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Abstract

The Tau method is a highly accurate technique that approximates differential equations efficiently. This paper
discusses two approaches of the Tau Method: recursive and spectral. In the recursive Tau, the approximate solution
of the differential equation is obtained in terms of a special polynomial basis called canonical polynomials. The
present paper extends this concept to the multivariate canonical polynomial vectors and proposes a self starting
algorithm to generate those vectors. In the spectral Tau, the approximate solution is obtained as a truncated series
expansions in terms of a set of orthogonal polynomials where the coefficients of the expansions are obtained by
forcing the defect of the differential equation to vanish at the some selected points. In this paper we use the spectral
Tau to solve a class of optimal control problems associated with a nonlinear system of differential equations. Some
numerical examples that confirm our method are given.
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1. Introduction

The Tau method is a highly accurate technique that approximates differential equations without requiring the
discretization of the given differential operator. Its basic idea is to perturb the right hand side of the differential
equation in a way that an exact polynomial solution of the new equation can be found analytically. This method
was devised in (Lanczos, 1956) to find polynomial approximations for simple linear ordinary differential equations
(ODE) and it was extended later on to treat differential equations with different level of complexities, (see (Ortiz,
1969), (Ortiz & Samara, 1984), (El-Daou & Ortiz, 1992-1994), and (Liu & Pan, 1999)).

The Tau method has three equivalent approaches: Recursive, operational and spectral. The recursive approach,
proposed in (Ortiz, 1969), permits to obtain an approximate polynomial solution expressed in terms of a special
polynomials basis called canonical polynomials. This technique has been thoroughly investigated in a series of
papers (see for example (Crisci & Russo, 1983), (Freilich & Ortiz, 1982) and (El-Daou & Ortiz, 1994-1998)).
In the operational Tau, (see (Ortiz & Samara, 1981)), the ODE is transformed to a system of linear algebraic
equations using some simple elementary matrices. The operational procedure was extended in (Liu & Pan, 1999)
to solve mixed-order systems of linear ODEs with polynomial coefficients. In the same reference an automation
of the operational approach has been reported. In (Ortiz & Samara, 1984) the operational Tau was shown effective
in solving partial differential equations. In (Canuto, Hussaini, Quarteroni, & Zang, 2006) and (Gottlieb & Orszag,
1977 ), a spectral approach to the Tau method has been studied. This technique seeks an approximate solution in
the form of a truncated series expansions of Chebyshev or Legendre polynomials. The coefficients of the series are
computed by forcing the ODE to be exact at some selected points (called collocation points) and the supplementary
conditions to be satisfied exactly. The spectral approach of the Tau Method guarantees spectral accuracy because
the approximate solution is obtained in terms of orthogonal polynomials basis.

Although the three approaches of the Tau Method explained above appear to be different, it was shown in (El-Daou
& Ortiz, 1992-1994) that they are equivalent in the sense that they yield the same approximate solution. However,
the suitability of those approaches is judged by the problem under consideration. While the recursive and the
operational Tau are more suitable from the computation point of view for ODE with polynomial coefficients, the
spectral Tau enjoys a superiority when the ODE is nonlinear or its coefficients are not polynomials.

We point out that an important feature that distinguishes the Tau Method from the classical finite difference methods
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is that the Tau solution is obtained in a closed form on the whole domain of integration without discretization,
while in the finite difference methods the domain is divided into small elements of stepsize h on which depends
the accuracy of the method.

The present paper is to extend the recursive approach of the Tau Method to the numerical solution of systems of
linear ODEs and to give a practical procedure that permits to construct approximate solutions. Further, we will
show that the spectral Tau method is highly effective in tackling a class of optimal control problems (see (Flores
Tlacuahuac, Terrazas Moreno, & Biegler, 2008) and (Jaddu & Majdalawi, 2014)). To this end, we generalize in
Section 2 the concept of canonical polynomials to be adapted for system of ODEs. An algorithm to compute the
Tau solution in terms of the canonical vectors will be given in Section 3. Section 4 is concerned with applying the
spectral Tau to solve an optimal control problem whose the constraints are given as a system of nonlinear ODEs.
Numerical examples illustrating the efficiency of our method are provided throughout the paper.

2. Canonical Polynomial Vectors

Let us consider a system of linear ODEs of dimension ν ≥ 1 written in the matrix form as

Dy(x) :=
[
Iν

d
dx
+ A(x)

]
y(x) = f(x) ; x ∈ [0, 1], (1)

where
f(x) := [ f1(x), f2(x), . . . , fν(x)]T , (2)

y(x) := [y1(x), y2(x), . . . , yν(x)]T ,

Iν is the ν identity matrix and A := (Ai j(x))νi, j=1 is a ν× ν matrix with Ai j(x) being functions of x. The superscript T
means “Transpose”. We shall assume for simplicity that all the Ai j(x)’s are polynomials having the same degree d,

Ai j(x) =
d∑

m=0

a(m)
i j xm; a(m)

i j ∈ R, i, j = 1, 2, . . . , ν,

and more compactly we can write

A(x) =
d∑

m=0

Amxm, (3)

where {Am =
(
a(m)

i j

)ν
i, j=1

; m = 0, 1, 2, . . . , d} are constant matrices.

Let us associate to (1) the initial conditions

y(0) = y0 := [y1 y2 ... yν]T ; yk ∈ R. (4)

When ν = 1, system (1) reduces to a single equation (Dy)(x) = f (x). This case was fully discussed in Ortiz (1969)
wherein a Tau solution ỹ(x) that approximates y(x) is obtained in the form

ỹ(x) =
N∑

k=0

ckq∗k(x), ck ∈ R,

with {q∗k(x); k ≥ 0} being a sequence of functions, called canonical polynomials associated with D each one of
which is an exact solution of the differential equation

(Dq∗k)(x) = xk, k ≥ 0.

In (Ortiz, 1969, Theorem 3.3) a self starting recursive formula that generates the {q∗k; k ≥ 0} associated with a
single ODE was developed. Next we extend the concept of canonical polynomial to systems of ODEs:

Definitions and Notation.

1. We call a vector Q(k)
i (x) an ith canonical vector of order k associated with the operator D if

DQ(i)
k = xkei, i = 1, 2, ..., ν,

where ei is the ith column of Iν. Note that Q(k)
i (x) is a ν × 1 matrix.
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2. Q∗k :=
[

Q(1)
k Q(2)

k . . . Q(ν)
k

]T
will be called a kth canonical block. Note that Q∗k is a ν × ν matrix.

3. Eν :=
[

e1 e2 . . . eν
]T

.

The next theorem is a generalization of Theorem 3.3 given in (Ortiz, 1969):

Theorem 1 Suppose that the matrix Ad defined in (3) is non-singular. Then the canonical blocks {Q∗k; k ≥ 0} satisfy
the recursion:

Q∗k+d = A−1
d

xkEν − kQ∗k−1 −
d−1∑
m=0

AmQ∗k+m

 ; k ≥ 0. (5)

In particular, if d = 0, then (5) becomes

Q∗k = A−1
0

[
xkEν − kQ∗k−1

]
; k ≥ 0.

Proof. Let k ≥ 0 and i ∈ {1, 2, . . . , ν}. Let us apply the operator D, defined by (1), to the vector xkei:

D[xkei] = Iν
d
dx

(xkei) + A(x)xkei

= kxk−1ei + [A1i(x) A2i(x) . . . Aνi(x)]T xk

= kxk−1ei +

ν∑
j=1

A ji(x)xke j

= kxk−1ei +

ν∑
j=1
j,i

A ji(x)xke j + Aii(x)xkei

= kxk−1ei +

ν∑
j=1
j,i

[
d∑

m=0

a(m)
ji xk+m]e j +

d∑
m=0

a(m)
ii xk+mei

= D

kQ(i)
k−1 +

ν∑
j=1
j,i

[
d∑

m=0

a(m)
ji Q( j)

k+m] +
d−1∑
m=0

a(m)
ii Q(i)

k+m

 + a(d)
ii xk+dei.

The last identity is due to the linearity of D. Rearranging terms, and using the definition DQ(i)
k = xkei, we obtain:

D

xkei − kQ(i)
k−1 −

ν∑
j=1
j,i

[
d∑

m=0

a(m)
ji Q( j)

k+m] −
d−1∑
m=0

a(m)
ii Q(i)

k+m

 = a(d)
ii xk+dei = a(d)

ii DQ(i)
k+d.

This implies (without loosing generality) that

a(d)
ii Q(i)

k+d = xkei − kQ(i)
k−1 −

ν∑
j=1
j,i

[
d∑

m=0

a(m)
ji Q( j)

k+m] −
d−1∑
m=0

a(m)
ii Q(i)

k+m

= xkei − kQi
k−1 −

ν∑
j=1
j,i

[
d−1∑
m=0

a(m)
ji Q( j)

k+m + a(d)
ji Q( j)

k+d] −
d−1∑
m=0

a(m)
ii Q(i)

k+m

= xkei − kQ(i)
k−1 −

ν∑
j=1
j,i

[
d−1∑
m=0

a(m)
ji Q( j)

k+m] −
ν∑

j=1
j,i

a(d)
ji Q( j)

k+d −
d−1∑
m=0

a(m)
ii Q(i)

k+m

= xkei − kQ(i)
k−1 −

ν∑
j=1

[
d−1∑
m=0

a(m)
ji Q( j)

k+m] −
ν∑

j=1
j,i

a(d)
ji Q( j)

k+d,
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which gives

a(d)
ii Q(i)

k+d +

ν∑
j=1
j,i

a(d)
ji Q( j)

k+d︸                        ︷︷                        ︸
= xkei − kQ(i)

k−1 −
ν∑

j=1

[
d−1∑
m=0

a(m)
ji Q( j)

k+m]

ν∑
j=1

a(d)
ji Q( j)

k+d = xkei − kQ(i)
k−1 −

ν∑
j=1

[
d−1∑
m=0

a(m)
ji Q( j)

k+m]

= xkei − kQ(i)
k−1 −

d−1∑
m=0

[
ν∑

j=1

a(m)
ji Q( j)

k+m].

Explicitly this means that for i = 1, 2, ..., ν

[a(d)
1i a(d)

2i ... a(d)
νi ]



Q(1)
k+d

Q(2)
k+d

...

Q(ν)
k+d


= xkei − kQ(i)

k−1 −
d−1∑
m=0

[a(m)
1i a(m)

2i ... a(m)
νi ]



Q(1)
k+m

Q(2)
k+m

...

Q(ν)
k+m


,

and therefore

a(d)
11 a(d)

21 . . . a(d)
ν1

a(d)
12 a(d)

22 . . . a(d)
ν2

...
...
. . .

...

a(d)
1ν a(d)

2ν . . . a(d)
νν





Q(1)
k+d

Q(2)
k+d

...

Q(ν)
k+d


= xk



e1

e2

...

eν


− k



Q(1)
k−1

Q(2)
k−1

...

Q(ν)
k−1


−

d−1∑
m=0



a(m)
11 a(m)

21 . . . a(m)
ν1

a(m)
12 a(m)

22 . . . a(m)
ν2

...
...

. . .
...

a(m)
1ν a(m)

2ν . . . a(m)
νν





Q(1)
k+m

Q(2)
k+m

...

Q(ν)
k+m


.

In matricial form we have

AdQ∗k+d = xkEν − kQ∗k−1 −
d−1∑
m=0

AmQ∗k+m.

Since Ad is non-singular, we obtain the desired recursion

Q∗k+d = A−1
d

xkEν − kQ∗k−1 −
d−1∑
m=0

AmQ∗k+m

 ; k ≥ 0,

and this completes the proof of (5).

Although all the Q∗k’s satisfy the self starting recursive formula (5), in practice only {Q∗k; k ≥ d} can be generated
by this recursion while the remaining ones {Q∗0,Q∗1, ...,Q∗d−1} are not computable by the same formula. These are
then called undefined. This point will be clarified further in the following example which illustrates Algorithm (5):

Example 1. Consider the differential operator D defined by (1) with

A(x) =


16x
5 −

1
5

8
5 −

28x
5 1 − 2x

2x
5 +

1
10

34x
5 −

4
5 6x − 1

2

− 6x
5 − 12x

5 −4x

 .
Since all the entries of A are of order 1, d = 1 and therefore (5) becomes

Q∗k+1 = A−1
1

[
xkE3 − kQ∗k−1 − A0Q∗k

]
; k ≥ 0, (6)
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where

A1 =


16
5 − 28

5 −2

2
5

34
5 6

− 6
5 − 12

5 −4

 and A0 =


− 1

5
8
5 1

1
10 − 4

5 − 1
2

0 0 0

 .
It is clearly seen that Q∗0 := {Q(1)

0 ,Q
(2)
0 ,Q

(3)
0 } is undefined because it can not be obtained from (6). However the

execution of (6) for k ≥ 1 produces {Q∗1,Q∗2,Q∗3, . . . } some of which are:

1) Q∗1 := {Q(1)
1 ,Q

(2)
1 ,Q

(3)
1 }:

Q(1)
1 =

1
30

Q(1)
0 −

1
60

Q(2)
0 +

8e1

15
+

7e2

30
− 3e3

10

Q(2)
1 = − 4

15
Q(1)

0 +
2
15

Q(2)
0 +

11e1

15
+

19e2

30
− 3e3

5

Q(3)
1 = −1

6
Q(1)

0 +
1

12
Q(2)

0 +
5e1

6
+

5e2

6
− e3.

2) Q∗2 := {Q(1)
2 ,Q

(2)
2 ,Q

(3)
2 }:

Q(1)
2 = −19

36
Q(1)

0 −
17
72

Q(2)
0 +

3
10

Q(3)
0 +

8
15

e1x +
7
30

e2x − 3
10

e3x +
e1

180
− e2

360

Q(2)
2 = −7

9
Q(1)

0 −
11
18

Q(2)
0 +

3
5

Q(3)
0 +

11
15

e1x +
19
30

e2x − 3
5

e3x − 2e1

45
+

e2

45

Q(3)
2 = −31

36
Q(1)

0 −
59
72

Q(2)
0 +Q(3)

0 +
5
6

e1x +
5
6

e2x − e3x − e1

36
+

e2

72
.

3) Q∗3 := {Q(1)
3 ,Q

(2)
3 ,Q

(3)
3 }:

Q(1)
3 = −

17Q(1)
0

1080
+

17Q(2)
0

2160
+

8
15

e1x2 +
7
30

e2x2 − 3
10

e3x2 +
1

180
e1x − 1

360
e2x − 443e1

1080
− 97e2

2160

Q(2)
3 =

17
135

Q(1)
0 −

17
270

Q(2)
0 +

11
15

e1x2 +
19
30

e2x2 − 3
5

e3x2 − 2
45

e1x +
1
45

e2x − 97e1

135
− 19e2

135

Q(3)
3 =

17
216

Q(1)
0 −

17
432

Q(2)
0 +

5
6

e1x2 +
5
6

e2x2 − e3x2 − 1
36

e1x +
1
72

e2x − 97e1

216
+

97e2

432
− e3

2
.

One observes that every Q∗k, k ≥ 1, contains a linear combination of the undefined block Q∗0 := {Q(1)
0 ,Q

(2)
0 ,Q

(3)
0 }.

This characteristic is not confined to the differential operator discussed in Example 1. In fact, for any operator
of the form (1), every canonical block Q∗k, k ≥ d must involve a component formed of some undefined canonical
blocks {Q∗0,Q∗1, ...,Q∗d−1}. To justify this claim:

Execute (5) when k = 0:
AdQ∗d = Eν − A0Q∗0 − A1Q∗1 − · · · − Ad−1Q∗d−1.

Similarly k = 1 gives:

AdQ∗d+1 = xEν − Q∗0 −
d−1∑
m=0

AmQ∗m+1

= xEν − Q∗0 −
(
A0Q∗1 + A1Q∗2 + · · · + Ad−1Q∗d

)
= xEν − Q∗0 − A0Q∗1 − A1Q∗2 − · · · − Ad−1A−1

d

[
Eν − A0Q∗0 − A1Q∗1 − · · · − Ad−1Q∗d−1

]
= xEν − Ad−1A−1

d Eν − Q∗0 − A0Q∗1−A1Q∗2 − · · · + Ad−1A−1
d

[
A0Q∗0 + A1Q∗1 + · · · + Ad−1Q∗d−1

]
30
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= xEν − Ad−1A−1
d Eν + R0Q∗0 + R1Q∗1 + ... + Rd−1Q∗d−1,

for some constant square matrices {R j} depending on {A0,A1, . . . ,Ad−1}. Proceeding this way we obtain by induc-
tion the following corollary:

Corollary 2 Let {R( j)
k , k ≥ 0, s = 0, 1, ..., d − 1} be sequences of ν × ν matrices defined by the recursion:

R( j)
s = Iν; s, j = 0, 1, 2, ..., d − 1,

R(k+d)
s = A−1

d

−kR(k−1)
s −

d−1∑
m=0

AmR(k+m)
s

 ; k ≥ 0 and s = 0, 1, 2, ..., d − 1.

Then each Q∗k, k ≥ 1, can be written as

Q∗k = Qk +

d−1∑
s=0

R(k)
s Q∗s, (7)

where {Qk, k ≥ 0, j = 1, 2, ..., ν} are defined by the recursion

Qk = [0 0 . . . 0]T ; k = 0, 1, 2, ..., d − 1,

Qk+d = A−1
d

xkEν − kQk−1 −
d−1∑
m=0

AmQk+m

 ; k ≥ 0.

The proof this corollary follows from the fact that sequence {Q∗k, k ≥ 0} is unique by construction and from
comparing both sides of the identity:

Qk+d +

d−1∑
s=0

R(k+d)
s Q∗s = A−1

d

xkEν − k

Qk−1 +

d−1∑
s=0

R(k−1)
s Q∗s

 − d−1∑
m=0

Am

Qk+m +

d−1∑
s=0

R(k+m)
s Q∗s


 .

3. Construction of the Tau Method Approximation

In the Tau method we associate to (1)-(4) a perturbed problem of the form

DYN(x) :=
[
Iν

d
dx
+ A(x)

]
YN(x) = f(x) +HN(x), (8)

YN(0) = y0, (9)

where HN is a free perturbation term adjusted in a way that YN is a vector of polynomials that can be obtained
analytically. Usually HN is chosen either of the form

HN(x) = τ0VN + τ1VN+1 + · · · + τr−1VN+r−1, (10)

or
HN(x) = (τ0 + τ1x + · · · + τr−1xr−1)VN , (11)

with N being a prescribed positive integer, and

τj := [τ(1)
j τ(2)

j . . . τ(ν)
j ]T , j = 0, 1, 2, . . . , r − 1,

are r vectors each one of which is formed of ν free parameters where the positive integer r will be fixed later.
Vm(x) designates a polynomial of degree m that is usually chosen as the Chebyshev polynomial Tm(x) or Legendre
polynomial Pm(x) shifted to the appropriate interval:

Vm(x) =
m∑

j=0

c(m)
j x j.

The unknown vectors {τj; j = 1, 2, . . . , r − 1} are determined (i) by imposing the initial condition (9) on the desired
approximate solution YN , and (ii) by forcing YN to be independent of the undefined terms {Q∗j; j = 0, 1, . . . , d− 1}.
The latter can be realized by setting the coefficient of each Q∗j; j = 0, 1, . . . , d − 1 equal to zero.
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Since (9) is the only initial condition to be satisfied, and since there are d undefined canonical blocks {Q∗0,Q∗1, ...,Q∗d−1},
we need d + 1 vectors τj’s only i.e. we choose r = d + 1.

Having decided the value of r, it becomes possible now to construct YN simultaneously with {τj; j = 1, 2, . . . , r−1}:
Theorem 3 Assume that HN is of the from (10). Then an exact polynomial solution for the perturbed problem
(8)-(9) is given as

YN(x) =
α∑

i=0

fT
i Qi(x) +

d∑
k=0

N+k∑
i=0

c(N+k)
i τT

k Qi(x), (12)

where each τT
k , k = 0, 1, . . . , d, is a ν dimensional vector fixed by the linear system of algebraic equations:

d∑
k=0

Φk,sτk = ρs; s = 0, 1, 2, ..., d − 1, (13)

d∑
k=0

Ψkτk = ρd, (14)

with

Φk,s :=

N+k∑
i=0

c(N+k)
i R(i)

s


T

, ρs := −
 α∑

i=0

fT
i R(i)

s

T ,
Ψk :=

N+k∑
i=0

c(N+k)
i Qi(0)


T

, ρd := y0 −
 α∑

i=0

fT
i Qi(0)

T ,
for k = 0, 1, . . . , d and s = 0, 1, . . . , d − 1.

Proof. This follows once the right hand side of (8), f(x)+HN(x), is expressed in terms of {Q∗i }. Let us consider first
HN(x):

Noting that τj := [τ(1)
j τ(2)

j . . . τ(ν)
j ]T =

∑ν
i=1 τ

(i)
j ei and Vm =

∑m
i=0 c(m)

i xi, then HN(x) introduced in (10) can be
written as

HN(x) :=
d∑

k=0

τkVN+k =

d∑
k=0

ν∑
j=1

τ
( j)
k VN+ke j

=

d∑
k=0

ν∑
j=1

τ
( j)
k

N+k∑
i=0

c(N+k)
i xi

 e j =

d∑
k=0

ν∑
j=1

τ
( j)
k

N+k∑
i=0

c(N+k)
i xie j

 .
Since DQ( j)

i = xie j and D is linear, HN(x) becomes

HN(x) =

d∑
k=0

ν∑
j=1

τ
( j)
k

N+k∑
i=0

c(N+k)
i DQ( j)

i

 = D

 d∑
k=0

ν∑
j=1

τ
( j)
k

N+k∑
i=0

c(N+k)
i Q( j)

i




= D

 d∑
k=0

N+k∑
i=0

c(N+k)
i

 ν∑
j=1

τ
( j)
k Q( j)

i


 = D

 d∑
k=0

N+k∑
i=0

c(N+k)
i τT

k Q∗i

 .
Hence,

HN(x) = D

 d∑
k=0

N+k∑
i=0

c(N+k)
i τT

k Q∗i

 . (15)

The same arguments apply to the function vector f(x) given by (2). Suppose that each entry in f(x) is a polynomial
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of degree α written as f j(x) =
∑α

i=0 f jixi. Then

f(x) :=



α∑
i=0

f1ixi

α∑
i=0

f2ixi

...
α∑

i=0

fνixi


=

ν∑
j=1

α∑
i=0

f jixie j =

ν∑
j=1

α∑
i=0

f jiDQ( j)
i = D

 ν∑
j=1

α∑
i=0

f jiQ( j)
i

 .

But

ν∑
j=1

α∑
i=0

f jiQ( j)
i =

α∑
i=0

ν∑
j=1

f jiQ( j)
i =

α∑
i=0

[ f1i f2i ... fνi]


Q(1)

i
Q(2)

i
...

Q(ν)
i

 =
α∑

i=0

fT
i Q∗i .

Therefore

f(x) = D
 α∑

i=0

fT
i Q∗i

 . (16)

Adding (15) and (16) we get

f(x) +HN(x) = D

 α∑
i=0

fT
i Q∗i +

d∑
k=0

N+k∑
i=0

c(N+k)
i τT

k Q∗i

 . (17)

Thus the Tau problem (8) is written now in the form

DYN(x) = f(x) +HN(x) = D

 α∑
i=0

fT
i Q∗i +

d∑
k=0

N+k∑
i=0

c(N+k)
i τT

k Q∗i


which implies that YN is formally given by:

YN(x) =
α∑

i=0

fT
i Q∗i +

d∑
k=0

N+k∑
i=0

c(N+k)
i τT

k Q∗i .

Further, using (7) we can write YN in terms of {Qi}:

YN(x) =

α∑
i=0

fT
i

Qi +

d−1∑
s=0

R(i)
s Q∗s

 + d∑
k=0

N+k∑
i=0

c(N+k)
i τT

k

Qi +

d−1∑
s=0

R(i)
s Q∗s


=

α∑
i=0

fT
i Qi +

d∑
k=0

N+k∑
i=0

c(N+k)
i τT

k Qi

+

α∑
i=0

fT
i

d−1∑
s=0

R(i)
s Q∗s

 + d∑
k=0

N+k∑
i=0

c(N+k)
i τT

k

d−1∑
s=0

R(i)
s Q∗s


=

α∑
i=0

fT
i Qi +

d∑
k=0

N+k∑
i=0

c(N+k)
i τT

k Qi (18)

+

d−1∑
s=0

 α∑
i=0

fT
i R(i)

s +

d∑
k=0

N+k∑
i=0

c(N+k)
i τT

k R(i)
s

Q∗s. (19)

This expression holds for any choice of {τk}. Since (19) contains undefined canonical blocks only we call it residual.
In order to eliminate this residual we set its coefficients equal to zero. That is for all s = 0, 1, . . . , d − 1,

d∑
k=0

N+k∑
i=0

c(N+k)
i τT

k R(i)
s = −

α∑
i=0

fT
i R(i)

s .
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Equivalently,
d∑

k=0

τT
k

N+k∑
i=0

c(N+k)
i R(i)

s

 = − α∑
i=0

fT
i R(i)

s .

Setting Φk,s :=
[∑N+k

i=0 c(N+k)
i R(i)

s

]T
and ρs := −

[∑α
i=0 fT

i R(i)
s

]T
, we obtain (13)

d∑
k=0

Φk,sτk = ρs, s = 0, 1, 2, ..., d − 1.

With this choice of the τj’s, (18) reduces to (12):

YN(x) =
α∑

i=0

fT
i Qi +

d∑
k=0

N+k∑
i=0

c(N+k)
i τT

k Qi.

Imposing the initial condition (9) we get:

YN(0) =
α∑

i=0

fT
i Qi(0) +

d∑
k=0

N+k∑
i=0

c(N+k)
i τT

k Qi(0) = y0

which, in turn, leads to
d∑

k=0

τT
k

N+k∑
i=0

c(N+k)
i Qi(0)

 = y0 −
α∑

i=0

fT
i Qi(0).

Setting Ψk :=
[∑N+k

i=0 c(N+k)
i Qi(0)

]T
and ρd := y0 −

[∑α
i=0 fT

i Qi(0)
]T

, we obtain (14)

d∑
k=0

Ψkτk = ρd.

This completes the proof of the theorem.

The following corollary is a particular case of the previous theorem:

Corollary 4 The assumptions of the previous theorem hold. If further d = 0 then

YN(x) =
α∑

i=0

fT
i Qi(x) + τT

0

N∑
i=0

c(N)
i Qi(x)

where

τT
0 =

yT
0 −
 α∑

i=0

fT
i Qi(x0)

  N∑
i=0

c(N)
i Qi(x0)

−1

.

Proof. Since d = 0, all the canonical elements are defined and therefore the result is obtained from Theorem 1.

Example 2. Let us solve the initial value problem

Dy(x) :=
[
Iν

d
dx
+ A(x)

]
y(x) = f(x); x ∈ [0, 1]

y(0) = y0 := [7 + e, e − 1, −1 − 3e]T ,

where A(x) is given in Example 1 and

f(x) =


− 18x2

5 +
63x
5 − 2

4x2

5 −
63x
10 + 2

8x2

5 − 1


.
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The exact solution is:

y1(x) = 3e−x2
+ 2ex−3x2

+ ex2+1 + 2,
y2(x) = e−x2 − ex−3x2

+ 2ex2+1 + x − 1,
y3(x) = −e−x2 − 3ex2+1 − x.

Here d = 1 and therefore Q∗0 := {Q(1)
0 ,Q

(2)
0 ,Q

(3)
0 } is the only undefined block. So we choose a perturbation term of

the form:

HN(x) = f(x) + τ0VN(x) + τ1VN+1 = f(x) +


τ(1)

0

τ(2)
0

τ(3)
0


VN(x) +


τ(1)

1

τ(2)
1

τ(3)
1


VN+1(x).

We applied the algorithm presented in Theorem 3 with N = 10 and VN = TN(x), the Chebyshev polynomial. We
found that


τ(1)

0

τ(2)
0

τ(3)
0


=


6.614722E-6

−3.741327E-6

5.303844E-7

 and


τ(1)

1

τ(2)
1

τ(3)
1


=


5.878458E-7

−3.341887E-7

4.921872E-8

 .

Figure 1 displays the exact errors in y1, y2 and y3 while Figure 2 shows the three components of the perturbation
term HN(x).

0.2 0.4 0.6 0.8 1.0
x

-3.´ 10-7

-2.´ 10-7

-1.´ 10-7

1.´ 10-7

2.´ 10-7

3.´ 10-7
error

Figure 1.

Description: (Example 2): Plot of the exact errors in y1(x) (light), y2(x) (dashed), y3(x) (thick). Here N=10.
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0.2 0.4 0.6 0.8 1.0
x

-6.´ 10-6

-4.´ 10-6

-2.´ 10-6

2.´ 10-6

4.´ 10-6

6.´ 10-6

H

Figure 2.

Description: (Example 2): Plot of the Tau perturbations: H1
10(x) (light), H2

10(x) (dashed), H3
10(x) (thick). Here

N=10.

Throughout this section we considered HN as in (10). Following the same arguments we can derive analogous
results when HN is of the form (11). It is worth to note that the Tau method with a perturbation of the form (11) is
equivalent to the spectral collocation method at the zeros of VN(x), see (El-Daou & Ortiz, 1994). This equivalence
permits to solve nonlinear differential equations using the spectral approach more effectively than the recursive
Tau. In the next section we recall the main features of the spectral Tau method and we illustrate it by solving an
optimal control problem with constraints given as a system of nonlinear differential equations.

4. The Spectral Tau Method and Applications to Optimal Control Problem

Let us reconsider problem (1)-(4). In the spectral Tau method, the solution y(x) := [y1(x), y2(x), . . . , yν(x)] of
(1)-(4) is approximated by a truncated series expansion of the form

ỹi(x) =
N∑

j=0

ci jV j(x), i = 1, 2, . . . , ν (20)

where {ci j ; i = 1, 2, . . . , ν, j = 0, 1, . . . ,N} are the expansions coefficients. If the approximation ỹ(x) :=
[ỹ1(x), ỹ2(x), . . . , ỹν(x)] is substituted in the differential equation (1), (Dỹ − f)(x) will not be identically zero unless
ỹ is the exact solution. Otherwise (Dỹ − f)(x) is called the residual.

The (N + 1)ν unknown coefficients {ci j ; i = 1, 2, . . . , ν, j = 0, 1, . . . ,N} are obtained by requiring the residual
Dỹ − f to be zero at the N zeros of VN(x), {ξk; k = 1, 2, . . . ,N}, that is

(Dỹ − f)(ξk) = 0, k = 1, 2, . . . ,N (Nν equations) (21)

and by forcing ỹ to satisfy the initial conditions (4), that is

ỹ(0) = y0 (ν equations). (22)

Combining (21) and (22) one obtains a system of ν(N+1) equations with ν(N+1) unknowns {ci j ; i = 1, 2, . . . , ν, j =
0, 1, . . . ,N}. Once the latter are obtained by solving (21)-(22), the spectral approximate solution can be computed
from (20).

To illustrate the spectral procedure we shall consider the Hicks-Ray reactor problem where it is desired to minimize
the quadrature cost functional∫ 10

0
[a1(X(t) − X̄)2 + a2(Y(t) − Ȳ)2 + a3(U(t) − Ū)2]dt (23)

36



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 7, No. 3; 2015

subject to the nonlinear constraints

X
′
(t) = θ(1 − X) − γX(t)e−r/Y , (24)

Y
′
(t) = θ(y f − Y) + γX(t)e−r/Y − α(Y(t) − yc)U(t) (25)

X(0) = x0, Y(0) = y0. (26)

The two states are denoted by X(t) and Y(t), the control is denoted by U(t) and all other parameters are constants.

Our procedure starts with replacing the nonlinear constraints (24)-(25) by an infinite sequence of linear systems of
ODEs of the form (1). This is accomplished by employing an iterative procedure described as follows:

Let ϕ(X,Y) := Xe−r/Y and W(t) := e−r/Y . The Taylor’s series expansions of the bivariate function ϕ(X,Y) near a
given point (X0,Y0) allows to write

ϕ(X,Y) = ϕ(X0,Y0) +
∂ϕ

∂X
(X0, Y0)(X − X0) +

∂ϕ

∂Y
(X0,Y0)(Y − Y0) + O2

= X0e−r/Y0 + e−r/Y0 (X − X0) +
rX0e−r/Y0

Y2
0

(Y − Y0) + O2

= X0W0 +W0X −W0X0 +
rX0W0

Y2
0

Y − rX0W0

Y0
+ O2, (W0 = e−r/Y0 )

= W0X +
rX0W0

Y2
0

Y − rX0W0

Y0
+ O2, (27)

where O2 = O(∥X − X0∥2) + O(∥Y − Y0∥2). Dropping O2 and using (27) in (24) yields:

dX
dt

≈ θ(1 − X) − γ[W0X +
rX0W0

Y2
0

Y − rX0W0

Y0
]

≈ θ − θX − γW0X − γrX0W0

Y2
0

Y +
γrX0W0

Y0

≈ −(θ + γW0)X − (
γrX0W0

Y2
0

)Y + θ +
γrX0W0

T0
. (28)

Again using (27)) and the approximation

UY ≈ U0Y0 + U0(Y − Y0) + Y0(U − U0) = U0Y + Y0U − Y0U0

in (25), we get

dY
dt
≈ γW0X + (θ +

γrX0W0

Y2
0

+ αU0)]Y + θy f −
γrX0W0

Y0
+ α(yc − Y0)U + αY0U0. (29)

Setting (Xk,Yk,Uk) = (X,Y,U) and (Xk−1,Yk−1,Uk−1) = (X0,Y0,U0) in equations (28)-(29) we obtain the sequence
of linear systems

dXk

dt
+ (θ + γWk−1)Xk + (

γrXk−1Wk−1

Y2
k−1

)Yk = θ +
γrXk−1Wk−1

Yk−1
, k = 1, 2, 3, . . . (30)

dYk

dt
− γWk−1Xk−(θ +

γrXk−1Wk−1

Yk−1
+ αUk−1)Yk = θy f −

γrXk−1Wk−1

Yk−1
+ α(yc − Yk−1)Uk + αYk−1Uk−1, (31)

which is of the form (1) with

Ak−1(x) =


(θ + γWk−1) −( γrXk−1Wk−1

Yk−1
)

−γWk−1 −(θ + γrXk−1Wk−1
Yk−1

+ αUk−1)


and

fk−1(x) =


θ + γrXk−1Wk−1

Yk−1

θy f − γrXk−1Wk−1
Yk−1

+ α(yc − Yk−1)Uk + αYk−1Uk−1

 .
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In a more compact form we have the sequence of linear systems

Dkyk(t) :=
[
Iν

d
dt
+ Ak−1(t)

]
yk(t) = fk−1(t), ; t ∈ [0, 10]

yk(0) = y0, k = 1, 2, 3, . . . .

where yk = [Xk(t) Yk(t)]T .

2 4 6 8 10
t

0.02

0.04

0.06

0.08

0.10

0.12

0.14
XHtL

2 4 6 8 10
t

0.65

0.70

0.75

0.80

YHtL

2 4 6 8 10
t

-1000

-500

500

UHtL

Figure 3.
Description. Hicks-ray Problem (23)-(27): (top) X̃20(t), (middle) Ỹ20(t), (bottom) Ũ20(t)

This system is solved iteratively by the spectral tau method algorithm formed by (20)-(21)-(22). In order to start
the iteration X̃0, Ỹ0 and Ũ0 should be supplied by the user. Once these are provided X̃1, Ỹ1 and Ũ1 are computed.
Thus all the functions with subscript k − 1 such as X̃k−1, Ỹk−1, Ũk−1 are assumed to be known

We approximate Xk(t), Yk(t) and Uk by three polynomials X̃k(t), Ỹk(t) and Ũk(t) respectively where

X̃k(t) :=
N∑

i=0

akiVi(t), Ỹk(t) :=
N∑

i=0

bkiVi(t), Ũk(t) :=
N∑

i=0

ukiVi(t)

with {aki, bki, uki, i = 0, 1, . . . ,N} being unknown coefficients.
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Table 1. Coefficients of spectral tau approximate solution of problem (23)-(27).

Legendre X̃20(x) Ỹ20(x) Ũ20

P0 0.099814135111705 0.779838514745205 319.95865312844278
P1 −0.014447716903033 −0.004517449723467 115.95821518780970
P2 0.017243639847273 −0.005516546127986 −296.39604842504507
P3 −0.011124324495591 0.017784093547327 412.09559281837257
P4 0.002005198828965 −0.019427432915259 −335.33644132195188
P5 0.002938556082931 0.011518103104032 159.72323036315646
P6 −0.003151934016184 −0.003500488896576 −28.99969101442239
P7 0.001709145185311 −0.000334621114142 −23.63514313563081
P8 −0.000542974832060 0.001150886895462 29.59528722423919
P9 −0.000015936705712 −0.000840970019439 −19.69521820926024
P10 0.000171488334340 0.000389567146567 8.77261343700043
P11 −0.000145155600082 −0.000095199806246 −1.76810582580361
P12 0.000075051535310 −0.000027982688861 −1.14605985892688
P13 −0.000021916545586 0.000049087658321 1.56440363715893
P14 −3.1233724658601E-6 −0.000032774535344 −1.03938505118715
P15 9.0726214806500E-6 0.000013666636462 0.44790206015741
P16 −6.8813183628923E-6 −2.4066743266386E-6 −0.08342508746112
P17 3.2393901421164E-6 −1.6468007215665E-6 −0.06120983314422
P18 −7.0768963477172E-7 1.9284582308677E-6 0.08092585154985
P19 −5.7590158083240E-7 −1.2889474903878E-6 −0.05569526025167
P20 4.9469939551189E-7 5.0912752638160E-7 0

Clearly the coefficients {aki, bki, , i = 0, 1, . . . ,N} of X̃k(t) and Ỹk(t) will depend on {uki; i = 0, 1, . . . ,N}. To
determine the values of these uki’s, we substitute X̃k(t), Ỹk(t) and Ũk(t) in the objective function (23), and integrate
it exactly to end up with the problem of minimizing a multivariate function of the form:

minΨk(uk0, uk1, . . . , ukN)

that can be achieved using the direct approach. That is we solve the algebraic linear system formed by the gradient,

∂Ψ

∂uk j
= 0, j = 0, 1, 2, . . . ,N

to obtain the unknowns {uk0, uk1, . . . , ukN}, and then we test the Hessian to verify the optimality.

For each k-cycle, we construct {X̃k, Ỹk, Ũk} by the spectral Tau Algorithm, and repeat this process until a prescribed
convergence tolerance ϵ is satisfied; that is until the iteration counter k reaches a certain k∗ such that

max{∥X̃k∗ − X̃k∗−1∥∞, ∥Ỹk∗ − Ỹk∗−1∥∞, ∥Ũk∗ − Ũk∗−1∥∞} ≤ ϵ.

We consider then {X̃k∗ , Ỹk∗ , Ũk∗ } as the Tau approximation for {X,Y,U}. It is worth noting that the convergence of
{(X̃k, Ỹk, Ũk), k ≥ 1} to the exact solution (X,Y,U) is guaranteed by Kantorovich Theorem that imposes conditions
on the starting values {X̃0, Ỹ0, Ũ0} and on the entries of the matrix A.

Figure 3 shows the profiles of the approximated states functions X(t) and Y(t) and the control U(t) computed by
the spectral Tau method with N = 20. These were obtained when k∗ = 18 with tolerance ϵ = 10−12. This problem
does not have an exact solution to compare but the same results can be obtained if this the problem is solved using
the concept of Hamiltonian. Table lists the coefficients of X̃20, Ỹ20 and Ũ20. The minimum value of the objective
function = 2402.02746.
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