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Abstract

We can recast the Riccati and Abel differential equations into new forms in terms of introduced integrating factors.
Therefore, the Lie-type systems endowing with transformation Lie-groups S L(2,R) can be obtained. The solution
of second-order linear homogeneous differential equation is an integrating factor of the corresponding Riccati
differential equation. The numerical schemes which are developed to fulfil the Lie-group property have better
accuracy and stability than other schemes. We demonstrate that upon applying the group-preserving scheme (GPS)
to the logistic differential equation, it is not only qualitatively correct for all values of time stepsize h, and is also the
most accurate one among all numerical schemes compared in this paper. The group-preserving schemes derived for
the Riccati differential equation, second-order linear homogeneous and non-homogeneous differential equations,
the Abel differential equation and higher-order nonlinear differential equations all have accuracy better than O(h2).
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1. Introduction

The Lie-groups play an important role to understand the geometric structure of differential equations, which are
very useful in the development of some superior numerical methods to integrate ordinary differential equations
(ODEs), and to retain the invariant property of dynamical system. By sharing the geometric structure and invariant
with the original ODEs, the new methods are more accurate, more stable and more effective than conventional
numerical methods. In the last few decades there has been a substantial development in the geometric integrators
to solve ODEs evolving on the Lie groups (Munthe-Kass, 1999; Iserles et al., 2000; Liu, 2007; Hochbruck &
Ostermann, 2010). The Lie-group schemes find numerical approximations to the solution of

Ẏ = A(Y, t)Y, Y(0) = Y0,

where the exact solution Y is a matrix Lie group with A being a matrix function on the associated Lie algebra.

In this paper we introduce the integrating factor methods for the Riccati, Abel and higher-order nonlinear differen-
tial equations, and then use a Lie-group S L(2,R) approach for the solutions of the above equations. The Lie-group
S L(2,R) has been used to develop the shooting method to solve the generalized Sturm-Liouville problem by Liu
(2012), to solve a singular ϕ-Laplacian nonlinear ODE by Liu (2013a), and to solve a nonlinear heat transfer
equation by Hashemi (2015).

For the first-order linear ODE:

ẏ(t) + p(t)y(t) = q(t), (1)

we have already learned that the integrating factor is defined by

I(t) = exp
[∫ t

0
p(ξ)dξ

]
, (2)
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which can transform Equation (1), after multiplying both the sides by I(t), into a total differential form on the
left-hand side:

d
dt

[I(t)y(t)] = I(t)q(t). (3)

Such that the general solution of Equation (1) can be obtained simply by integrating the above equation.

The key point by passing from Equation (1) to Equation (3) is the idea of integrating factor, leading to a total
differential form in Equation (3). This idea can be extended to the Riccati equation. It not only provides a total
differential form of the left-hand side and also linearizes the nonlinear differential equation exactly, of which the
integrating factor u(t) is a solution of a second-order linear ODE:

ü(t) + a(t)u̇(t) + b(t)u = 0. (4)

In the course of Engineering Mathematics we may teach the students to write Equation (4) as a system of two
first-order ODEs by

d
dt

[
u̇(t)
u(t)

]
=

[
−a(t) −b(t)

1 0

] [
u̇(t)
u(t)

]
. (5)

However, letting

p(t) = exp
[
−

∫ t

0
a(ξ)dξ

]
(6)

be the integrating factor of Equation (4) we have

d
dt

(
u̇(t)
p(t)

)
= −b(t)u

p(t)
. (7)

It shows again that the left-hand side can be managed to a total differential form by using the concept of integrating
factor. Furthermore, from Equation (7) we have a self-adjoint system:

d
dt

[
u̇(t)/p(t)

u(t)

]
=

[
0 −b(t)/p(t)

p(t) 0

] [
u̇(t)/p(t)

u(t)

]
. (8)

This system is better than system (5), because it allows an internal symmetry of S L(2,R).

Although, the author (Liu, 2001; Liu, 2013b; Liu, 2015) has previously developed several general Lie-group
theories for the general nonlinear dynamical system, the specialization to the Lie-group S L(2,R) for the second-
order linear ODE and Riccati equation and finding that the solution of the former is an integrating factor of the
latter is interesting, which deserves a further attention by sharing the Lie-group property to develop more efficient
numerical scheme for these two equations.

There are many ODEs that the concept of integrating factor can be used to derive new forms of ODEs, of which
the internal symmetry appears naturally. Liu (2001) was the first by using the technique of integrating factor to
transform the nonlinear ODEs into an augmented system in the Minkowski space, where the length of state vector
plays the role of integrating factor. Then, Liu (2006) introduced the concept of multiple integrating factors to solve
the ODEs with multiple constraints.

Many numerical methods have been developed for the general purpose of integrating the system of ODEs to obtain
numerical solutions. Among those numerical methods, the most known are the Euler method and the Runge-Kutta
method, but less known is the group-preserving scheme (Liu, 2001). These methods discretize the differential
equations system to produce difference equations or mappings. The different methods obtain different mappings
from the same differential equations, but they have the same aim in that the dynamics of the mapping should
correspond as closely as possible to the dynamics of original differential equations. However, it is a major question
whether the corresponding approximation has the same behavior as the original differential equations. In recent
years, a major area is to study the difference in the exact dynamics of differential equations and the dynamics of the
corresponding discretized mappings. It is found that the most serious problems for the numerical discretizations
are the appearance of so-called spurious solutions and ghost fixed points in the discretized dynamics. For example,
Chen and Solis (1998) have investigated the appearance of spurious solutions when some first-order ODEs are
discretized by using the Runge-Kutta methods, and showed that the resulting schemes may produce unrelated
bifurcation phenomena.
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Of all the first-order nonlinear differential equations, the Riccati differential equation occupies perhaps the most
important place, because it is closely related to the second-order linear homogeneous differential equations, which
appear in many physical applications. In the Engineering Mathematics we have learned some special functions and
series solutions for the Bessel equation, the Legendre equation, the Airy equation, etc., but from the computational
point of view it is not convenient to use these methods to calculate the solutions. In this paper we attempt to develop
suitable numerical schemes for the Riccati differential equation, second-order linear differential equations, and the
Abel differential equation. Although the above systems will be shown exhibiting certain symmetry, there has no
development of the numerical scheme to preserve it. Really, there have many issues concerning the improvement
of the quality of solution by producing numerical solutions of ODEs that possess symmetries and structures and
also utilize the symmetries to ensure the computational stability.

The arrangements of this paper are given as follows. In Section 2 we introduce a Lie-group symmetry for the
Riccati differential equation, and then we explain that its integrating factor is a solution of the second-order linear
differential equation in Section 3. Based on the Lie-symmetry we develop a group-preserving scheme for the Ric-
cati differential equation in Section 4, and the group-preserving scheme for the logistic differential equation is de-
veloped in Section 5, which is compared with other numerical schemes. The group-preserving scheme for second-
order linear differential equation is developed in Section 6, while that for second-order linear non-homogeneous
differential equation is developed in Section 7. The group-preserving schemes for the Abel differential equation
and other higher-order nonlinear differential equations are developed in Section 8. Finally, the conclusions are
drawn in Section 9.

2. Symmetry Group

The following Riccati differential equation:

dy
dt
= r(t) − 2q(t)y − p(t)y2 (9)

can be written as
dy
dt
+ [p(t)y + q(t)]y = r(t) − q(t)y. (10)

Upon defining the integrating factor:

u(t) := u(0) exp
[∫ t

0
[p(ξ)y(ξ) + q(ξ)]dξ

]
, (11)

Equation (10) becomes
d
dt

(uy) = r(t)u − q(t)uy. (12)

On the other hand, from Equation (11) it follows that

du
dt
= p(t)uy + q(t)u. (13)

Equations (12) and (13) together constitute a linear system:

d
dt

[
uy
u

]
= A

[
uy
u

]
, (14)

where

A :=
[
−q(t) r(t)
p(t) q(t)

]
. (15)

We thus represent the Riccati differential equation in the projective space (uy, u) as a system of two first-order
linear ODEs.

The above coefficient matrix A satisfying tr A = 0 is a Lie algebra of S L(2,R), where tr denotes the trace. Thus,
the one-parameter subgroup generated by A gives the following transformation formula for (uy, u):[

u(t)y(t)
u(t)

]
= G(t)

[
u(0)y(0)

u(0)

]
, (16)
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where G is an element of the two-dimensional special linear group, satisfying

det G(t) = 1, G(0) = I2, (17)

in which det stands for the determinant, and I2 is a second order identity matrix. The above fact prompts us to
develop a suitable numerical scheme to preserve the Lie-group property.

3. The Second-order Linear Differential Equations

It follows from Equations (13) and (12) a second-order linear ODE for u:

ü + a(t)u̇ + b(t)u = 0, (18)

where

a(t) =
−ṗ(t)
p(t)
, (19)

b(t) =

[
ṗ(t)
p(t)
− q(t)

]
q(t) − p(t)r(t) − q̇(t). (20)

For a given a(t) it follows directly that

p(t) = exp
[
−

∫ t

0
a(ξ)dξ

]
. (21)

On the other hand, without lost any generality we can simply take q(t) = 0, such that b(t) = −p(t)r(t) holds.

If G is a fundamental matrix of Equation (14) satisfying

Ġ = AG, G(0) = I2, (22)

then from Equation (16), with its uy replaced by u̇/p due to q(t) = 0 in Equation (13), we can obtain[
u̇(t)/p(t)

u(t)

]
=

[
G11(t) G12(t)
G21(t) G22(t)

] [
u̇(0)/p(0)

u(0)

]
. (23)

Noting that G21(t) and G22(t) are linearly independent solutions of Equation (18), because in Equation (23),

u(t) =
u̇(0)
p(0)

G21(t) + u(0)G22(t)

is a general solution of Equation (18).

Differentiating the second equation with respect to t and comparing it with the first equation, we obtain

Ġ21(t)
p(t)

= G11(t),
Ġ22(t)

p(t)
= G12(t). (24)

Substituting the above two equations for G11(t) and G12(t) into the identity G11(t)G22(t)−G21(t)G12(t) = 1, we can
derive ∣∣∣∣∣∣ G22(t) G21(t)

Ġ22(t) Ġ21(t)

∣∣∣∣∣∣ = p(t) = exp
[
−

∫ t

0
a(ξ)dξ

]
, (25)

which is known as the Abel identity. It is clear that such an identity is a direct result of the Lie-group property (17).

4. Numerical Scheme for Riccati Differential Equation

A numerical scheme based on the Lie-group property can be utilized to enhance the computational accuracy and
efficiency. The time-centered Euler scheme for Equation (14) is[

un+1yn+1
un+1

]
= G(n̄)

[
unyn

un

]
, (26)

where
G(n̄) := [I − τA(n̄)]−1[I + τA(n̄)]. (27)
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Here n ∈ Z+, un and yn denote respectively the value of u and y at the discrete time tn, and τ is one half of the
stepsize h, that is, τ := h/2 = ∆t/2. The notation n̄ is used to denote n + 1/2, and A(n̄) means that A takes value at
tn + τ. From Equation (15) we have

A(n̄) =
[
−q(n̄) r(n̄)
p(n̄) q(n̄)

]
. (28)

Substituting the above A(n̄) into Equation (27) and through some manipulations we find that

G(n̄) =
1

1 − τ2[p(n̄)r(n̄) + q2(n̄)]

 [1 − τq(n̄)]2 + τ2 p(n̄)r(n̄) hr(n̄)

hp(n̄) [1 + τq(n̄)]2 + τ2 p(n̄)r(n̄)

 . (29)

A straightforward calculation shows that det G(n̄) = 1 holds. Thus the above numerical scheme meets the require-
ment for preserving the Lie-group property. Substituting Equation (29) for G(n̄) into Equation (26) and taking the
projection, we obtain

yn+1 =
τ2 p(n̄)r(n̄)yn + [1 − τq(n̄)]2yn + hr(n̄)
hp(n̄)yn + τ2 p(n̄)r(n̄) + [1 + τq(n̄)]2 , (30)

which is a group-preserving scheme (GPS) for the Riccati differential equation (9).

For the purpose of comparison we give a numerical example to calculate the solution of Equation (9) with p(t) =
−2 cos t, q(t) = 1/2+2t cos t, and r(t) = 1+t+2t2 cos t, of which the exact solution is y(t) = t−[sin t−cos t+c exp t]−1,
where c = 1 − 1/y(0). Starting from the initial condition y(0) = −1, using h = 0.001 and substituting the above
coefficient functions into Equation (30) we can obtain the numerical solution, which upon comparing with the
closed-form solution we show the solution error, which is obtained by substracting the numerical solution from the
closed-form solution, in Figure 1. It can be seen that the accuracy of scheme (30) is better than the order of O(h2).

From Equation (30) we can conclude that a suitable scheme for the Riccati differential equation is a linear fraction
map of the following form:

yn+1 =
Ayn + B
Cyn + D

(31)

with [
A B
C D

]
∈ S L(2,R),

[
A B
C D

]∣∣∣∣∣∣
h=0
= I2. (32)

5. Numerical Schemes for Logistic Differential Equation

Now, let us apply scheme (30) to the logistic differential equation:

ẏ = λy(1 − y), (33)

whose solution is given by
y(t) =

y0

exp[−λt] + (1 − exp[−λt])y0
(34)

with y(0) = y0. Inserting p = λ, q = −λ/2 and r = 0 into Equation (30), we obtain a discretized map for the logistic
differential equation:

yn+1 =
[4 + λh]2yn

16λhyn + [4 − λh]2 =: g(yn, λh). (35)

Obviously, g has only two fixed points y = 0 and y = 1, and because of

g′(0) =
[4 + λh]2

[4 − λh]2 > 1, ∀ λ > 0,

g′(1) =
[4 − λh]2

[4 + λh]2 < 1, ∀ λ > 0,

the first fixed point is unstable and the second one is stable when λ > 0. Conversely,

g′(0) < 1, ∀ λ < 0,
g′(1) > 1, ∀ λ > 0
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lead to the fixed point y = 0 to be stable and the fixed point y = 1 to be unstable when λ < 0. Thus, the map (35)
has the same properties as the original equation (33), no matter what λ is. Furthermore, by the induction method
the solution of Equation (35) is found to be

yn =
y0(

4−λh
4+λh

)2n
+

(
1 −

[
4−λh
4+λh

]2n
)

y0

. (36)

It has the same form as Equation (34), and no matter what the initial value y0 is and what λ is, it tends to the stable
fixed point.

In Figure 2, where λ = 2, h = 0.001 and y0 = 0.1 were used, we compare the numerical solution with the closed-
form solution in terms of solution error. The accuracy of scheme (35) can be seen almost in the order of O(h3).
Also the comparisons with the following schemes are made in Figure 2:

yn+1 =
yn

λhyn + 1 − λh , (37)

yn+1 =
(1 + λh)yn

λhyn + 1
, (38)

yn+1 =
(2 + λh)yn

2λhyn + 2 − λh , (39)

yn+1 =
[1 − exp(−λh)]yn + 1 + 2[1 − exp(−λh)]
2[1 − exp(−λh)]yn + 1 + [1 − exp(−λh)]

yn. (40)

Here, the first two schemes are proposed by Wang et al. (1992), and the third is the combination of the first
two schemes (Gander & Meyer-Spasche, 2000, p.224). The fourth is called by Mickens (1999) the nonstandard
finite-difference scheme, the factor 1 − exp(−λh) in which is known as the denominator function.

Th accuracies of the above numerical schemes are compared in Figure 2, which indicate that scheme (39) has
accuracy better than the order of O(h2), the accuracy of shemes (37) and (38) is better than the order of O(h), but
scheme (40) has accuracy in the order of O(h). As shown in Figure 2, schemes (37) and (38) lead to the same
absolute solution error but with difference in sign, and so we introduce a scheme being the average of them:

yn+1 =
yn

2 − 2λh(1 − yn)
+

(1 + λh)yn

2 + 2λhyn
, (41)

whose accuracy is better than schemes (37) and (38), but is worse than scheme (39).

Now we discuss something about the group-preserving scheme. When λh < 1, scheme (37) can be written as the
form of Equation (31) with [

A B
C D

]
=

 1√
1−λh 0
λh√
1−λh

1−λh√
1−λh

 .
It satisfies condition (32), so that scheme (37) is a group-preserving scheme in the range λh < 1. However, in
the range of λh > 1, scheme (37) fails to be a group-preserving scheme. Gander & Meyer-Spasche (2000) have
proved that scheme (37) behaves qualitatively correctly for λh < 1. For 1 < λh < 2, it converges to the correct
limit oscillatorily. For λh > 2, it behaves wrongly. Thus, a scheme which can preserve the Lie-group property is
very important. Scheme (38) is a group-preserving scheme if λh > −1; otherwise, it fails to be a group-preserving
scheme. Similarly, scheme (39) is a group-preserving scheme in the range λh < 2, and when λh > 2, it fails to be
a group-preserving scheme. It is obvious that only the scheme (35) is a group-preserving for all λ. Schemes (40)
and (41) are not of the linear fraction type as Equation (31) is, and thus are not of the group-preserving type.

There have several criteria to assess the performance of a numerical scheme, among, the order of accuracy, stability
property and preserving the dynamics of the original ODEs are the most important three factors. In this regard,
the above introduced group-preserving scheme (35) is the best one for the discretizations of the logistic differential
equation (33).

6. Numerical Scheme for Second-order Linear Differential Equations
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In order to find the numerical scheme for Equation (18), we let u̇ = p(t)uy by Equation (13) due to q(t) = 0; hence,
from Equations (26) and (29) the numerical scheme for u and u̇ can be written as

[
un+1
u̇n+1

]
=

1
1 + τ2b(n̄)

 1 − τ2b(n̄) hp(n̄)
p(n)

− hp(n+1)b(n̄)
p(n̄)

p(n+1)[1−τ2b(n̄)]
p(n)


[

un

u̇n

]
, (42)

where p is defined in Equation (21). The above scheme is suitable to calculating the solution of the second-order
linear differential equation (18), whose initial values of u and u̇ are specified.

Let us consider a special case
ü + b(t)u = 0. (43)

The general second-order linear homogeneous differential equations can always be transformed into the above
type. For this case let p = 1 in Equation (42) we obtain[

un+1
u̇n+1

]
=

1
1 + τ2b(n̄)

 1 − τ2b(n̄) h

−hb(n̄) 1 − τ2b(n̄)

 [ un

u̇n

]
. (44)

Through some manipulations we obtain

un+1 =
(2 − τ2[b(n̄) + b(n̄ − 1)])un − [1 + τ2b(n̄ − 1)]un−1

1 + τ2b(n̄)
. (45)

It bears certain similarity with the following two schemes:

un+1 + un−1 = 2 cos(h
√

b(n))un (46)

developed by Mickens & Ramadhani (1992), and[
1 +

h2b(n + 1)
12

]
un+1 +

[
1 +

h2b(n − 1)
12

]
un−1 = 2 cos(h

√
b(n))

[
1 +

h2b(n)
12

]
un (47)

generalized from the Mickens-Ramadhani scheme by Chen et al. (1993).

In order to compare the above three numerical schemes we let b(t) = 1/t2 in the range t ∈ [1, 10]. For such b(t),
Equation (43) has closed-form solution as follows:

u(t) =
√

t
u(1) cos

 √3
2

ln t
 + 2u̇(1) − u(1)

√
3

sin
 √3

2
ln t

 . (48)

The solution error of the above three schemes are compared in Figure 3, where u(1) = u̇(1) = 1 were taken, and
the stepsize h = 0.001 was used. As denoted by Chen et al. (1993) the modified scheme (47) is of O(h4) and the
Mickens-Ramadhani scheme (45) is of O(h2). It can be seen that the accuracy of scheme (45) is between schemes
(46) and (47). However the latter two schemes do not share the Lie-group property when b(t) is a time-varying
function as this case is.

When we consider b(t) = ω2 for the linear harmonic oscillator equation,

ü + ω2u = 0, (49)

the numerical scheme in Equation (44) is simplified to[
un+1
u̇n+1

]
=

1
1 + τ2ω2

 1 − τ2ω2 h

−hω2 1 − τ2ω2

 [ un

u̇n

]
. (50)

Here we require τ2ω2 < 1. It deserves to note that the above scheme conserves the total energy E := [u̇2+(ωu)2]/2,
that is,

[ωun+1]2 + u̇2
n+1 = [ωun]2 + u̇2

n = 2E. (51)
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On the other hand, when applying the nonstand difference scheme of Mickens to Equation (49) gives[
un+1
u̇n+1

]
=

 cos(hω) 1
ω

sin(hω)

−ω sin(hω) cos(hω)

 [ un

u̇n

]
. (52)

Refer Equations (2.40a) and (2.40b) in (Mickens, 2000). Obviously, Equation (51) also holds for this scheme.
Comparing the coefficients matrices in schemes (50) and (52), we note that both the transition matrices are of
S L(2,R), and

1 − τ2ω2

1 + τ2ω2 = 1 − 2τ2ω2 + 2(τ2ω2)2 + · · · ,

cos(hω) = 1 − 2τ2ω2 +
2(τ2ω2)2

3
+ · · ·

make the above two schemes slightly different in the order of O(h4).

7. Numerical Scheme for Second-order Linear Non-homogeneous Differential Equations

Now, let us consider the following second-order linear non-homogeneous differential equation:

ü + a(t)u̇ + b(t)u = f (t) (53)

with a forcing term f (t). It is equivalent to solve the following non-homogeneous linear system:

d
dt

[
u̇(t)/p(t)

u(t)

]
=

[
0 −b(t)/p(t)

p(t) 0

] [
u̇(t)/p(t)

u(t)

]
+

[
f (t)/p(t)

0

]
. (54)

The solution is given by

u(t) = [G22(t)G11(ti) −G21(t)G12(ti)]u(ti) + [G21(t)G22(ti) −G22(t)G21(ti)]
u̇(ti)
p(ti)

− G22(t)
∫ t

ti

G21(η) f (η)
p(η)

dη +G21(t)
∫ t

ti

G22(η) f (η)
p(η)

dη, (55)

u̇(t)
p(t)

= [G12(t)G11(ti) −G11(t)G12(ti)]u(ti) + [G11(t)G22(ti) −G12(t)G21(ti)]
u̇(ti)
p(ti)

− G12(t)
∫ t

ti

G21(η) f (η)
p(η)

dη +G11(t)
∫ t

ti

G22(η) f (η)
p(η)

dη, (56)

where u(ti) and u̇(ti) are the initial values prescribed at time ti. The second line in Equation (55) is really a particular
solution of Equation (53). It leads to the same result as that obtained by the method of variation of parameters. In
Equation (54) the first equation

d
dt

[
1

p(t)
du
dt

]
+

b(t)
p(t)

u =
f (t)
p(t)

is known as the non-homogeneous Sturm-Liouville equation, and the differential operator

d
dt

[
1

p(t)
d
dt

]
+

b(t)
p(t)

is self-adjoint. The usual way to systemize Equation (53) is given by

d
dt

[
u̇(t)
u(t)

]
=

[
−a(t) −b(t)

1 0

] [
u̇(t)
u(t)

]
+

[
f (t)
0

]
.

However, the system matrix of this equation does not has any special structure in it. Thus, the numerical method
based on this equation will not capture the main Lie-group property inherent in such an equation.
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For the non-homogeneous equation (53) we can let t → tn+1, ti → tn, and apply the trapezoidal quadrature to the
integrals in Equations (55) and (56) to obtain

un+1 =
G21(n̄)u̇n

p(n)
+G22(n̄)un +

τG21(n̄) f (n)
p(n)

, (57)

u̇n+1

p(n + 1)
=

G11(n̄)u̇n

p(n)
+G12(n̄)un +

τG11(n̄) f (n)
p(n)

+
τ f (n + 1)
p(n + 1)

, (58)

where

G(n̄) =
1

1 + τ2b(n̄)

 1 − τ2b(n̄) −hb(n̄)
p(n̄)

hp(n̄) 1 − τ2b(n̄)

 . (59)

In order to investigate the accuracy of the above numerical scheme we consider the following differential equation:

t2ü + u = ln t (60)

in the range t ∈ [1, 10], with u(1) = 2 and u̇(1) = 1. Equation (60) has a closed-form solution given as follows:

u(t) =
√

t
u(1) cos

 √3
2

ln t
 + 2u̇(1) − u(1)

√
3

sin
 √3

2
ln t

 + 1 + ln t, (61)

where
C1 = u(1) − 1 = 1, C2 =

2u̇(1) − u(1) − 1
√

3
=
−1
√

3
.

Substituting p(t) = 1, b(t) = 1/t2 and f (t) = ln t/t2 into the above scheme we can calculate u, whose error is shown
in Figure 4, where the stepsize h = 0.001 was used in the calculation. It can be seen that the accuracy is better than
the order of O(h2).

8. Abel Differential Equation and Higher-order Nonlinear ODE

8.1 The Integrating Factor for Abel Differential Equation

A direct extension of the Riccati differential equation is the Abel differential equation (Sachdev, 1991):

dy
dt
= r(t) − 2q(t)y − p(t)y2 − e(t)y3, y(0) = y0, (62)

which can be written as
dy
dt
+ [q(t) + p(t)y + e(t)y2]y = r(t) − q(t)y. (63)

Upon defining the integrating factor:

u(t) := u(0) exp
[∫ t

0
[q(ξ) + p(ξ)y(ξ) + e(ξ)y2(ξ)]dξ

]
, (64)

Equation (62) becomes
d
dt

(uy) = r(t)u − q(t)uy. (65)

On the other hand, from Equation (64) it follows that

du
dt
= q(t)u + p(t)uy + e(t)uy2. (66)

Equations (65) and (66) together can be written as

d
dt

[
uy
u

]
= A

[
uy
u

]
, (67)

where

A :=
[

−q(t) r(t)
p(t) + e(t)y q(t)

]
. (68)

133



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 7, No. 2; 2015

Because the coefficient matrix A satisfies trA = 0, the resulting Lie-group is S L(2,R), which is a representation
of the Abel differential equation in the projective space (uy, u) as a system of two first-order differential equations.
However, the above A is different from that in Equation (15) with an extra term e(t)y = e(t)uy/u, which renders
Equation (67) a quasi-linear system endowing with a local Lie-algebra element of sl(2,R).

8.2 The S L(2,R) Group-preserving Scheme

According to Equation (67), we can develop an implicit scheme based on S L(2,R) for the integration of Equa-
tion (62), of which one can view

Āk :=
[
−q̄k r̄k

p̄k + ēkȳk q̄k

]
as a constant matrix within a small time increment, where t̄k = (1 − θ)tk + θtk+1, q̄k = q(t̄k), r̄k = r(t̄k), p̄k = p(t̄k),
ēk = e(t̄k) and ȳk = (1 − θ)yk + θyk+1. The corresponding Lie-group Gk ∈ S L(2,R) is obtained by using the
exponential mapping:

Gk = exp(hĀk). (69)

Let
ak := p̄k + ēkȳk. (70)

For the special case with r(t) = 0 we have

Gk =

[
exp(−q̄kh) 0
ak
q̄k

sinh q̄kh exp(q̄kh)

]
. (71)

For the case r(t) , 0, through some derivations we can obtain

Gk =

 coshωkh − q̄k
ωk

sinhωkh r̄k
ωk

sinhωkh

ω2
k−q̄2

k
ωk r̄k

sinhωkh coshωkh + q̄k
ωk

sinhωkh

 , if q̄2
k + ak r̄k > 0, (72)

Gk =

 cosωkh − q̄k
ωk

sinωkh r̄k
ωk

sinωkh

−ω
2
k+q̄2

k
ωk r̄k

sinωkh cosωkh + q̄k
ωk

sinωkh

 , if q̄2
k + ak r̄k < 0. (73)

In above, ωk =

√
|q̄2

k + ak r̄k |.

This scheme is implicit because it also depends on yk+1, which requires an iteration to determine the value of
(zk+1 := uk+1yk+1, uk+1) at the next time step. The numerical process of group-preserving scheme (GPS) is given as
follows.
(i) Give 0 ≤ θ ≤ 1, for example θ = 1/2.
(ii) Give an initial (z0, u0) = (u0y0, u0) at an initial time t = t0 and a time stepsize h.
(iii) For k = 0, 1, . . ., we repeat the following computations to a specified terminal time t = t f . We first apply the
forward Euler method to Equation (67):

zk+1 = zk − hq(tk)zk + hr(tk)uk,

uk+1 = uk + [p(tk) + e(tk)yk]zk + hq(tk)uk,

yk+1 =
zk+1

uk+1
. (74)

With the above (zk+1, uk+1) generated from an Euler step as an initial guess we iteratively solve the new (zk+1, uk+1)
by

ȳk = (1 − θ)yk + θyk+1,[
ẑk+1
ŷk+1

]
= Gk

[
yk

zk

]
,

yk+1 =
ẑk+1

ûk+1
. (75)
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If (ẑk+1, ûk+1) converges according to a given stopping criterion, such that,√
(ẑk+1 − zk+1)2 + (ûk+1 − uk+1)2 < ε, (76)

then go to (iii) for the next time step; otherwise, let zk+1 = ẑk+1 and uk+1 = ûk+1 and go to Equation (75).

For the Abel differential equation, there are only rare cases that the analytical solutions exist as summarized in
Murphy (1960). In general the solutions are implicit. For example,

dy
dt
= a0y + b0y3, y(0) = y0 (77)

has an analytical solution:
y2(t)(Ce−2a0t − b0) = a0, (78)

where C = a0/y2
0 + b0.

We fix a0 = 2, b0 = 1 and y0 = 1, and compare the solutions obtained by the GPS with the analytical solutions in
Table 1.

Table 1. Comparing exact and GPS solutions for an Abel equation

t GPS Exact Absolute error
0.01 1.0307722 1.0307722 8.388 × 10−9

0.02 1.0631835 1.0631835 1.884 × 10−8

0.03 1.0973910 1.0973910 3.188 × 10−8

0.04 1.1335744 1.1335744 4.817 × 10−8

0.05 1.1719408 1.1719407 6.859 × 10−8

0.06 1.2127301 1.2127300 9.429 × 10−8

0.07 1.2562224 1.2562223 1.268 × 10−7

0.08 1.3027468 1.3027466 1.681 × 10−7

0.09 1.3526930 1.3526927 2.211 × 10−7

0.1 1.4065270 1.4065267 2.894 × 10−7

In order to test the accuracy of the above GPS we let y = sin t be an exact solution. Substituting p(t) = 0.5,
q(t) = 1/2, e(t) = −1, y = sin t and ẏ = cos t into Equation (62) we can obtain r(t). Under h = 0.001 and ε = 10−10

we use the above GPS to calculate y, whose number of iterations and the absolute error of numerical solution are
shown in Figure 5. Although under a stringent convergence criterion ε = 10−10, the number of iterations is either
three or four. It can be seen that the accuracy is better than the order of O(h2).

Let us consider (Adeyeye et al., 2015)
dy
dt
= 1 − y + y3, y(0) = 0, (79)

which is a special case of Equation (62) with p(t) = 0, q(t) = 1/2, e(t) = −1, and r(t) = 1. Under h = 0.001 and
ε = 10−10 we use the GPS to calculate y, whose number of iterations is shown in Figure 6(a), and the solution is
compared with that calculated by the fourth-order Runge-Kutta method (RK4) in Figure 6(b), and the difference is
shown in Figure 6(c). Up to t = 1.92 the solution fast tends to large value 21.22595, which causes the numerical
solution obtained by the RK4 blowing up as shown in Figure 6(b) by dashed line. However, the GPS is also
available up to t = 1.92 as shown in Figure 6(b) by solid line.

We must emphasize that the results shown in (Adeyeye et al., 2015; Jaradat, 2008) are incorrect after t = 1.2,
whose errors are over 0.1 and more large up to 17.5 when time tends to t = 1.92, where the GPS leads to the value
21.22595.

8.3 The Extension to Highly Nonlinear ODEs

Through the above studies we can extend the Lie-group approach to highly nonlinear ODE:

dy
dt
= r(t) − 2q(t)y − F(y, t)y2, y(0) = y0, (80)
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where F(y, t) may be a time-varying function of t and nonlinear function of y.

Upon defining the integrating factor:

u(t) := u(0) exp
[∫ t

0
[q(ξ) + y(ξ)F(y(ξ), ξ)]dξ

]
, (81)

we can derive

d
dt

[
uy
u

]
= A

[
uy
u

]
, (82)

where

A :=
[
−q(t) r(t)

F(y(t), t) q(t)

]
. (83)

Because the coefficient matrix A satisfies trA = 0, the resulting Lie-group is S L(2,R), and thus the scheme in
Section 8.2 can be extended to solve Eq. (80).

For example, let us consider (Murphy, 1960)

dy
dt
=

2
3t

y +
1
3

y4, y(1) = y0, (84)

which has an implicit analytical solution:

y3(t)(C + t3) + 3t2 = 0, (85)

where C = −1 − 3/y3
0.

We fix y0 = 0.1, and compute the solution of y in a time interval of t ∈ [1, 10] by the GPS, where h = 0.001
and ε = 10−10 were used. The number of iterations is shown in Figure 7(a), the solution is shown in Figure 7(b),
and the error of y3 is shown in Figure 7(c). It can be seen that the GPS provides very accurate solution with error
smaller than 10−7.

9. Conclusions

The Riccati differential equation is known closely related to the second-order linear homogeneous differential
equation through the variable transformation y := u̇/(pu). We further explored that u of the second-order linear
homogeneous differential equation is really an integrating factor for the Riccati differential equation. Therefore, we
proved that the above two equations share the same transformation group of S L(2,R) as shown in Equations (16)
and (23). Accordingly, we have developed a linear fraction scheme for the Riccati differential equation, whose co-
efficients matrix is an element of S L(2,R). Applied this scheme to the logistic differential equation, we found that
the group-preserving scheme has better accuracy and stability than other schemes compared in this paper. Several
numerical examples were worked out. Upon comparing the schemes devised for the Riccati differential equation
and second-order linear homogeneous and non-homogeneous differential equations to the corresponding closed-
form solutions, it was found that the group-preserving schemes all have accuracy better than O(h2). The extension
of the S L(2,R) Lie-group schemes to the Abel differential equation was made, of which the high performance was
observed through three numerical tests. We also mentioned the extension to the higher-order nonlinear ODE by
using the S L(2,R) group-preserving scheme.
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Figure 1. The solution error of the group-preserving scheme for a Riccati differential equation.
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Figure 2. Comparing the solution errors of different numerical schemes used in the Figure 2. Comparing the solution errors of different numerical schemes used in the calculations for the logistic
differential equation.
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Figure 3. Comparing the solution errors of different numerical schemes used in the calculations for a second order
linear homogeneous differential equation.
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Figure 4. The solution error of the group-preserving scheme for a second order linear non-homogeneous
differential equation.
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Figure 5. The number of iterations and solution error of the group-preserving scheme for Abel differential
equation.
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Figure 6. The number of iterations, solutions and solution difference of the Figure 6. The number of iterations, solutions and solution error of the group-preserving scheme for Abel
differential equation, upon compared with the RK4.
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Figure 7. The number of iterations, solution and numerical error of y3 of the group-preserving scheme for an
quadruple nonlinear differential equation.
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