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Abstract

The alternating directions method for a kind of structured variational inequality problem (He, 2001) is an attractive
method for structured monotone variational inequality problems. In each iteration, the subproblems are convex
quadratic minimization problem with simple constraints and a well-conditioned system of nonlinear equations that
can be efficiently solved using classical methods. Researchers have recently described the convergence rate of
projection and contraction methods for variational inequality problems and the original ADM and its linearized
variant. Motivated and inspired by research into the convergence rate of these methods, we provide a simple
proof to show the O(1/k) convergence rate of alternating directions methods for structured monotone variational
inequality problems (He, 2001).

Keywords: Structured variational inequality problems, monotone operators, alternating directions methods, con-
vex quadratic minimization problems, convergence rate

1. Introduction

Let f be a continuous and monotone mapping from IRn onto itself and let K ⊂ IRm be a nonempty closed convex
cone with vertex at the origin. Consider the variational inequality problem VI(S , f ) (He, 2001): find x∗ ∈ S , such
that

VI(S , f ) (x − x∗)T f (x∗) ≥ 0, ∀x ∈ S , (1)

where A ∈ IRm×n, b ∈ IRm, S = {x ∈ IRn|Ax − b ∈ K}.
In fact, by attaching a Lagrange multiplier vector y ∈ Y to the constraint Ax − b ∈ K, we can obtain the structured
variational inequality VI(Ω, F) (He, 2001): find u∗ ∈ Ω such that

VI(Ω, F) (u − u∗)T F(u∗) ≥ 0, ∀u ∈ Ω, (2)

where

u =
(

x
y

)
, F(u) =

(
f (x) − AT y

Ax − b

)
, Ω = IRn × Y,

and Y is a proper subset of IRm.

Throughout we assume that the solution set of VI(Ω, F), denoted byΩ∗, is nonempty. Let ∥ · ∥ denote the Euclidean
norm and PK(y) the projection of y to the closed convex set K, that is,

PK(y) = arg min{∥ y − x ∥ |x ∈ K}, ∀y ∈ IRn.

69



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 7, No. 2; 2015

The alternating directions method (ADM) is a classical method for solving variational inequality problems first
introduced in the mid-1970s by Gabay and Mercier, and Glowinski and Marrocco, although similar ideas emerged
in the mid-1950s (Douglas & Rachford, 1956, Peaceman & Rachford 1955). Much development of the ADM
has been carried out in the areas of variational inequality problems and convex programming to yield simple
single-processor algorithms (Boyd , Parikh, Chu, Peleato & Eckstein, 2010, Eckstein& Bertsekas, 1992, Gabay &
Mercier, 1976, Gabay, 1983, Glowinski, 1984, He, 2001, He, Liao, Han & Yang, 2002, Peaceman & Rachford,
1955, Tao & Yuan, 2011) .

To solve the structured variational inequality VI(Ω, F), the ADM of Gabay and Mercier produces the new iterate
uk+1 = (xk+1, yk+1)T from a given uk = (xk, yk)T ∈ Ω via the following steps (Gabay & Mercier, 1976, Gabay,
1983):

Step 1. Find xk+1 such that

(x′ − xk+1)T { f (xk+1) − AT PY [yk − (Axk+1 − b)]} ≥ 0,∀x′ ∈ IRn. (3)

Step 2. The multipliers yk+1 are updated according to

yk+1 = PY [yk − (Axk+1 − b)]. (4)

Subproblem (3) can solve a variational inequality problem or a nonlinear equation that includes f (xk+1) and PY [yk−
(Axk+1 − b)]. Moreover, subproblem (4) is also a variational inequality problem. Naturally, it is difficult to solve
the structured variational inequality VI(Ω, F) using the original ADM.

He recently provided a modified ADM for VI(Ω, F) that only solves a convex quadratic minimization problem
with simple constraints and a system of strongly monotonic nonlinear equations in each iteration (He, 2001). This
approach is obviously easier than solving (3) and (4) in many situations. Subsequently, we review the He’s ADM
and related results (He, 2001).

The He’s ADM (He, 2001):
Given γ ∈ (0, 2), and x0 ∈ IRn.
Step 1. Compute yk such that

(y′ − y)T {(Axk − b) − A[ f (xk) − AT y]} ≥ 0,∀y′ ∈ Y. (5)

Step 2. If ∥ f (xk) − AT yk∥ > ϵ, update xk+1 according to

xk+1 + f (xk+1) = xk + f (xk) − γ[ f (xk) − AT yk]. (6)

Subproblem (5) is a symmetric linear variational inequality and it can be solved according to the convex quadratic
minimization problem

min{1
2

yT My + qT y|y ∈ Y},

where M = AAT and q = (Axk − b) − A f (xk). In particular, if Y = IRm
+ , (5) is equivalent to the symmetric linear

complementarity problem
y ≥ 0, AAT y + q ≥ 0, yT (AAT y + q) = 0,

which can be solved by the pivotal Lemke method (Lemke, 1965). Numerical experiments showed that (5) can be
solved within a finite number of steps (He, 2001). Moreover, (6) can be solved by some triangular decomposition
to I + ∇ f (x) while solving x + f (x) − ck = 0 using Newton methods (Eckstein& Bertsekas, 1992), where

ck = xk + f (xk) − γ[ f (xk) − AT yk].

In fact, f (x) is a monotone operator and then x + f (x) is a strictly monotone operator, so (6) is a well-conditioned
system of nonlinear equations. Naturally, the subproblems in the He’s ADM are easier than those in the classical
ADM.

Nesterov introduced a method for solving a convex programming problem and provided a simple proof of the
O(1/k2) convergence rate of the method (Nesterov, 1983), which is derived from the Nemirovski non-relaxational
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minimizing sequence. Nemirovski subsequently showed that the extragradient method has the O(1/t) convergence
rate for variational inequalities with Lipschitz continuous monotone operators (Nemirovski, 2005). He recently
described the convergence rate of projection and contraction methods under a unified conceptual framework (He,
2011). It is worth noting that the O(1/t) convergence rate of the ADM is given in the literature (He, 2012, Tao &
Yuan, 2011). Much research has been devoted to this topic (Han & Yuan, 2014, Li, 2014, Shen, Chen & Cai, 2013,
Jia, Guo & Cai, 2013, Yuan, 2012). Motivated and inspired by the encouraging progress for the convergence rate,
we consider the O(1/k) convergence rate of He’s ADM.

The remainder of the paper is organized as follows. Section 2 presents some basic definitions and fundamental
lemmas that are useful for the convergence rate analysis. In Section 3, the convergence rate of He’s ADM (He,
2001) is proved. Finally, conclusions are drawn in Section 4.

2. Preliminaries

In this section, we provide some important lemmas for subsequent analysis. The proofs are widely available in the
literature (Facchinei & Pang, 2003, He, 2001).

Definition 1 Let f be a continuous mapping from IRn onto itself. Then f (x) is a monotone operator if and only if (x−
y)T [ f (x) − f (y)] ≥ 0,∀x, y ∈ IRn.

In fact, if f (x) is a monotone operator, then

F(u) =
(

f (x) − AT y
Ax − b

)
is a monotone operator.

According to the relationship between a variational inequality and a fixed point problem, we can easily obtain the
following lemma.

Lemma 1 When Ω = IRn × Y is a closed and convex set, u∗ is the solution of VI(F,Ω) if and only if

u∗ = PΩ[u∗ − F(u∗)].

In fact, the solution of structured variational inequality VI(F,Ω)(2) is the zero point of

e(u) : = u − PΩ[u − F(u)] =
(

f (x) − AT y
y − PY [y − (Ax − b)]

)
.

Subsequently, we recall some previous results (He, 2001) for proof of the convergence rate.

Lemma 2 (He, 2001, Remark 1) For a given uk = (xk, yk)T ∈ IRn ×Y, let {uk} be produced by the He’s ADM. Then
we have

1
1 + ∥A∥∥e(uk)∥ ≤ ∥ f (xk) − AT yk∥ ≤ ∥e(uk)∥,∀ integer k ≥ 0.

By Lemma , taking ∥ f (xk) − AT yk∥ ≤ ϵ as a stopping criterion is reasonable.

Lemma 3 (He, 2001, Proposition 2) For a given u∗ = (x∗, y∗)T ∈ Ω∗, 0 < γ < 2, let {uk} be produced by the He’s
ADM. Then we have

∥(xk+1 − x∗) + [ f (xk+1) − f (x∗)]∥2 ≤ ∥(xk − x∗) + [ f (xk) − f (x∗)]∥2

−γ(2 − γ)∥ f (xk) − AT yk∥2.

The most important properties of ∥ f (xk) − AT yk∥2 are summarized in the following. For integrity of the proof, we
provide a proof of the following lemma. Moreover, for convenience, we denote xk, yk, xk+1, and yk+1 by x, y, x̃, and
ỹ, respectively.
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Lemma 4 (He, 2001, Proposition 4) Let u = (x, y)T be the sequence produced by the He’s ADM, 0 < γ < 2. Then
we have

∥ f (x̃) − AT ỹ∥2 ≤ ∥ f (x) − AT y∥2 − 2 − γ
γ
∥[ f (x̃) − AT ỹ] − [ f (x) − AT y]∥2.

Proof. By a series of computations, we can obtain

∥ f (x̃) − AT ỹ∥2 = ∥( f (x) − AT y) + [( f (x̃) − AT ỹ) − ( f (x) − AT y)]∥2

= ∥ f (x) − AT y∥2 + ∥( f (x̃) − AT ỹ) − ( f (x) − AT y)∥2

+2( f (x) − AT y)T [( f (x̃) − AT ỹ) − ( f (x) − AT y)].

Hence, we need only to show that

γ( f (x) − AT y)T [( f (x) − AT y) − ( f (x̃) − AT ỹ)] ≥ ∥( f (x) − AT y) − ( f (x̃) − AT ỹ)∥2.

According to (5), we have

(ỹ − y)T [(Ax − b) − A( f (x) − AT y)] ≥ 0 (7)

and

(y − ỹ)T [(Ax̃ − b) − A( f (x̃) − AT ỹ)] ≥ 0. (8)

Adding (7) and (8), we get

(ỹ − y)T {A(x − x̃) − A[( f (x) − AT y) − ( f (x̃) − AT ỹ)]} ≥ 0,

i.e.,
(AT ỹ − AT y)T (x − x̃) + (AT y − AT ỹ)T [ f (x) − AT y − ( f (x̃) − AT ỹ)] ≥ 0. (9)

Note that (AT ỹ − AT y)T (x − x̃) can be changed to

(AT ỹ − AT y)T (x − x̃)
=

(
( f (x) − AT y) − ( f (x̃) − AT ỹ) + ( f (x̃) − f (x))

)T (x − x̃)
= (x − x̃)T [( f (x) − AT y) − ( f (x̃) − AT ỹ)] + ( f (x̃) − f (x))T (x − x̃). (10)

Furthermore, (AT y − AT ỹ)T [ f (x) − AT y − ( f (x̃) − AT ỹ)] can be changed to

(AT y − AT ỹ)T [ f (x) − AT y − ( f (x̃) − AT ỹ)]
= [ f (x) − f (x̃)]T [( f (x) − AT y) − ( f (x̃) − AT ỹ)]
−∥( f (x) − AT y) − ( f (x̃) − AT ỹ)∥2. (11)

Since f is monotone, we have
[ f (x) − f (x̃)]T (x − x̃) ≤ 0. (12)

According to (9), (10), (11) and (12), we obtain

(
[(x − x̃) + ( f (x) − f (x̃))]T [ f (x) − AT y − ( f (x̃) − AT ỹ)]
−∥( f (x) − AT y) − ( f (x̃) − AT ỹ)∥2)
≥ (AT ỹ − AT y)T (x − x̃) + (AT y − AT ỹ)T [ f (x) − AT y − ( f (x̃) − AT ỹ)]
≥ 0.
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With (x − x̃) + ( f (x) − f (x̃)) = γ( f (x) − AT y), we get

γ( f (x) − AT y)T [ f (x) − AT y − ( f (x̃) − AT ỹ)] ≥ ∥ f (x) − AT y − ( f (x̃) − AT ỹ)∥2.

Hence the lemma is proved.

3. Convergence Rate

In this section, we analyze the O(1/k) convergence rate of He’s ADM.

Theorem 1 Let {uk} be produced by the He’s ADM, 0 < γ < 2. Then for all integer k ≥ 0, we have

∥e(uk)∥2 ≤ 1
(k + 1)γ(2 − γ) (1 + ∥A∥)2∥(x0 − x∗) + [ f (x0) − f (x∗)]∥2.

Proof. According to Lemma 2, we have

(k + 1)γ(2 − γ)∥e(uk)∥2 ≤ (k + 1)γ(2 − γ)(1 + ∥A∥)2∥ f (xk) − AT yk∥2.

Applying Lemma 4, we obtain

∥ f (xk+1) − AT yk+1∥2 ≤ ∥ f (xk) − AT yk∥2,∀ integer k ≥ 0,

so it immediately follows that

(k + 1)γ(2 − γ)(1 + ∥A∥)2∥ f (xk) − AT yk∥2 ≤ γ(2 − γ)(1 + ∥A∥)2
k∑

t=0

∥ f (xt) − AT yt∥2.

Furthermore, by Lemma 3 we can obtain

γ(2 − γ)
k∑

t=0

∥ f (xt) − AT yt∥2 ≤ γ(2 − γ)
∞∑

t=0

∥ f (xt) − AT yt∥2

≤ ∥(x0 − x∗) + [ f (x0) − f (x∗)]∥2.

Thus, we have

∥e(uk)∥2 ≤ 1
(k + 1)γ(2 − γ) (1 + ∥A∥)2∥(x0 − x∗) + [ f (x0) − f (x∗)]∥2, 0 < γ < 2.

In fact, when we take ∥e(uk)∥2 ≤ ϵ or ∥ f (xk)− AT yk∥2 ≤ ϵ as the stopping criterion, by Lemma 1 and Lemma 2 and
Theorem 1, we obtain the O(1/k) convergence rate of He’s ADM.

4. Conclusions

We proved the O(1/k) convergence rate of He’s ADM. This result can be considered an improvement and refine-
ment of previous results (He, 2001).
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