The Cyclic Groups via Bezout Matrices

Ömür Deveci¹, Yeşim Aküzüm¹, Erdal Karaduman² & Özgür Erdağ¹
¹Kafkas University, Department of Mathematics Faculty of Science and Letters, 36100 Kars, Turkey
²Department of Mathematics, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
Correspondence: Ömür Deveci, Kafkas University, Department of Mathematics Faculty of Science and Letters, 36100 Kars, Turkey. E-mail: odevci36@hotmail.com

Received: February 25, 2015 Accepted: March 11, 2015 Online Published: March 22, 2015
doi:10.5539/jmr.v7n2p34 URL: http://dx.doi.org/10.5539/jmr.v7n2p34

Abstract
In this paper, we define the Bezout matrices by the aid of the characteristic polynomials of the k-step Fibonacci, the generalized order-k Pell and the generalized order-k Jacobsthal sequences then we consider the multiplicative orders of the Bezout matrices when read modulo m. Consequently, we obtain the rules for the order of the cyclic groups by reducing the Bezout matrices modulo m.

Keywords: Bezout Matrix, cyclic group, order

2010 Mathematics Subject Classification: 15B36, 15A15, 20H20, 20Kxx,

1. Introduction and Preliminaries

Let D be an integral domain and $P(x), Q(x) \in D[x]$ with $\text{deg}(P(x)) = n$ and $\text{deg}(Q(x)) = m$, we assume $n \geq m$.

$$P(x) = u_n x^n + u_{n-1} x^{n-1} + \cdots + u_1 x + u_0,$$

$$Q(x) = v_m x^m + v_{m-1} x^{m-1} + \cdots + v_1 x + v_0.$$

The Bezout matrix associated to the polynomials $P(x)$ and $Q(x)$ is the symmetric matrix:

$$B_n(P, Q) = \begin{bmatrix} b_{ij} \end{bmatrix}_{n \times n}$$

where the entries b_{ij} are obtained by the identity

$$\frac{P(x)Q(y) - P(y)Q(x)}{x-y} = \sum_{i,j=1}^{n} b_{ij} x^i y^j.$$

It is important to note that the Bezout matrix $B_n(P, Q)$ is in D^{even} and the entries b_{ij} are defined by the formula

$$b_{ij} = \sum_{k=0}^{m_{ij}} u_{i+k} v_{j-k} - u_{i+k} v_{j-k-1}$$

such that $m_{ij} = \min \{i, n+1-j\}$ for each $i, j = 1, 2, \ldots, n$.

For more information on the Bezout matrix, see (Cayley, 1857; Barnett, 1972; Householder, 1970; Sylwester,
The \(k \)-step Fibonacci sequence \(\{ \mathcal{F}^k_n \} \) is defined recursively by the equation

\[
\mathcal{F}^k_{n+k} = \mathcal{F}^k_{n+k-1} + \mathcal{F}^k_{n+k-2} + \cdots + \mathcal{F}^k_n
\]

for \(n \geq 0 \), where \(\mathcal{F}^k_0 = \mathcal{F}^k_1 = \mathcal{F}^k_{k-2} = 0 \) and \(\mathcal{F}^k_{k-1} = 1 \).

For more information on the \(k \)-step Fibonacci sequence \(\{ \mathcal{F}^k_n \} \), see (Kalman, 1982; Slone).

In (Kilic & Tasci, 2006), Kilic and Tasci defined the generalized order-\(k \) Pell sequence \(\{ \mathcal{P}^k_n \} \) as follows:

For \(n > 0 \),

\[
\mathcal{P}^k_n = 2\mathcal{P}^k_{n-1} + \mathcal{P}^k_{n-2} + \cdots + \mathcal{P}^k_{n-k}
\]

with initial conditions \(\mathcal{P}^k_{n-k} = 1 \) and \(\mathcal{P}^k_{n-2}, \cdots, \mathcal{P}^k_0 = 0 \).

The generalized order-\(k \) Jacobsthal sequence \(\{ \mathcal{J}^k_n \} \) is defined (Yilmaz & Bozkurt, 2009) recursively by the equation

\[
\mathcal{J}^k_n = \mathcal{J}^k_{n-1} + 2\mathcal{J}^k_{n-2} + \cdots + \mathcal{J}^k_{n-k}
\]

for \(n > 0 \), where \(\mathcal{J}^k_{n-1} = 1 \) and \(\mathcal{J}^k_{n-2}, \cdots, \mathcal{J}^k_0 = 0 \).

In (Deveci & Akuzum, 2014; Deveci & Karaduman, 2012; Deveci & Karaduman, in press; Deveci, et al., in press; Lü & Wang, 2007; Ozkan, 2014; Tas, et al., 2014; Tas & Karaduman, 2014), the authors obtained the cyclic groups via some special matrices. In this paper, we define the Bezout matrices by the aid of the characteristic polynomials of the \(k \)-step Fibonacci, the generalized order-\(k \) Pell and the generalized order-\(k \) Jacobsthal sequences. Further, we consider the multiplicative orders of the Bezout matrices according to modulo \(m \) and so we obtain the rules for the orders of the cyclic groups which are produced using the Bezout matrices as generators by reducing their elements according to modulo \(m \).

2. Main Results and Proofs

It is easy to see that the characteristic polynomials of the \(k \)-step Fibonacci, the generalized order-\(k \) Pell and the generalized order-\(k \) Jacobsthal sequences are as follows, respectively:

\[
P^\mathcal{F}_k(x) = x^k - x^{k-1} - \cdots - x - 1,
\]

\[
P^\mathcal{P}_k(x) = x^k - 2x^{k-3} - x^{k-2} - \cdots - x - 1
\]

and

\[
P^\mathcal{J}_k(x) = x^k - x^{k-1} - 2x^{k-2} - x^{k-3} - \cdots - 1.
\]

Then we can write the following Bezout matrices for the polynomials \(P^\mathcal{F}_k(x), P^\mathcal{P}_k(x) \) and \(P^\mathcal{J}_k(x) \).

Definition 2.1. For every positive integer \(k \geq 3 \), the Bezout matrix \(B_k(P^\mathcal{F}_k(x), P^\mathcal{P}_{k-1}(x)) = \left[b^k_{ij} \right]_{i,j \leq k} \) is as follows:
\[
b_{k(\ell)}(i, t, k) = \begin{cases}
0, & i < t < k, \\
2, & i = t < k, \\
1, & (0 < t < i < k): \ (t = 0 \text{ and } i = k), \\
-1, & (t = 0 \text{ and } i < k); \ (t < k \text{ and } i = k).
\end{cases}
\]

That is,
\[
B_{k}(P_{\ell}^{F}(x), P_{k-1}^{F}(x)) = \begin{bmatrix}
-1 \\
-1 \\
\vdots \\
-1
\end{bmatrix}
\end{bmatrix}^{T}.
\]

where \(M \) is a square matrix of order \(k-1 \) such that
\[
M = \begin{bmatrix}
0 & \cdots & 0 & 2 \\
0 & \cdots & 0 & 2 & 1 \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
0 & 2 & 1 & \cdots & 1 \\
2 & 1 & 1 & \cdots & 1
\end{bmatrix}
\]
Let \(k \geq 5 \), then the Bezout matrices \(\mathbf{B}_k\left(P^p_k(x), P^p_{k-1}(x)\right) = \left[b_{ij}\right]_{k \times k} \) are defined by the following form:

\[
\begin{cases}
0, & 1 \leq i < t < k - 1, \\
-1, & (1 \leq i = t < k - 1); (1 \leq i < k - 1 \text{ and } t = -1); (i = k \text{ and } 1 \leq t < k - 1), \\
2, & (2 \leq i < k - 1 \text{ and } t = i - 1 \text{ or } t = 0); (i = k - 1 \text{ and } 2 \leq t \leq k - 2), \\
-2, & (i = k - 1 \text{ and } t = -1); (i = k \text{ and } t = 0), \\
3, & (i = 1 \text{ and } t = 0); (i = k - 1 \text{ and } t = k - 2), \\
4, & i = k - 1 \text{ and } t = 0, \\
1, & \text{otherwise}.
\end{cases}
\]

That is,

\[
\begin{bmatrix}
3 & -1 \\
2 & -1 \\
\vdots & \vdots \\
2 & -1 \\
3 & 2 & \cdots & 2 & 4 & -2 \\
-1 & -1 & \cdots & -1 & -2 & \mathbf{1}_{(k-2)(k-2)}
\end{bmatrix}
\]

for \(k \geq 5 \). Where \(M \) is a square matrix of order \(k - 2 \) such that

\[
\begin{bmatrix}
0 & \cdots & 0 & 0 & -1 \\
0 & \cdots & 0 & -1 & 2 \\
0 & \cdots & -1 & 2 & 1 \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
0 & -1 & 2 & 1 & \cdots & 1 \\
-1 & 2 & 1 & \cdots & 1 \\
\end{bmatrix}_{(k-2)(k-2)}
\]

Example.

\[
\begin{bmatrix}
0 & 0 & 0 & -1 & 3 & -1 \\
0 & 0 & -1 & 2 & 2 & -1 \\
0 & -1 & 2 & 1 & 2 & -1 \\
-1 & 2 & 1 & 1 & 2 & -1 \\
3 & 2 & 2 & 2 & 4 & -2 \\
-1 & -1 & -1 & -1 & -2 & 1 \\
\end{bmatrix}
\]

We easily derive that

\[
\det \mathbf{B}_k\left(P^p_k(x), P^p_{k-1}(x)\right) = \det \mathbf{B}_k\left(P^p_k(x), P^p_{k-1}(x)\right) = \begin{cases}
-1, & \text{if } k \equiv 0, 3 \mod 4, \\
1, & \text{otherwise},
\end{cases}
\]

for \(k \geq 3 \).

Definition 2.3. For every positive integer \(k \geq 3 \), the Bezout matrices \(\mathbf{B}_k\left(P^p_k(x), P^p_{k-1}(x)\right) = \left[b_{ij}\right]_{k \times k} \) are as follows:
If \(k = 3 \), the Bezout matrix \(B_3 \left(P_3^t(x), P_3^r(x) \right) \) is
\[
\begin{bmatrix}
3 & 3 & -2 \\
3 & 1 & -1 \\
-2 & -1 & 1
\end{bmatrix}
\]

If \(k = 4 \), the Bezout matrix \(B_4 \left(P_4^t(x), P_4^r(x) \right) \) is
\[
\begin{bmatrix}
0 & 3 & 3 & -2 \\
3 & 6 & 1 & -2 \\
3 & 1 & 1 & -1 \\
-2 & -2 & -1 & 1
\end{bmatrix}
\]

Let \(k \geq 5 \), then the Bezout matrices \(B_k \left(P_k^t(x), P_k^r(x) \right) = \left[b_{ij} \right]_{k \times k} \) are defined by the following form:

\[
b_{i(k-1)+1} = \begin{cases}
0, & \text{if } 1 \leq i < t < k - 1, \\
3, & \text{if } (1 \leq i = t < k - 1); (i = k - 1 \text{ and } t = k - 2); (i = 1 \text{ and } t = 0), \\
6, & \text{if } 2 \leq i < k - 1 \text{ and } t = i - 1, \\
1, & \text{if } (2 \leq i < k - 1 \text{ and } t = i - 1 \text{ or } t = 0); (i = k \text{ and } t = -1), \\
-1, & \text{if } (i = k - 1 \text{ and } t = -1); (i = k \text{ and } t = 0), \\
-2, & \text{if } (1 \leq i < k - 1 \text{ and } t = -1); (i = k \text{ and } 1 \leq t < k - 1), \\
4, & \text{otherwise.}
\end{cases}
\]

That is,
\[
B_k \left(P_k^t(x), P_k^r(x) \right) = \begin{bmatrix} 3 & -2 \\ 1 & -2 \\ \vdots & \vdots \\ 1 & -2 \\ 3 & 1 & \cdots & 1 & 1 & -1 \\ -2 & -2 & \cdots & -2 & -1 & 1 \end{bmatrix}_{k \times k}
\]

for \(k \geq 5 \). Where \(M \) is a square matrix of order \(k - 2 \) such that
\[
M = \begin{bmatrix}
0 & \cdots & 0 & 0 & 3 \\
0 & \cdots & 0 & 0 & 3 & 6 \\
0 & \cdots & 0 & 3 & 6 & 4 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 3 & 6 & 4 & \cdots & 4 \\
3 & 6 & 4 & \cdots & 4 \\
\end{bmatrix}_{(k - 2) \times (k - 2)}
\]

For given a matrix \(A = \left[a_{ij} \right] \) with \(a_{ij} \)'s being integers, \(A \pmod{m} \) means that every entries of \(A \) are reduced modulo \(m \), that is, \(A \pmod{m} = \left(a_{ij} \pmod{m} \right) \). Let \(\langle A \rangle_n = \left\{ (A)^n \pmod{m} \mid n \geq 0 \right\} \). If
\((\det A, m) = 1\). \(\langle A \rangle_m\) is a cyclic group. We denote the order of the set \(\langle A \rangle_m\) by \(\|A\|_m\).

Since \(\det B_k \left(P^F_k (x), P^F_{k+1} (x) \right) = \det B_k \left(P^P_k (x), P^P_{k+1} (x) \right) = \pm 1\) for \(k \geq 3\), it is clear that the sets \(\langle B_k \left(P^F_k (x), P^F_{k+1} (x) \rangle \rangle \) and \(\langle B_k \left(P^P_k (x), P^P_{k+1} (x) \rangle \rangle \) are cyclic for \(m \geq 2\).

Now we consider the cyclic groups which are generated by the matrices \(B_k \left(P^F_k (x), P^F_{k+1} (x) \right) \), \(B_k \left(P^P_k (x), P^P_{k+1} (x) \right) \) and \(B_k \left(P^P_k (x), P^P_{k+1} (x) \right) \). Suppose that \(\alpha\) is the largest positive integer and \(p\) is a prime such that

\[
(\det M, p) = 1 \quad \text{and} \quad \|M\|_p = \|M\|_{p^\alpha}.
\]

Then \(\|M\|_{p^\lambda} = p^{\lambda - \alpha} \cdot \|M\|_p\) for every \(\lambda \geq \alpha\).

Proof. Let us consider the cyclic group \(\langle B_k \left(P^F_k (x), P^F_{k+1} (x) \rangle \rangle \) for \(k \geq 3\) and \(m \geq 2\). Suppose that \(a\) is a positive integer and \(\langle B_k \left(P^F_k (x), P^F_{k+1} (x) \rangle \rangle\) is denoted by \(O(m)\). If

\[
\left(B_k \left(P^F_k (x), P^F_{k+1} (x) \right) \right)^{O(p^\alpha)} = I \left(\text{mod } p^{O(p^\alpha)} \right),
\]

then \(\left(B_k \left(P^F_k (x), P^F_{k+1} (x) \right) \right)^{O(p^\alpha)} = I \left(\text{mod } p^a \right)\) where \(I\) is the \(k \times k\) identity matrix. Thus we obtain that \(O(p^a)\) divides \(O(p^{a+1})\). Also, writing

\[
\left(B_k \left(P^F_k (x), P^F_{k+1} (x) \right) \right)^{O(p^\alpha)} = I + b_{(a)} \cdot p^a,
\]

by the binomial theorem, we obtain

\[
\left(B_k \left(P^F_k (x), P^F_{k+1} (x) \right) \right)^{O(p^\alpha)} = I + \sum_{i=0}^{p} \binom{p}{i} b_{(a)} \cdot p^a = I \left(\text{mod } p^{a+1} \right),
\]

which yields that \(O(p^{a+1})\) divides \(O(p^a) \cdot p\). Thus, \(O(p^{a+1}) = O(p^a)\) or \(O(p^{a+1}) = O(p^a) \cdot p\). It is clear that \(O(p^{a+1}) = O(p^a) \cdot p\) holds if and only if there is a \(b_{(a)}\) which is not divisible by \(p\). Since \(\alpha\) is the largest positive integer such that \(O(p) = O(p^a)\), \(O(p^a) \neq O(p^{a+1})\). There is an \(b_{(a+1)}\) which is not divisible by \(p\). So we get that \(O(p^{a+1}) \neq O(p^{a+2})\). The proof is completed by induction on \(\alpha\).

The proofs for the cyclic groups \(\langle B_k \left(P^F_k (x), P^F_{k+1} (x) \rangle \rangle \) and \(\langle B_k \left(P^P_k (x), P^P_{k+1} (x) \rangle \rangle \) are similar to the above and are omitted.

Example. \(\left| \langle B_5 \left(P^F_5 (x), P^F_4 (x) \rangle \rangle \right| = 48 \) and so \(\left| \langle B_5 \left(P^F_5 (x), P^F_4 (x) \rangle \rangle \right| = 1936973136 = 7^9 \cdot 48.\)

39
ii. \[\| B_s (P^e (x), P^e (x)) \|_{11} = 12 \] and so \[\| B_s (P^e (x), P^e (x)) \|_{11} = 73390908538097455492 = 11^{19} \cdot 12. \]

iii. \[\| B_s (P^e (x), P^e (x)) \|_5 = 104 \] and so \[\| B_s (P^e (x), P^e (x)) \|_5 = 634765625000 = 5^{14} \cdot 104. \]

Theorem 2.2. Let \(G_{n} \) be any of the cyclic groups \(\left\{ B_s (P^e (x), P^e (x), P^e (x)) \right\}_{m} \neq \left\{ B_s (P^e (x), P^e (x), P^e (x)) \right\}_{m} \) and \(\left\{ B_s (P^e (x), P^e (x)) \right\}_{m} \) and let \(m = \prod_{i=1}^{t} p_i^{e} \), \(t \geq 1 \) where \(p_i \)'s are distinct primes, then

\[|G_{n}| = \text{lcm} \left[G_{p_1^e}, G_{p_2^e}, \ldots, G_{p_t^e} \right]. \]

Proof. Let us consider the cyclic group \(B_s (P^e (x), P^e (x)) \), then \(2 \mid m \). Let \(\left\| B_s (P^e (x), P^e (x)) \right\|_{\mathbb{D}} = u \)

for \(1 \leq i \leq t \) and let \(\left\| B_s (P^e (x), P^e (x)) \right\|_{\mathbb{D}} = u \). Then we have

\[
\text{the entry } (i, j) \text{ of } \left\{ B_s (P^e (x), P^e (x)) \right\}^u = \begin{cases} p_i^{e} \epsilon_{ij}, & i > j, \\ p_i^{e} \epsilon_{ij} + 1, & i = j, \\ p_i^{e} \epsilon_{ij}, & i < j, \end{cases}
\]

and

\[
\text{the entry } (i, j) \text{ of } \left\{ B_s (P^e (x), P^e (x)) \right\}^u = \begin{cases} m \epsilon_{ij}, & i > j, \\ m \epsilon_{ij} + 1, & i = j, \\ m \epsilon_{ij}, & i < j, \end{cases}
\]

where \(\epsilon_{ij} \) and \(\epsilon_{ij}^e \) are integers for \(0 \leq i, j \leq k \). Since \(m = c \cdot p_n^e \) for \(1 \leq n \leq t \), \(u \) is of the form \(m = c \cdot u_n \). Thus we conclude that \(u = \text{lcm} [u_1, u_2, \ldots, u_t] \).

The proofs for the cyclic groups \(\left\{ B_s (P^e (x), P^e (x)) \right\}_{m} \) and \(\left\{ B_s (P^e (x), P^e (x)) \right\}_{m} \) are similar to the above and are omitted.

Example i. Since \(\left\| B_s (P^e (x), P^e (x)) \right\|_{\mathbb{D}} = 5^2 \cdot 78 = 1950 \cdot \left\| B_s (P^e (x), P^e (x)) \right\|_{\mathbb{D}} = 1330 \) and \(1375 = 5^1 \cdot 11 \),

\[
\left\| B_s (P^e (x), P^e (x)) \right\|_{\mathbb{D}} = 259350 = \text{lcm} [1950, 1330].
\]

ii. Since \(\left\| B_s (P^e (x), P^e (x)) \right\|_{\mathbb{D}} = 2^4 \cdot 7 = 112 \), \(\left\| B_s (P^e (x), P^e (x)) \right\|_{\mathbb{D}} = 3^1 \cdot 26 = 702 \) and \(2592 = 2^5 \cdot 3^4 \),

\[
\left\| B_s (P^e (x), P^e (x)) \right\|_{\mathbb{D}} = 39312 = \text{lcm} [112, 702].
\]

iii. Since \(\left\| B_s (P^e (x), P^e (x)) \right\|_{\mathbb{D}} = 20 \), \(\left\| B_s (P^e (x), P^e (x)) \right\|_{\mathbb{D}} = 104 \), \(\left\| B_s (P^e (x), P^e (x)) \right\|_{\mathbb{D}} = 114 \) and \(105 = 3 \cdot 5 \cdot 7 \), \(\left\| B_s (P^e (x), P^e (x)) \right\|_{\mathbb{D}} = 29640 = \text{lcm} [20, 104, 114]. \)
3. Conclusion

Let \(M \) be any of the matrices \(B_k\left(P_k^r(x), P_{k+1}^r(x)\right) \), \(B_k\left(P_k^o(x), P_{k+1}^o(x)\right) \) and \(B_k\left(P_k^i(x), P_{k+1}^i(x)\right) \) and let \(p \geq k \) be a prime such that \((\det M, p) = 1\). Then, we obtain that \(\|M\|_p \geq p^{k+1} - p^r \) for \(p \leq 2999 \) and \(0 \leq r \leq k + 1 \).

Open Problem. Is the result above satisfied for every prime \(p \geq k \)?

Acknowledgment

This Project was supported by the Commission for the Scientific Research Projects of Kafkas University. The Project number, 2014-FEF-34.

References

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).