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Abstract      

A sequence of four compositions of 3 is: 1 + 1 + 1, 1 + 2, 2 + 1, 3. By the replacement of the plus signs (+) and 

commas (,) by the multiplication dots (∙) and plus signs (+) respectively, the sequence becomes the summation 

series: 1∙1∙1 + 1∙2 + 2∙1 + 3, which is equal to 8 or 6
th

 number in the famous Fibonacci sequence. It is a curious fact 

that the sum of a positive integer n and the products of summands corresponding to the compositions of n is equal 

to (2n)-th Fibonacci number. We establish the proposition after obtaining a special order of the compositions of n; 

and then obtain some other results. The results show that Fibonacci sequence has close connection with the special 

order of the compositions of n. Two Fibonacci identities, which we derive from a special recurrence relation, are 

useful to prove two theorems. The relationships are stated first in the theorems and are then shown in the 

consequences of the theorems. 
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1. Introduction  

Partitions of a positive integer n including permutations of the parts or summands are called compositions of n. 

For example, eight compositions of 4 are: 4, 3 + 1, 1 + 3, 2 + 2, 2 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2, 1 + 1 + 1 + 1. On 

the other hand, the famous Fibonacci sequence is defined by a linear recurrence relation: 𝐹𝑛 + 1  =  𝐹𝑛  +  𝐹𝑛 − 1 

for n ≥ 1 with the initial conditions:𝐹0 = 0 and 𝐹1 = 1. Fibonacci sequence is the following sequence of integers: 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …. There exists a definite order of the compositions of n, which has 

close connection with the Fibonacci sequence. We use the following simple notations for compositions of n to 

establish the relationship.  

1. Compositions of n = C(n).  

2. All C(n) = {C(n)}. Only for the mathematical representations, we use the notation: {C(n)} to mean all C(n). 

Otherwise we use an adjective to specify C(n). 

3. Number of all C(n) = NC(n). We know: NC(n) = 2
n – 1

.  

4. x1 + … + xr – 1 + {C(xr)} for x1 + … + xr = n denotes some C(n) under which the compositions start with the 

common summands: x1, … , xr – 1 in succession.  

We use the symbol of equivalence (≡) between {C(n)} and its implication; and similarly between x1 + … + xr – 1 

+ {C(xr)} and its implication.  

Examples: {C(3)} ≡ 1 + 1 + 1, 1 + 2, 2 + 1, 3. 

NC(3) = 4.   

2 + 5 + {C(3)} denotes some C(10) such that 2 + 5 + {C(3)} ≡ 2 + 5 + 1 + 1 + 1, 2 + 5 + 1 + 2, 2 + 5 + 2 + 1, 2 + 

5 + 3.  

Main Results:     

(a) We obtain a ‘significant order of the compositions of n’ or in brief ‘SOC(n)’. The rule for SOC(n) is stated 

below. 

Under SOC(n) for n ≥ 2, the summands of 1
st
 C(n) are all 1; the last C(n) is n itself; and if any k

th
 C(n) is x1 + … 

+ xr then (k + 1)
th 

C(n) is x1 + … + xr – 2 + (xr – 1 + 1) + the sum of xr – 1 summands which are all 1. The number of 

summands of k
th

 and (k + 1)
th 

C(n) under SOC(n) are r and r + xr – 2 respectively.  
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Example: We use the symbol of equivalence (≡) between SOC(n) and its implication. 

SOC(5) ≡ 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 2, 1 + 1 + 2 + 1, 1 + 1 + 3, 1 + 2 + 1 + 1, 1 + 2 + 2, 1 + 3 + 1, 1 + 4, 2 + 

1 + 1 + 1, 2 + 1 + 2, 2 + 2 + 1, 2 + 3, 3 + 1 + 1, 3 + 2, 4 + 1, 5  

(b) By the replacement of the plus signs (+) and commas (,) by the multiplication dots (∙) and plus signs (+) 

respectively in SOC(n), we can find a summation series of 2
n – 1 

terms. Denoting the summation series by ∏     , 
we show:  

(i) ∏     = 𝐹2𝑛 such that the sum of the terms of odd places and the sum of the terms of even places of 

∏     are 𝐹2𝑛 − 2 and 𝐹2𝑛 − 1 respectively. For example, when SOC(4) ≡ 1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 2 + 1, 1 + 

3, 2 + 1 + 1, 2 + 2, 3 + 1, 4 then (i) ∏  4   = 1·1·1·1 + 1·1·2 + 1·2·1 + 1·3 + 2·1·1 + 2·2 + 3·1 + 4 = 21 or F8; (ii) 

the sum of the terms of odd places of ∏  4   = 1·1·1·1 + 1·2·1 + 2·1·1 + 3·1 = 8 or F6; and (iii) the sum of the 

terms of even places of ∏  4   = 1·1·2 + 1·3 + 2·2 + 4 = 13 or F7.  

(ii) The 1
st
 term, the sums of 1

st
 2, 1

st
 22, … 1

st
 2𝑛 − 2 and all 2𝑛 − 1 terms of ∏     for n ≥ 2 are 𝐹2, 𝐹4, 

𝐹6  , … , 𝐹2𝑛 − 2  and 𝐹2𝑛  ; and the 2
nd 

term, the sums of 2
nd 

2, 2
nd

 22 , …, 2
nd

 2𝑛 − 2  terms of the series 

are 𝐹3 𝐹5   𝐹2𝑛 − 1 in succession. 

(c) Two Fibonacci identities: 

𝐹2𝑛  =  ∑    𝐹2 𝑛 −   
𝑛 − 1
    0 +     

and 

𝐹2𝑛 − 1  =  ∑    𝐹2  𝑛 −    − 1
𝑛 − 1
    0 +  1  

have the important roles to establish the relationships. We obtain the identities from a special recurrence relation.  

In the description of the relationships, the basic results are stated first in two theorems; other results are the 

consequences of the theorems.  

2. Ordered Compositions   

By the notations, we can write for n ≥ 2,  

{C(n)} ≡ 1 + {C(n – 1)}, 2 + {C(n – 2)}, …, (n – 1) + {C(1)},  n               (1) 

(1) is an initial sequential arrangement for all C(n) such that the arrangement is composed of n sets of C(n). The 

last two sets of C(n) are (n – 1) + {C(1)} and n. Obviously these are two particular C(n) as: (n – 1) + 1 and n 

respectively. When n = 2 then {C(2)} ≡ 1 + 1, 2; and when n ≥ 3 then besides the last two sets as two C(n), we 

can further obtain the sequential arrangements for other sets of C(n) of the type: a + {C(n – a)} where these 

arrangements have the same form as that of the initial sequential arrangement for all C(n). For instance, 

2 + {C(n – 2)} ≡ 2 + 1 + {C(n – 3)}, 2 + 2 + {C(n – 4)}, …, 2 + (n – 4) + {C(2)}, 

2 + (n – 3) + 1,   2 + (n – 2); 

where C(n) in the 1
st
 set on the right have 1

st
 two common summands 2 and 1; C(n) in the 2

nd
 set have 1

st
 two 

common summands 2 and 2; and so on provided that the last two sets are two C(n) of 3 and 2 summands as: 2 + 

(n – 3) + 1 and 2 + (n – 2) respectively. Subsequently we can obtain the sequential arrangements for the sets of 

C(n) of the type: a + b + {C(n – a – b)} in like manner. Thus carrying out the operations of obtaining the 

sequential arrangements for the successive sets of C(n) recursively where the last two sets in each arrangement 

are found as two C(n), finally we can find a definite order of all C(n). For instance,  

{C(5)} ≡ 1 + {C(4)}, 2 + {C(3)}, 3 + {C(2)}, 4 + 1, 5  

≡ 1 + 1 + {C(3)}, 1 + 2 + {C(2)}, 1 + 3 + 1, 1 + 4, 2 + 1 + {C(2)}, 2 + 2 + 1, 2 + 3,  

3 + 1 + 1, 3 + 2, 4 + 1, 5   

≡ 1 + 1 + 1 + {C(2)}, 1 + 1 + 2 + 1, 1 + 1 + 3, 1 + 2 + 1 + 1, 1 + 2 + 2, 1 + 3 + 1, 1 + 4, 2 + 1 + 1 + 1, 2 + 1 + 2, 

2 + 2 + 1, 2 + 3, 3 + 1 + 1, 3 + 2, 4 + 1, 5  

≡ 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 2, 1 + 1 + 2 + 1, 1 + 1 + 3, 1 + 2 + 1 + 1, 1 + 2 + 2, 1 + 3 + 1, 1 + 4, 2 + 1 + 1 + 

1, 2 + 1 + 2, 2 + 2 + 1, 2 + 3, 3 + 1 + 1, 3 + 2, 4 + 1, 5.  

For convenience, we name 5 sets of C(5), which is shown in the 1
st
 step, as the ‘basic’ or ‘initial exposition’ of 

all C(5); and name the sixteen C(5), which are yielded in a definite order in the last step, as the ‘final exposition’ 

of all C(5). Thus the expression on the right of (1), which is composed of n sets of C(n), is the initial exposition 

of all C(n); and 2
n – 1 

C(n) in a particular order, which can be yielded finally by recursive exposition, is the final 

exposition of all C(n). The particular order of all C(n) is named as ‘the significant order of compositions of n’ or 
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in brief SOC(n). SOC(n) is the final exposition of all C(n).  

We can use also the phrases: ‘initial exposition’ and ‘final exposition’ in the expositions of a set of C(n). In the 

process of recursive exposition to find SOC(n) starting with (1), we find in general a set of C(n) in the form: x1 

+ … + xr – 1 + {C(xr)} for x1 + … + xr = n such that the initial exposition of this set of C(n) is:  

x1 + … + xr – 1 + 1 + {C(xr – 1)}, x1 + … + xr – 1 + 2 + {C(xr – 2)}, …, …, x1 + … + xr – 1 + (xr – 2) + {C(2)}, x1 

+ … + xr – 1 + (xr – 1) + 1, x1 + … + xr – 1 + xr . 

Following (1), we can write:                                           

1 + {C(n – 1)} ≡ 1 + 1 + {C(n – 2)},  1 + 2 + {C(n – 3 )}, …                  (1.1) 

1 + 1 + {C(n – 2)} ≡ 1 + 1 + 1 + {C(n – 3)},  1 + 1 + 2 + {C(n – 4)}, …                  (1.2) 

1 + 1 + 1 + {C(n – 3)} ≡ 1 + 1 + 1 + 1 + {C(n – 4)}, 1 + 1 + 1 + 2 + {C(n – 5)}, …  (1.3) 

…   … 

(1.1) is the initial exposition of 1 + {C(n – 1)}. The exposition starts with 1 + 1 + {C(n – 2)} of which the initial 

exposition (1.2) starts with 1 + 1 + 1 + {C(n – 3)} of which the initial exposition (1.3) starts with 1 + 1 + 1 + 1 + 

{C(n – 4)}; and so on. It follows that SOC(n) starts with the longest C(n) of which the summands are all 1. n as a 

C(n) is written at the last of (1). Consequently n as a C(n) appears last in SOC(n). Hence the sum of n summands, 

which are all 1, is the first C(n); and n itself is the last C(n) in SOC(n). For example, the first and last C(5) in 

SOC(5) are 1 + 1 + 1 + 1 + 1 and 5 respectively. Similarly x1 + … + xr – 1 + {C(xr)} for x1 + … + xr = n, which 

represents a set of C(n), has the final exposition with the first C(n) as: x1 + … + xr – 1 + the sum of xr summands 

which are all 1 and the last C(n) as: x1 + … + xr . 

In the process to find SOC(n), when a set of C(n) appears in the form: x1 + … + xk + a + {C(b)} for x1 + … + xk 

+ a + b = n, then the next set of C(n) appears in the form: x1 + … + xk + (a + 1) + {C(b – 1)}. Let these two sets 

of C(n) be denoted by S1 and S2 respectively. Since S1 and S2 are the consecutive sets of C(n), it follows that the 

last C(n) in the final exposition of S1 and the first C(n) in the final exposition of S2 are two consecutive C(n) 

under SOC(n). The last C(n) in the final exposition of S1 is: x1 + … + xk + a + b; and the first C(n) in the final 

exposition of S2 is x1 + … + xk + (a + 1) + the sum of b – 1 summands which are all 1. Hence under SOC(n), 

when a C(n) appears in the form: x1 + … + xk + a + b, then the next C(n) appears in the form: x1 + … + xk + (a + 

1) + the sum of b – 1 summands which are all 1, where these two consecutive C(n) are composed of k + 2 and k 

+ b summands respectively. The forms of S1 and S2 can be: a + {C(b)} and (a + 1) + {C(b – 1)} respectively for 

a + b = n so that the last C(n) in the final exposition of S1 is a + b and the first C(n) in the final exposition of S2 is 

(a + 1) + the sum of b – 1 summands which are all 1. Hence under SOC(n), the forms of two consecutive C(n) 

can be: (i) a + b and (ii) (a + 1) + the sum of b – 1 summands which are all 1, where these two consecutive C(n) 

are composed of 2 and b summands respectively. The rule for appearances of successive C(n) under SOC(n) is 

clear from the above demonstration. 

Rule for SOC(n): Under SOC(n), the summands of the 1
st
 C(n) are all 1; the last C(n) is n itself; and for n ≥ r ≥ 

2, if any k
th

 C(n) is: x1 + … + xr then (k + 1)
th 

C(n) is: x1 + … + xr – 2 + (xr – 1 + 1) + the sum of xr – 1 summands 

which are all 1 such that if r ≥ 3 then the first r – 2 summands of k
th

 C(n) appear also in (k + 1)
th 

C(n) in the 

same order, but if r = 2 then such common summands of k
th
 C(n) and (k + 1)

th 
C(n) cannot exist. The number of 

summands of k
th

 C(n) and (k + 1)
th 

C(n) under SOC(n) are r and r + xr – 2 respectively. 

Remark1. The number of the compositions of n is a familiar result. It is easy to obtain the result from (1) also.  

From (1), we get: For n ≥ 2, NC(n) = NC(n – 1) + NC(n – 2) + … + NC(1) + 1               

Then we have the successive results as shown. 

{C(1)} ≡ 1. Hence NC(1) = 1.  

{C(2)} ≡ 1 + {C(1)}, 2. Hence NC(2) = 2. 

{C(3)} ≡ 1 + {C(2)}, 2 + {C(1)}, 3.  

Hence NC(3) = NC(2) + NC(1) + 1 = 2 + 1 + 1 = 2
2
. 

Similarly NC(4) = NC(3) + NC(2) + NC(1) + 1 = 2
2 
+ 2 + 1 + 1 = 2

3
. 

Proceeding thus, we get: For n ≥ 2, NC(n) = 2
n – 1 

. 
  

Furthermore NC(1) = 1 = 2
0
. Hence for n ≥ 1, NC(n) = 2

n – 1 
.
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3. A Recurrence Relation and Fibonacci Identities 

For some numbers: a, b and  0, we define an n
th

 order recurrence function  𝑛  by a linear recurrence relation: 

 𝑛   =   ∑   𝑎 +  𝑏   𝑛 – 1 −  
𝑛 − 1
    0   +    𝑎 +  𝑏                         (2) 

(2) can generate some Fibonacci identities. We show here the generation of two particular identities which are 

needed to establish two theorems that involve with the required relationships. The following Fibonacci formula 

is useful to obtain the identities.  

𝐹𝑛 + 𝑚  =   𝐿 𝑚 𝐹𝑛  +   −1 𝑚 + 1  𝐹𝑛 − 𝑚                          (3) 

(3) is the formula (15a) in ‘List of formulae’ in the book, Fibonacci and Lucas Numbers, and the Golden Section: 

Theory and Applications by Steven Vajda. (3) involves with Lucas number 𝐿 𝑚. Lucas sequence is similar to 

Fibonacci sequence and defined by a linear recurrence relation: 𝐿𝑛 + 1  =  𝐿𝑛  +  𝐿𝑛 − 1 for n ≥ 1 with the initial 

conditions: 𝐿0 = 2 and 𝐿1 = 1. 

From (2), we get: 

 𝑛 + 1  =  𝑎  𝑛 +  𝑎 + 𝑏   𝑛 − 1  +    +  𝑎 +  𝑏   0 +  𝑎 +   + 1 𝑏  

= 𝑎  𝑛 + 𝑎  𝑛 – 1 +   +  𝑎 +    – 1 𝑏   0 +  𝑎 +  𝑏 +  𝑏   𝑛 − 1 +   +  0  + 1  

   𝑛 + 1  =  𝑎  𝑛 +  𝑛 +  𝑏   𝑛 − 1  +    +   0  + 1                     (4.1) 

Similarly 

 𝑛 + 2  =  𝑎  𝑛 + 1  +    𝑛 + 1 +  𝑏   𝑛 +   +   0  + 1)                    (4.2) 

From (4.2) and (4.1), we get:       

𝑏   𝑛 − 1  +    +   0  + 1  = 

 𝑛 + 2  −  𝑎  𝑛 + 1 −   𝑛 + 1 −  𝑏  𝑛  =  𝑛 + 1 −  𝑎  𝑛 −  𝑛  

   𝑛 + 2  =   𝑎 + 2   𝑛 + 1  +  (𝑏 –  𝑎 – 1)  𝑛                           (5) 

(5) is a second order linear recurrence relation.   

Case1: When a = b =  0  = 1,  

(i) from (2), we get:  1  = 3 = 𝐹4 and S2 = 8 = 𝐹6 ; 

(ii) from (5), we get:  𝑛 + 2  =  3  𝑛 + 1 −  𝑛 . 

Then  3  = 3 2 −  1 =  3𝐹6 − 𝐹4 = 𝐹8 ;  

      4 = 3 3 −  2 =  3𝐹8 − 𝐹6 = 𝐹10 ;   

…  …   

In general 

 𝑛 = 𝐹2𝑛 + 2                                 (6) 

In the solution, we use a Fibonacci formula: 

𝐹2𝑛 + 4  =  3𝐹2𝑛 + 2 −  𝐹2𝑛                                 (7) 

(7) is a particular Fibonacci relation from (3) obtained by the substitutions of 2n + 2 and 2 for n and m 

respectively. From (6) and (2), we get: 

𝐹2𝑛 + 2  =   𝐹2𝑛  +  2𝐹2𝑛 − 2  +    +  𝐹2 +   + 1  

 𝐹2𝑛  =  ∑    𝐹2 𝑛 −   
𝑛 − 1
     0 +                                          (8)     

Case 2: When the triplet (a, b,  0) is (1, 1, –1), then from (2) and (5), we get:  

 1  = 1 = 𝐹1;  2  = 2 = 𝐹3; and  𝑛 + 2 = 3  𝑛 + 1 −  𝑛 . From these results, we get the solution for  𝑛 as:
 

 𝑛 = 𝐹2𝑛 − 1                                                (9) 

by the application of the Fibonacci formula:   

𝐹2𝑛 + 3  =   3𝐹2𝑛 + 1 −  𝐹2𝑛 − 1                                       (10) 

(10) is another Fibonacci formula from (3) obtained by the substitution of 2n + 1 and 2 for n and m respectively. 

From (2) and (9), we get  
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𝐹2𝑛 − 1  =  ∑    𝐹2  𝑛 −    − 1
𝑛 − 1
    0 +  1                                (11) 

(8) and (11) are the required identities. (2) can yield some more Fibonacci identities and also some Lucas 

identities for the particular values of the triplet (a, b,  0). 

4. Ordered Fibonacci Numbers from the Summation Series Involving Ordered Compositions 

4.1 Two Theorems 

Theorem 1. If ∏      for n ≥ 2 denotes the summation series such that ∏      = product of the summands 

of 1
st
 C(n) in SOC(n) + product of the summands of 2

nd
 C(n) in SOC(n) + ... + product of the summands of 

 2𝑛 − 1 − 1 th
 C(n) in SOC(n) + n, then ∏C   =  𝐹2𝑛 . If the initial condition is defined as: ∏  1 = 1 , then 

the result in general is: for n ≥ 1, ∏      = 𝐹2𝑛.  

Proof: It follows from (1) and the definition of ∏     that for n ≥ 2, 

∏      =  ∏   − 1  +  2∏   − 2  +    +    − 1 ∏  1  +            (12) 

The initial condition is: ∏  1   =  1 =  𝐹2 . Then from (12), we get:  

∏  2   =  ∏  1  +  2 =  1 +  2 =  3 =  𝐹4  ; 

∏  3   =  ∏  2  + 2 ∏  1  +   3 =   3 + 2 + 3 =    =  𝐹6  . 

We assume that the theorem is true for the first n natural numbers for any given n. Then from (12) and (8), we 

deduce that 

∏   + 1   =  ∏     + 2 ∏   − 1  +   +    ∏  1 +  + 1  . 

 

=  𝐹2𝑛  +  2𝐹2𝑛 − 2  +    +   𝐹2 +   +  1  =   𝐹2𝑛 + 2  

Hence we have the theorem by induction. ▮    

Theorem 2. If ∏     
 

 for n ≥ 2 denotes the summation series obtained by changing the same sign of the series 

∏      for n ≥ 2 by alternating signs starting with + sign, then ∏     
 

 = −𝐹2𝑛 − 3 .      

Proof: From the definition of ∏      , we have 

∏  2   = 1  1 –  2;  

∏  3   = 1  1  1 –  1  2 +  2  1 –  3 =  ∏  2    +  2  1 −  3;  

∏  4  = (1  1  1  1 –  1  1  2 +  1  2  1 – 1  3) + (2  1  1 – 2  2) + 3  1 – 4  . 

= ∏  3    +  2∏  2   + 3  1 –  4; and so on.   

In general for n ≥ 3,  ∏      = 

∏   − 1   +  2∏   − 2   +    +   − 2 ∏  2   +    − 1  1 −    . 

 ∏      = ∏   − 1   + 2∏   − 2   +    +   − 2 ∏  2  − 1          (13) 

Now we follow the rules of induction.   

(1)  ∏  3    =  – 2 =  − 𝐹3   

(2) Assume the theorem is true for all n  ℕ with 3 ≤ n ≤ m. Then from (13) and (11), we deduce that 

∏   + 1    =  ∏      +  2∏   − 1    +    +    − 1 ∏  2   −  1  

= − 𝐹2𝑚 − 3  +   2  − 𝐹2𝑚 − 5  +    + (  – 1)  − 𝐹1  −  1   

= − 𝐹2𝑚 − 1  

Hence by inductive process, we establish:  

for  ≥ 3    ∏        =   − 𝐹2𝑛 − 3 . . 

Again we have ∏  2   =  − 1 =  − 𝐹1 .  

The results together prove the theorem. ▮  

4.2 Consequences of the Theorems  

Theorem1 and Theorem 2 lead to find some relationships among ∏     , ∏C      and Fibonacci sequence. 

Consequence1. Let the successive 2𝑛 − 1 terms of ∏     for n ≥ 2 be denoted by  1    2  . . .  𝑟  where  

𝑟 =  2𝑛 − 1. Then for n ≥ 2, 
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∏     +  ∏ C      =  2   1 +  3  +    +  𝑟 – 1   . 

=  𝐹2𝑛 − 𝐹2𝑛 − 3  =   2𝐹2𝑛 − 2  

∏      –  ∏ C      =   2    2 +  4  +      +   𝑟   . 

=  𝐹2𝑛 + 𝐹2𝑛 − 3  =   2𝐹2𝑛 − 1  

Hence   

 1 +  3  +  . . . +   𝑟 − 1 = 𝐹2𝑛 − 2                           (14.1) 

 2 +  4  +  . . .  +   𝑟 = 𝐹2𝑛 − 1                            (14.2) 

(14.1) and (14.2) imply that the sum of the terms of odd places and this of even places of ∏     for n ≥ 2 are 

𝐹2𝑛 − 2 and 𝐹2𝑛 − 1  
respectively.  

Consequence 2. By Theorem1, ∏    = 𝐹2𝑛 and has an expansion of 2𝑛 − 1 terms. Again from (12), we get: 

∏     = 1  ∏   − 1  + …;   

1  ∏   − 1  = 12  ∏   − 2  + …;   

12  ∏    − 2  = 13  ∏    − 3  + …; and so on.   

It follows that the sum of all 2𝑛 − 2 terms
 
of ∏   − 1  = 𝐹2𝑛 − 2 = the sum of 1

st
 2𝑛 − 2 terms

 
of ∏    ; 

the sum of all 2𝑛 − 3 terms
 
of ∏   − 2 =  𝐹2𝑛 − 4 = the sum of 1

st
 2𝑛 − 3 terms

 
of ∏     ; and in this way, 

the initial condition is: the sum of 2 terms
 
of ∏  2  = 𝐹 4 = the sum of 1

st
 2 terms

 
of ∏    . In general from 

Theorem 1 and (12), we get: for n – 2 ≥ k ≥ 1, the sum of all 2  terms of ∏   + 1  = 𝐹2    + 1  = the sum of 

1
st
 2  terms

 
of ∏    . Furthermore the first term of ∏      = 1

n
 = 1 = 𝐹2 . In other words the 1

st
 term, the 

sums of 1
st
 2, 1

st
 22, … 1

st
 2𝑛 − 2 and all 2𝑛 − 1 terms of ∏     for n ≥ 2 are 𝐹2, 𝐹4, 𝐹6 , … , 𝐹2𝑛 − 2 and 

𝐹2𝑛 in succession. Consequently the 2
nd 

term, the sums of 2
nd 

2, 2
nd

 22, …, 2
nd

 2𝑛 − 2 terms of ∏     for n ≥ 

2 are  𝐹4 − 𝐹2 𝐹6 − 𝐹4  𝐹8 − 𝐹6   𝐹2𝑛 − 𝐹2𝑛 − 2   or  𝐹3 𝐹5   𝐹2𝑛 − 1   in succession.  

In like manner from Theorem2, we can find that the sums of 1
st
 2, 1

st
 22, …, 1

st
 2𝑛 − 2, all 2𝑛 − 1 terms of 

∏C      for n ≥ 3 are − 𝐹1 − 𝐹3   − 𝐹2𝑛 − 5 − 𝐹2𝑛 − 3 and the sums of 2
nd

 2, 2
nd

 22,
 
…, 2

nd
 2𝑛 − 2 terms of 

∏C      for n ≥ 3 are −𝐹2 , −𝐹     … , − 𝐹 𝑛 − 4 successively.  

Consequence 3. Let A =  1 +  3  + . . . +  𝑟 − 1  and B =  2 +  4  + . . . +  𝑟  . 

From (12) and (13), we get:  

∏     +  ∏ C     = 1  [ ∏    − 1  +  ∏ C  − 1   ]  +      

Then we have 

1  [ ∏    − 1  + ∏ C  − 1   ]  =  12  [ ∏   − 2  +  ∏ C  − 2   ]  +     

12  [ ∏   − 2  +  ∏ C  − 2   ]  =  13  [ ∏   − 3  + ∏C  − 3   ]  +     

…  … 

1𝑛 − 3  [ ∏  3  + ∏C 3   ]  =  1𝑛 − 2  [ ∏  2  + ∏ C 2   ]  +     

Again from Consequence 1,  

A = 
1

2
   ∏      + ∏C      =   1 +  3  +    +   𝑟 – 1 = 𝐹2𝑛 – 2  where = 2𝑛 − 1 . 

Then         
1

2
  ∏   − 1 + ∏   −      =   1 +     + . . . +    − 1 = 𝐹2𝑛 − 4 where  = 2𝑛 − 2; 

… … 

1

2
   ∏  4  +  ∏  4    =    1 +     +   5  +   7  =  𝐹6;  

1

2
  ∏  3  + ∏  3     =   1 +     =  𝐹4;     

 1  = 1
n
 = 1 = 𝐹2 . 

This implies that the 1
st
 term, the sums of 1

st
 2, 1

st 22 , …, 1
st 

2𝑛 − 2 , all 2𝑛 − 1
 terms of A are 

𝐹2 𝐹4 𝐹6   𝐹2𝑛 − 4 𝐹2𝑛 − 2 ; and then the 2
nd

 term, the sums of 2
nd

 2, 2
nd 22 

, …, 2
nd

 2𝑛 − 2 
 terms of A are 

𝐹3   𝐹5   𝐹7     𝐹2𝑛 − 3 successively.  
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Similarly the 1
st
 term, the sums of 1

st
 2, 1

st
 22 , …, 1

st
 2𝑛 − 2 , all 2𝑛 − 1

 terms of B are 

𝐹3 𝐹5 𝐹7   𝐹2𝑛 − 3 𝐹2𝑛 − 1; and the 2
nd

 term, the sums of 2
nd

2, 2
nd

 22, …, 2
nd

 2𝑛 − 2
 terms of B are 𝐹4, 𝐹6, 

𝐹8, …, 𝐹2𝑛 − 2 successively.     

From the consequences of the theorems, it follows that both ∏C    and ∏       have the sets of terms in the 

definite orders such that the sums of these sets of terms represent ordered Fibonacci numbers with some 

repetitions. Thus it is a remarkable fact that there exists a special order of the compositions of a natural number n, 

which has very close connection with the famous Fibonacci sequence.  
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Annexure 

SOC(n) for n = 6 and for n = 7 are listed below. The list can be useful to examine some important results that are 

established in the paper. 

SOC(6) ≡ 1 + 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 2, 1 + 1 + 1 + 2 + 1, 1 + 1 + 1 + 3, 1 + 1 + 2 + 1 + 1, 1 + 1 + 2 + 

2, 1 + 1 + 3 + 1, 1 + 1 + 4, 1 + 2 + 1 + 1 + 1, 1 + 2 + 1 + 2, 1 + 2 + 2 + 1, 1 + 2 + 3, 1 + 3 + 1 + 1, 1 + 3 + 2, 1 + 

4 + 1, 1 + 5, 2 + 1 + 1 + 1 + 1, 2 + 1 + 1 + 2, 2 + 1 + 2 + 1, 2 + 1 + 3, 2 + 2 + 1 + 1, 2 + 2 + 2, 2 + 3 + 1, 2 + 4, 3 

+ 1 + 1 + 1, 3 + 1 + 2, 3 + 2 + 1, 3 + 3, 4 + 1 + 1, 4 + 2, 5 + 1, 6.     

SOC(7) ≡ 1 + 1 + 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 2, 1 + 1 + 1 + 1 + 2 + 1, 1 + 1 + 1 + 1 + 3, 1 + 1 + 1 + 2 

+ 1 + 1, 1 + 1 + 1 + 2 + 2, 1 + 1 + 1 + 3 + 1, 1 + 1 + 1 + 4, 1 + 1 + 2 + 1 + 1 + 1, 1 + 1 + 2 + 1 + 2, 1 + 1 + 2 + 2 

+ 1, 1 + 1 + 2 + 3, 1 + 1 + 3 + 1 + 1, 1 + 1 + 3 + 2, 1 + 1 + 4 + 1, 1 + 1 + 5, 1 + 2 + 1 + 1 + 1 + 1, 1 + 2 + 1 + 1 + 

2, 1 + 2 + 1 + 2 + 1, 1 + 2 + 1 + 3, 1 + 2 + 2 + 1 + 1, 1 + 2 + 2 + 2, 1 + 2 + 3 + 1, 1 + 2 + 4, 1 + 3 + 1 + 1 + 1, 1 + 

3 + 1 + 2, 1 + 3 + 2 + 1, 1 + 3 + 3, 1 + 4 + 1 + 1, 1 + 4 + 2, 1 + 5 + 1, 1 + 6, 2 + 1 + 1 + 1 + 1 + 1, 2 + 1 + 1 + 1 + 

2, 2 + 1 + 1 + 2 + 1, 2 + 1 + 1 + 3, 2 + 1 + 2 + 1 + 1, 2 + 1 + 2 + 2, 2 + 1 + 3 + 1, 2 + 1 + 4, 2 + 2 + 1 + 1 + 1, 2 + 

2 + 1 + 2, 2 + 2 + 2 + 1, 2 + 2 + 3, 2 + 3 + 1 + 1, 2 + 3 + 2, 2 + 4 + 1, 2 + 5, 3 + 1 + 1 + 1 + 1, 3 + 1 + 1 + 2, 3 + 

1 + 2 + 1, 3 + 1 + 3, 3 + 2 + 1 + 1, 3 + 2 + 2, 3 + 3 + 1, 3 + 4, 4 + 1 + 1 + 1, 4 + 1 + 2, 4 + 2 + 1, 4 + 3, 5 + 1 + 1, 

5 + 2, 6 + 1, 7.   
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