

1 1
W, 2% 2% =

1
Now we consider 2¢50 (v) < (m)" and we get

1
1 1 a
< — (= 7.1
‘M= (22mc (N, a/)) .D
1 . 1
From the relation (7.1) it follows % < ﬁ (m)* or ® (%) < 2220 (m)" then
142
(2020 (27, a))") <v
or, since @ is incresing and invertible,
1\\—2
. 1 1 a
(O] — == <.
2C20 22’"C (N, a)
Then we choose
y>max{A+1,B+ 1},
] 12 112 _ 12
where A = [(cb—l (5 (=ev)") ] and B = | (26 (2"C (N, )" } are the integer part of (&' (2 (k) ))

and (2@0 (22, a));) 1f osc(u,2R) = 2" (R, since &~ (1) < ad~' () for every ¢ > 0 and every a < 1
(Refer [Mascolo et al., 1996]), we have

sup u— ) sm—l(ﬁ [ otk dx]+c19CD‘1 (r%)
Bg A(ky,R)

IA

R0 [A [ otk dx] et (RY)
A(ky,R)
i 5113133 w—k,) +cro®! (RN5>

IA

IA

L sup (u - k) + c10@7" (RV<)
Bog
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from which, using the hypothesis H3, it follows

R 1
osc (u, 5) < (1 = 5 ) osc (u,2R).

In conclusion, either the function osc (u, R) verifies the previous relationship, or else
osc (u,2R) < 2"y (RNE).
Anyway we have

R 1 Ne
osc (u, E) < (1 - W)osc (u,2R) + c292 yR'™ .

Let us consider 7 = } and ¢ = log, (1 - #) then we have

R 1
osc (u, E) < (1 - ﬁ) osc (u,2R) + c202"yR”

with y < min {6, Nﬁ} Now we can apply Lemma 13 and we have
ey y
osc (u,0) < ¢z R osc (u, R) + cooxo
for every 0 < o < R < min (1, dist(xp, 0Q)).

From the previous theorem we conclude with the proof of the Theorem 2.

Proof. (Proof of Theorem 2) It comes from Theorem 11 since quasi-minima confirm relation (4.33) and (4.34). O

7.2 Case Two

If @ satisfies the hypotheses H-1, H-2 and H-3 then our proof is founded upon the following result:

Theorem 12. If u is a bounded function such that (4.33) and (4.34) hold for every k € R; then u is locally holder

continuous on .

Proof. Let us consider 0 < R < min (Ry, d (x9,9Q), 1) and 2ky = M (2R) + m (2R), then, without losing generality,
we can assume that |A (ko, R)| < % |Qr| since otherwise we would have |B (kg, R)| = |Qr| — |A (kg, R)| < % |QOg| and
we can consider —u instead of u. Let us consider k, = M (2R) — 27" Losc (u, 2R), where v is an integer that we fix

later in appropriate way, then we have k, > ko and from (1.4) it follows

RN RN

sup(u—k,) < 207 C—B(M) fd)((u—ky)+) dx |+
Bg

A(ky,R)
+207" (RY).
Using Lemma 12 if
osc (u,2R) > 2+ y®~" (RY¢)

for some integer v, then we get

v

A (k,, R)| < (% + Clgd)(%/_))RN
and

1] ¢cs [crr 1T\
sup(u—k,) < 207 = (== 4 oD | —
P RN(W . (w
2 A(k,,R)

+C|9q)71 (RNG)
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where cj9 = 207! (1). Let us take ¢y = max{cy7,ci3} and £ (v) = max{\%,@(%)} then % + C]gd)(\%) <

2¢20¢ (v). Now we consider 2¢50f (v) < ( “ and we get

o)

1 1)
{(v) < TZO (m) (7.2)

1 1
. : | i 1 @ w1 1 1 a
From the relation (7.2) it follows 7 < 2w (—22,,,0(,\,,0)) or ® (_W) < 5w (—22mcuv,a)) then

(2c20 (2mcw, a))é)2 <v

or, since @ is incresing and invertible,

o[ ;)
2620 \227C (N, @) =V

y>max{C+1,D + 1},
1

Then we choose

Iy 2 ) 1\ 2
where C = [(fbl (710 (#(NQ))” )) } and D = [(2620 (ZZmC (N, a))") } are the integer part of (C[T1 (ﬁ (—zzmcl(,v,a))" ))
14,2
and (2C20 (22'"C (N, 0/)) ”) . If osc (u,2R) > 2"*'yR, since &' (a"f) < a®! (¢) for every t > 0 and every a < 1

(Refer [Mascolo et al., 1996]), we have

sup(u—k,) < 207! [W f O ((u—ky),) dx] + clgd)’l (RNE)
Bg A(ky.R)

IA

Lot (RL [ ®(u-k),) dx] + c19®7! (RVe)
A(ky,R)

< 1sup(u—ky)+cro®7! (RNE)
Bg

< isupu-k)+cro®7! (RN‘)
Bog

from which, using the hypothesis H3, it follows

R 1
osc (u, 5) < (1 - W)osc(u, 2R).

In conclusion, either the function osc (u, R) verifies the previous relationship, or else
osc (u,2R) < 2"y @t (RN5>.

Anyway we have

=

1 Ne
osc (u, —) < (1 - W)osc (u,2R) + c202 xR ™ .

[\

Let us consider 7 = % and 6 = log, (1 - zvlﬂ) then we have

R 1
osc (u, E) < (1 ~ 3 ) osc (u,2R) + ¢c02"yR”
with ¥ < min {5, Nf} Now we can apply Lemma 13 and we have

Y
osc(u,0) < ¢ [(1%) osc (u, R) + coxo”

for every 0 < 0 < R < min (1, dist(xy, 0Q)). ]
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From the previous theorem we conclude with the proof of the Theorem 3.

Proof of the Main Theorem. (Proof of Theorem 3) It comes from Theorem 15 since quasi-minima confirm relation
(4.33) and (4.34). O
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