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1. Introduction

For nonlinear programming problems, a number of duals have been suggested among which the Wolfe dual (Dorn,
W.S.1960, Hanson.M. et al, 1982) is well known. While studying duality under generalized convexity, Mond and Weir
(Mond.B., and Weir, T., 1981) proposed a number of different duals for nonlinear programming problems with nonnega-
tive variables and proved various duality theorems under appropriate pseudo-convexity/quasi-convexity assumptions.

The study of second order duality is significant due to the computational advantage over first order duality as it provides
tighter bounds for the value of the objective function when approximations are used (Gulati, T.R.etal, 2001, Suneja et
al, 2003, Yang, X.M. et al, 2003). Mangasarian(Mangasarian, O.L., 1975) considered a nonlinear programming problem
and discussed second order duality under inclusion condition. Mond (Mond, B., 1974)was the first who present second
order convexity. He also gave in (Mond, B., 1974) simpler conditions than Mangasarian using a generalized form of
convexity. which was later called bonvexity by Bector and Chandra (Bector, C.R., Chandra, S., 1987). Further, Jeyaku-
mar(Jeyakumar, V., 1985, Jeyakumar, V., 1986) and (Yang X.M. et al, 2003) discussed also second order Mangasarian
type dual formulation under ρ-convexity and generalized representation conditions respectively. Zhang and Mond, Mond,
B. 1996) established some duality theorems for second-order duality in nonlinear programming under generalized second-
order B-invexity, defined in their paper. In (Mond, B., 1974) it was shown that second order duality can be useful from
computational point of view, since one may obtain better lower bounds for the primal problem than otherwise. The case
of some optimization problems that involve n-set functions was studied by Preda (preda, V., 1998). Recently, Yang et al.
(Yang, X.M., et al, 2003)proposed four second-order dual models for nonlinear programming problems and established
some duality results under generalized second-order F -convexity assumptions.

For Φ(x, a, (y, r)) = F(x, a; y) + rd2(x, a), where F(x, a; .)is sublinear on Rn, the definition of (Φ, ρ)- invexity reduces to
the definition of (F, ρ)-convexity introduced by Preda(Preda, V., 1992) which in turn Jeyakumar(jeyakumar, V., 1985)
generalizes the concepts of F-convexity and ρ-invexity.

The more recent literature, (Xu, Z., 1985, Ojha, D.B., 2005, Ojha D.B., and Mukherjee 2006) for duality under generalized
(F, ρ)-convexity, (Mishra, S.K., 2000) and (Yang et al, 2003) for duality under second order F-convexity. (Liang et
al. 2003) and (Hachimi, M., 2004) for optimality criteria and duality involving (F, α, ρ, d)-convexity or generalized
{F, α, ρ, d)-type functions are may consulted by interested redear.The (F, ρ)-convexity was recently generalized to (Φ, ρ)-
invexity by Caristi, Ferrara and Stefanescu (Carisiti, G., et al 2006) and here we will use this concept to extend some
theoretical results of multiobjective programming.

Whenever the objective function and all active restriction functions satisfy simultaneously the same generalized invexity
at a Kuhn-Tucker point which is an optimum condition, then all these functions should satisfy the usual invexity, too. This
is not the case in multiobjective programming; Ferrara and Stefanescu(Ferrara, M., Stefanescu, M.V., 2008) showed that
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sufficiency Kuhn-Tucker condition can be proved under (Φ, ρ)-invexity, even if Hanson’s invexity is not satisfied. The
results of this paper are real extensions of the similar results known in the literature.

In Section 2 we define the second-order (Φ, ρ)-univexity. In Section 3 we consider a class of Multiobjective programming
problems and for the dual model we prove a weak duality result.

2. Notations And Preliminaries

we denote by Rnthe n-dimensional Euclidean space, and by Rn
+its nonnegative orthant. Further, Rn

+ = {x ∈ R |x > 0 } .For
any vector x ∈ Rn, y ∈ Rn, we denote xT y =

∑n
i=1 xiyi. Let C ⊂ Rnbe a compact convex set. The support function of Cis

defined by s(x |C ) = max{xT y |y ∈ C }. Being convex and every where finite, it has a subdiferential, that is, there exist
z ∈ Rn such that s(y |C ) ≥ s(x |C ) + zT (y − x)for all y ∈ C.

The subdifferantials of s(x |C ) is given by ∂s(x |C ) = {z ∈ C
∣∣∣zT x = s(x |C )}.

For any set D ⊂ Rn, the normal cone to Dat a point x ∈ Dis defined by

ND(x) = {y ∈ Rn
∣∣∣yT (z − x) ≤ 0, for all z ∈ D}.

For a compact convex set Cwe obviously have y ∈ NC(x)if and only if s(y |C ) = xT y, or equivalently, if x ∈ ∂s(y |C ).

We consider f : Rn → Rp,g : Rn → Rq,are differential functions and X ⊂ Rnis an open set. We define the following
multiobjective programming problem:

(P) minimize f (x) =
(

f1(x).......... fp(x)
)

sub ject to g(x) ≥ 0x, x ∈ X

Let X0 be the set of all feasible solutions of (P) that is, X0 = {x ∈ X |g(x) ≥ 0}.
We quote some definitions and also give some new ones.

Definition 2.1

A vector a ∈ X0 is said to be an efficient solution of problem (P) if there exit no x ∈ X0 such that f (a) − f (x) ∈
Rp
+\{0}i.e., fi(x) ≤ fi(a)for all i ∈ {1, ., ., ., p}, and for at least one j ∈ {1, ., ., ., p}we have fi(x) < fi(a).

Definition 2.2

A point a ∈ X0 is said to be a weak efficient solution of problem (VP) if there is no x ∈ X such that f (x) < f (a).

Definition 2.3

A point a ∈ X0 is said to be a properly efficient solution of (VP) if it is efficient and there exist a positive constant K such
that for each x ∈ X0 and for each i ∈ {1, 2......p} satis f ying fi(x) < fi(a) , there exist at least one i ∈ {1, 2......p} such that
f j(a) < f j(x) and fi(a) − fi(x) ≤ K

(
f j(x) − f j(a)

)
.

Denoting by WE(P), E(P) and PE(P) the sets of all weakly efficient, efficient and properly efficient solutions of (VP), we
have PE(P) ⊆ E(P) ⊆WE(P).

We denote by ∇ f (a)the gradient vector at aof a differentiable function f : Rp → R, and by ∇2 f (a)the Hessian matrix of
f at a. For a real valued twice differentiable function ψ(x, y)defined on an open set in Rp × Rq, we denote by ∇xψ(a, b)the
gradient vector of ψ with respect to xat (a, b), and by ∇xxψ(a, b)the Hessian matrix with respect to xat (a, b). Similarly,
we may define ∇yψ(a, b), ∇xyψ(a, b)and ∇yyψ(a, b).

For convenience, let us write the definitions of (Φ, ρ)-univexity from[1], Let φ : X0 → R be a differentiable function
(X0 ⊆ Rn),X ⊆ X0, and a ∈ X0. An element of all (n+1)- dimensional Euclidean Space Rn+1 is represented as the
ordered pair ( z, r ) with z ∈ Rn and r ∈ R, ρ is a real number and Φ is real valued function defined on X0 × X0 ×
Rn+1, such thatΦ (x, a, .) is convex on Rn+1 and Φ (x, a, (0, r)) ≥ 0,for every (x, a) ∈ X0 × X0 and r ∈ R+. b0, b1 : X × X ×
[0, 1] → R+ b (x, a) = lim

λ→0
b (x, a, λ) ≥ 0, and b does not depend upon λ if the corresponding functions are differentiable.

ψ0, ψ1 : R→ R is an n-dimensional vector- valued function and h : X × Rn → Rbe differentiable function.

We assume that ψ0, ψ1 : R→ R satisfying u ≤ 0⇒ ψ0 (u) ≤ 0 and u≤0⇒ ψ1 (u)≤0, and b0(x, a) > 0 and b1(x, a)≥0. and
ψ0(α) = −ψ0(α) and ψ1(−α) = −ψ1(α).

Example 2.1

min f (x) = x − 1
g(x) = −x − 1 ≤ 0, x ∈ X0 ∈ [1,∞)

Φ(x, a; (y, r)) = 2(2r − 1) |x − a| + ⟨y, x − a⟩
for ψ0(x) = x,ψ1(x) = −x,ρ1 =

1
2 (for f ) and ρ = 1(for g), then this is (φ, ρ)-univex but it is not (φ, ρ)-invex .

Definition 2.4
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A real-valued twice differentiable function f (., y) : X × X → Ris said to be second-order (Φ, ρ)-univex at u ∈ Xwith
respect to p ∈ Rn, if for all b : X × X → R+,Φ : X × X × Rn+1 → R, ρis a real number, we have

b(x, u)[ψ{ fi(x, y) − fi(u, y) + 1
2 pT∇2 fi(u, y)p}]

≥ Φ(x, u; (∇ fi(u, y) + ∇2 fi(u, y)p, ρi))
(2.1)

Definition 2.5

A real-valued twice differentiable function f (., y) : X×X → Ris said to be second-order (Φ, ρ)-pseudounivex at a ∈ Xwith
respect to p ∈ Rn,if for all b : X × X → R+,Φ : X × X × Rn+1 → R, ρis a real number, we have

Φ(x, u; (∇ fi(u, y) + ∇2 fi(u, y)p, ρi))≥ 0

⇒ b(x, u)[ψ{ fi(x, y) − fi(u, y) + 1
2 pT∇2 fi(u, y)p}] ≥ 0

(2.2)

Definition 2.6

A real-valued twice differentiable function f (., y) : X × X → Ris said to be second-order (Φ, ρ)-quasiunivex at a ∈ Xwith
respect to p ∈ Rn,if for all b : X × X → R+,Φ : X × X × Rn+1 → R,ρis a real number, we have

b(x, u)[ψ{ fi(x, y) − fi(u, y) + 1
2 pT∇2 fi(u, y)p}] ≤ 0

⇒ Φ(x, u; (∇ fi(u, y) + ∇2 fi(u, y), ρi)) ≤ 0
(2.3)

Remark 2.1

(i) If we consider the case b=1,Φ(x, u; (∇ f (u), ρ)) = F(x, u;∇ f (u))(with Fis sublinear in third argument, then the above
definition reduce to Definition 4 of Chen[4] .

(ii) Whenh(u, y) = yT∇uu f (u)y/2and Φ(x, u; (∇ f (u), ρ)) = F(x, u;∇ f (u)) = η(x, u)T∇ f (u) where η : X ×X → Rn, the above
definition reduce to η-(pseudo/quasi)-bonvexity.

Example 2.1

We present here a function which is second-order (Φ, ρ)-univex for b=1. Let us consider X = (0,∞)and

f : X → R, f (x) = x log x,h : X × R→ R, h(u, y) = −y log u. We have

∇u f (u) = 1 + log u,∇uu f (u) = 1
u ,∇yh(u, y) = − log u, Φ : X × X × Rn+1 → R, taking ρ = 0Φ(x, y; b) = |b| + |b|2

It is obvious our mapping is more generalized rather than previous ones.

Hence f (x) = x log xis second-order (Φ, ρ)-univex at u ∈ X, with respect to h(u, y) = −y log u.

A real valued twice differentiable function g is second order F-pseudoconcave if -g is second order F-pseudoconvex.

We shall make use of the following generalized Schwartz inequality:

xT Ay ≤ (xT Ax)
1
2 (yT Ay)

1
2 , where x, y ∈ Rn and A ∈ Rn × Rn is a positive semidefinite matrix. Equality holds if for some

λ≥0, Ax = λAy.

3. Mond-Weir type second order symmetric duality

We consider here the following pair of second order nondifferentiable multiobjective with r−objectives and establish
weak, strong and converse duality theorems.

(MP)

minimize

H(x, y,w, p) = {H1(x, y,w, p),H2(x, y,w, p), ., .,Hr(x, y,w, p)}

subject to

r∑
i=1

λi[∇y fi(x, y) −Ciwi + ∇yy fi(x, y)pi)] ≤ 0 (3.1)

yT
r∑

i=1

λi[∇y fi(x, y) −Ciwi + ∇yy fi(x, y)pi)] ≥ 0 (3.2)

wT
i Ciwi≤1, i = 1, 2, ., ., r (3.3)
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λ > 0 (3.4)

x≥0 (3.5)

(MD)

maximize

J(u, v, a, q) = {J1(u, v, a, q), J2(u, v, a, q), ., ., Jr(u, v, a, q)}

subject to

r∑
i=1

λi[∇x fi(u, v) + Eiai + ∇xx fi(u, v)qi)] ≥ 0 (3.6)

uT
r∑

i=1

λi[∇x fi(u, v) + Eiai + ∇xx fi(u, v)qi)] ≤ 0 (3.7)

aT
i Eiai≤1, i = 1, 2, ., ., r (3.8)

λ > 0 (3.9)

v≥0 (3.10)

Where Hi(x, y,w, p) = fi(x, y) + (xT Eix)
1
2 − yT Ciwi − 1

2 pT
i ∇yy fi(x, y)pi

Ji(u, v, a, q) = fi(u, v) − (vT Civ)
1
2 + uT Eiai −

1
2

qT
i ∇xx fi(u, v)qi

λi ∈ R, pi ∈ Rn, qi ∈ Rn, i = 1, 2, ., ., r and fi,i = 1, 2, ., ., r are thrice differentiable function from Rn ×Rn → R, Eiand Ci,i =
1, 2, ., ., r are positive semidefinite matrices. Also, we mean here, bi = Rn × Rm × Rn × Rm → R+ p = (p1, p2, ., ., pr),q =
(q1, q2, ., ., qr),w = (w1,w2, ., .,wr),a = (a1, a2, ., ., ar)

Remark: 3.1

Since the objective functions of (MP) and (MD) contain the support functions s(x |Ci ) and s(v |Di ) , i = 1, 2, ., ., p, these
problems are nondifferentiable multiobjective programming problems.

Theorem 3.1 (Weak duality)

Let (x, y, λ,w, p)be a feasible solution of (MP) and (u, v, λ, a, q)a feasible solution of (MD). Then the inequalities can not
hold simultaneously:

(i)
∑r

i=1 λi[ fi(., v) + (.)T Eiai] is second order (Φ, ρ)-pseudounivex at u,

(ii)
∑r

i=1 λi[ fi(x, .) − (.)T Ciwi] is second order (Φ, ρ)-pseudounicave at y

(iii)Φ(x, u; (ξ, ρ)) + uT ξ≥0, for ξ ∈ Rn,and

(iv) Φ(v, y; (ζ, ρ)) + yT ζ≥0, for ζ ∈ Rn, then

H(x, y,w, p)/≤ J(u, v, a, q).

Proof

With the help of
∑r

i=1 λi[∇x fi(u, v) + Eiai + ∇xx fi(u, v)qi)], we have

Φ(x, u; (
∑r

i=1 λi[∇x fi(u, v) + Eiai + ∇xx fi(u, v)qi)], ρi))

+uT ∑p
i=1 λi{∇u fi(u, v) + wi + ∇µgi(u, v, µi)}≥0

(By hypothesis (iii) and (3.7), also by the second order(Φ, ρ)-pseudounivexity of
∑r

i=1 λi[ fi(., v) + (.)T Eiai] at u, with
property of band ψ, provides
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r∑
i=1

λi[ fi(x, v) + (x)T Eiai] ≥
r∑

i=1

λi( fi(u, v) + uT Eiai −
1
2

qT
i ∇xx fi(u, v)qi) (3.11)

Now, ζ=−∑r
i=1 λi[∇y fi(x, y) −Ciwi + ∇yy fi(x, y)pi)] , we have Φ(v, y; (ζ, ρ)) + yT ζ≥0 (by hypothesis (iv), (3.2) and by the

second order (Φ, ρ) pseudounicavity
∑r

i=1 λi[ fi(x, .) − (.)T Ciwi] at y, with property of band ψ, gives

r∑
i=1

λi[ fi(x, v) − (v)T Ciwi] ≤
r∑

i=1

λi[ fi(x, y) − yT Ciwi −
1
2

pT
i ∇yy fi(x, y)pi] (3.12)

Combining (3.11) and (3.12), we get

r∑
i=1

λi[(x)T Eiai + vT Ciwi] ≥

r∑
i=1

λi[{( fi(u, v) + uT Eiai −
1
2

qT
i ∇xx fi(u, v)qi)} − { fi(x, y) + yT Ciwi +

1
2

pT
i ∇yy fi(x, y)pi}]

Applying Schwartz inequality, (3.3) and (3.8), we get

∑r
i=1 λi{ fi(x, y) + (xT Eix)

1
2 − yT Ciwi − 1

2 pT
i ∇yy fi(x, y)pi}

≥∑r
i=1 λi{( fi(u, v) − (vT Civ)

1
2 + uT Eia − 1

2 qT
i ∇xx fi(u, v)qi)}

Hence

H(x, y,w, p) � J(u, v, a, q).

Theorem 3.2 (Strong duality)

Let f be thrice differentiable on Rn × Rn and (x′, y′, λ′,w′, p′) be a weak efficient solution for (MP), and λ = λ′, assume
that

1. ∇yy fiis nonsingular for all i = 1, 2, ., ., r;

2. the matrix
∑r

i=1 λ
′
i(∇yy fi p′i)y is positive or negative definite, and ;

3. the set [∇y f1 −C1w′1 + ∇yy f1 p′1,∇y f2 −C2w′2 + ∇yy f2 p′2, ., .,∇y fr −Crw′r + ∇yy fr p′r}, are linearly independent;

where fi = fi(x′, y′), i = 1, 2, ., ., r. Then (x′, y′, λ′, a′, q′ = 0) is a feasible solution of (MD), bi(x′, y′, u′, v′) > 0, i =
1, 2, ., ., r, and the two objectives have the same values. Also, if the hypothesis of Theorem 3.1 are satisfied for all feasible
solutions of (MP) and (MD), then (x′, y′, λ′, a′, q′ = 0) is an efficient solution for (MD).

Proof

Since (x′, y′, λ′,w′, p′)is a weak efficient solution of (MP), by Fritz-John condition [7],there exist α ∈ Rr,β ∈ Rn,γ ∈ R, v ∈
Rrand ξ ∈ Rnsuch that

r∑
i=1

αi[∇x fi + Eia′i −
1
2

(∇yy fi p′i)xp′i] +
r∑

i=1

λ′i[∇yx fi + (∇yy fi p′i)x](β − γy′) − ξ = 0 (3.13)

r∑
i=1

αi[∇y fi −Ciw′i +
1
2

(∇yy fi p′i)y p′i] +
r∑

i=1

λ′i[∇yy fi + (∇yy fi p′i)y](β − γy′)

−γ
r∑

i=1

λ′i[∇y fi −Ciw′i + (∇yy fi p′i)] = 0 (3.14)

(β − γy′)T [∇y fi −Ciw′i + ∇yy fi p′i] − δi = 0, i = 1, 2, ., ., r (3.15)

αiCiy′ + (β − γy′)Tλ′iCi = 2viCiw′i , i = 1, 2, ., ., r (3.16)

[(β − γy′)λ′i − αi p′i]
T∇yy fi = 0, i = 1, 2, ., ., r (3.17)
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x′T Eia′i = (x′T Eix′i )
1
2 , i = 1, 2, ., ., r (3.18)

βT
r∑

i=1

λ′i[∇y fi −Ciw′i + ∇yy fi p′i] = 0 (3.19)

γy′
r∑

i=1

λ′i[∇y fi −Ciw′i + ∇yy fi p′i] = 0 (3.20)

vi(w
′T
i Ciw′i − 1) = 0, i = 1, 2, ., ., r (3.21)

δTλ′ = 0 (3.22)

x′T ξ = 0 (3.23)

a
′T
i Eia′i≤ 1, i = 1, 2, ., ., r (3.24)

(α, β, γ, v, δ, ξ)≥ 0 (3.25)

(α, β, γ, v, δ, ξ) , 0 (3.26)

Since λ′ > 0 and δ≥0, (3.22) implies δ = 0. Consequently, (3.15) gives

(β − γy′)T [∇y fi −Ciw′i + ∇yy fi p′i] = 0 (3.27)

Since ∇yy fiis nonsingular for i = 1, 2, ., ., r, from (3.17), it follows that

(β − γy′)λ′i = αi p′i , i = 1, 2, ., ., r. (3.28)

from (3.14), we get
∑r

i=1(αi − γλ′i)(∇y fi −Ciw′i)+
∑r

i=1 λ
′
i∇yy fi(β − γy′ − γp′i)

+

r∑
i=1

(∇yy fi p′i)y[(β − γy′)λ′i −
1
2
αi p′i] = 0

using (3.28), we get

r∑
i=1

(αi − γλ′i)(∇y fi −Ciw′i + ∇yy fi p′i) +
1
2

r∑
i=1

λ′i(∇yy fi p′i)y(β − γy′) = 0 (3.29)

Premultiplying (3.29) by (β − γy′)T and using (3.27), we get

(β − γy′)T ∑r
i=1 λ

′
i(∇yy fi p′i)y(β − γy′) = 0, by hypothesis (ii) implies

β = γy′ (3.30)

Therefore, from (3.29), we get
∑r

i=1(αi − γλ′i)(∇y fi −Ciw′i + ∇yy fi p′i) = 0, which by hypothesis (iii) gives

αi = γλ
′
i , i = 1, 2, ., ., r (3.31)

If γ = 0, then αi = 0, 1 = 1, 2, ., ., rand from (3.30),β = 0. Also from (3.13) and (3.16), we get,ξi = 0, vi = 0, i =
1, 2, ., ., r. Thus (α, β, γ, v, δ, ξ) = 0, a contradiction to (3.26). Hence γ > 0, since λ′i > 0, i = 1, 2, ., ., r, (3.31) implies
αi > 0, 1 = 1, 2, ., ., r. Using (3.30) in (3.28),αi p′i = 0, i = 1, 2, ., ., r, hence p′i = 0, i = 1, 2, ., ., r. Using (3.30) and
p′i = 0, i = 1, 2, ., ., rin (3.13), it gives

∑r
i=1 αi[∇x fi + Eia′i] = ξ, which by (3.31) gives

r∑
i=1

λ′i[∇x fi + Eia′i] =
ξ

γ
≥ 0 (3.32)
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x′T
r∑

i=1

λ′i[∇x fi + Eia′i] = x′T
ξ

γ
= 0 (3.33)

Also, from (3.30), we get

y′ =
β

γ
≥ 0 (3.34)

Hence from (3.24) and (3.32-3.34), (x′, y′, λ′, a′, q′ = 0)is feasible for (MD).

Let 2 vi
αi
= t. Then t ≥ 0and from (3.16) and (3.30)

Ciy′ = tCiw′i (3.35)

Which is the condition in the Schwartz inequality. Therefore

y
′T Ciw′i = (y

′T Ciy′)
1
2 (w

′T
i Ciw′i)

1
2 .

In case, vi > 0, (3.21) gives w
′T
i Ciw′i = 1 and so y′T Ciw′i = (y′T Ciy′)

1
2 . In casevi = 0, (3.35) gives Ciy′ = 0and so

y′T Ciw′i = (y′T Ciy′)
1
2 = 0.

Thus in either case
y′T Ciw′i = (y′T Ciy′)

1
2 (3.36)

.

Hence Hi(x′, y′,w′, p′ = 0) = fi(x′, y′) + (x′T Eix′)
1
2 − y′T Ciwi

= fi(x′, y′) − (y′T Ciy′)
1
2 + x′T Eia′i = Ji(x′, y′, a′, q′ = 0) (using (3.18) and (3.36)).

Now follows from Theorem 3.1 that (x′, y′, λ′, a′, q′ = 0)is an efficient solution for (MD).

A converse duality theorem may be merely stated as its proof would run analogously to that of Theorem 3.2.

Theorem 3.3 (Converse duality)

Let f be thrice differentiable on Rn ×Rnand (u′, v′, λ′, a′, q′)be a weak efficient solution for (MD), and λ = λ′fixed in (MP)
.Assume that

1. ∇xx fiis nonsingular for all i = 1, 2, ., ., r;

2. the matrix
∑r

i=1 λ
′
i(∇xx fiq′i)x is positive or negative definite, and ;

3. the set [∇x f1 + E1a′1 + ∇xx f1q′1,∇x f2 + E2a′2 + ∇xx f2q′12, ., .,∇x fr + Era′r + ∇xx frq′r}, are linearly independent;

where fi = fi(u′, v′), i = 1, 2, ., ., r. Then (u′, v′, λ′,w′, p′ = 0)is a feasible solution of (MP), bi(x′, y′, u′, v′) > 0, i =
1, 2, ., ., r,and the two objectives have the same values. Also, if the hypothesis of Theorem 3.1 are satisfied for all feasible
solutions of (MP) and (MD), then (u′, v′, λ′,w′, p′ = 0) is an efficient solution for (MP).

4. Special cases

(i) If b = 1, ψ ≡ I,Ei = Ci = 0, i = 1, 2, ., ., r, and Φ(x, u; (∇ f (u), ρ)) = F(x, u;∇ f (u))for ρ = 0 then (MP) and (MD)
reduce to the second order multiobjective symmetric dual programstudied by Suneja et al. with omission of non-negativity
constraints from (MP) and (MD). If in addition p = q = 0, and r = 1, then we get the first order symmetric dual programs
of Chandra et al. .

(ii) If b = 1, ψ ≡ I,we set p = q = 0, and Φ(x, u; (∇ f (u), ρ)) = F(x, u;∇ f (u))for ρ = 0 in (MP) and (MD), then we obtain
a pair of first order symmetric dual nondifferentiable multiobjective programs considered by Mond et al.

(iii) If we set, b = 1, ψ ≡ I,Φ(x, u; (∇ f (u), ρ)) = F(x, u;∇ f (u)) for ρ = 0 in (MP) and (MD), then we obtain a pair of
second order symmetric dual nondifferentiable multiobjective programs considered by Ahmad et al..
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