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Abstract

In this paper, we define the Bezout matrices by the aid of the characteristic polynomials of the k-step Fibonacci,
the generalized order-k Pell and the generalized order-k Jacobsthal sequences then we consider the multiplicative
orders of the Bezout matrices when read modulo m. Consequently, we obtain the rules for the order of the cyclic
groups by reducing the Bezout matrices modulo m.
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1. Introduction and Preliminaries

Let D be an integral domain and P(x),Q(x)eD[x] with deg(P(x))=n and deg(Q(x))=m, we assume

n=zm,

P(X)=U,X" +U,_X"" +-+UX+Uy,
Q(X) = VX"V, X" e VXV
The Bezout matrix associated to the polynomials P(x) and Q(x) is the symmetric matrix:

8, (P.Q)=[b],,

where the entries bij are obtained by the identity

POIQI=PIYQ) _ $vpy iy

X=-y =

It is important to note that the Bezout matrix Bn(P,Q) is in D™ and the entries bij are defined by the
formula

m;
= zui+k—lvi—k —UVia
k=1

by

such that m, =min{i,n+1-j} foreach i, j=12:-n.

For more information on the Bezout matrix, see (Cayley, 1857; Barnett, 1972; Householder, 1970; Sylwester,
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1853).
The k-step Fibonacci sequence {Fnk} is defined recursively by the equation

F< =F¢  +F

n+k n+k-1 n+k—-2

4o+ FX
for n>0,where Ff=F‘=F',=0andF/,=1.
For more information on the k-step Fibonacci sequence {Fnk}, see (Kalman, 1982; Slone).

In (Kilic & Tasci, 2006), Kilic and Tasci defined the generalized order-k Pell sequence {Pk} as follows:

n

For n>0,
k k k k
Pn __2Pn—1+Pn—2+'”+Pn—k

with initial conditions P*, =1land P}, -, PX =0.

The generalized order-k Jacobsthal sequence {Jnk} is defined (Yilmaz & Bozkurt, 2009) recursively by the

equation

JE=3K 423 e 3K

for n>0,where Jf, =landJ) ., ---,J¢ =0.

In (Deveci & Akuzum, 2014; Deveci & Karaduman, 2012; Deveci & Karaduman, in press; Deveci, et al., in
press; LU & Wang, 2007; Ozkan, 2014; Tas, et al., 2014; Tas & Karaduman, 2014), the authors obtained the
cyclic groups via some special matrices. In this paper, we define the Bezout matrices by the aid of the
characteristic polynomials of the k-step Fibonacci, the generalized order-k Pell and the generalized order-k
Jacobsthal sequences. Further, we consider the multiplicative orders of the Bezout matrices according to modulo
m and so we obtain the rules for the orders of the cyclic groups which are produced using the Bezout matrices as
generators by reducing their elements according to modulo m.

2. Main Results and Proofs

It is easy to see that the characteristic polynomials of the k-step Fibonacci, the generalized order-k Pell and the
generalized order-k Jacobsthal sequences are as follows, respectively:

R (X)=x=x" = —x-1,
R (X)=x —2x' X% —.—x-1
and
PkJ (X)= Xk _kal_zxkfz _Xk73 _.“_1.

Then we can write the following Bezout matrices for the polynomials R"(x): R (x) and PkJ(x).
Definition 2.1. For every positive integer k >3, the Bezout matrix Bk(PkF(x),PkF_l(x))z[qj]k s as

follows:
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0, i<t<Kk,
2, i=t<k,
Py =1 1 (O<t<i<k); (t=0andi=k),
-1, (t=0andi<k); (t<kandi=k).
That is,
_ e
-1
B, (R (x),R%(x))= M :
-1
-1-1- -11],
where M is a square matrix of order k—1 such that
0 0 2]
0 -0 1
M = BT
1.1
L -1 Jk-1)x(k-1)
Example.
0 0 0 2 -1]
0 0 2 1 -1
B(PF (x).P (x)=| 0 2 1 1 -1|
2 1 1 1 1
-1 -1 -1 -1 1]

Definition 2.2. For every positive integer k >3, the Bezout matrices Bk(PkP(X)’PkFil(X)):[blj}k ,areas

follows:

If k=4, The Bezout matrix B, (P} (x),P; (x)) is

-1 3 -1

-1 2 2 -
3 2 4 2
-1 -1 -2 1
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Let k>5, then the Bezout matrices B, (ka (x), PP, (x)) = [bu_ ]k L are defined by the following form:

0, 1<i<t<k-1,

-1, (I<i=t<k-1);(1<i<k-landt=-1);(i=k and1<t<k-1),
(2<i<k-landt=i-lort=0);(i=k-land 2<t<k-2);
(i=k—landt=-1);(i=k and t =0),
(i=landt=0);(i=k-landt=k-2),

4, i=k—-landt=0,

1,  otherwise.

bi(k—t—l) =172

That is,
_ A
2 -1
M : :
Bk(PkP(x),Pk:(x))z -
3 2... 2 4 -2
-1-1..-1 -2 1]

for k>5.Where M isa square matrix of order k —2 such that

0---0 0 0 -1]
0---0 0 -1 2
0--0 -1 2 1

M = .
0-1 2 1
__1 21 1 d(k=2)x(k-2)
Example.
[ 0 -1 3 -1]
-1 2 2 -1
0 -1 2 1 2 1.
B, (P57 (x),P"(x))=
6(6()5()) -1 2 1 1 2 -1
3 2 2 2 4 2
-1 -1 -1 -1 -2 1]

We easily derive that

-1 if k=0,3mod 4,
detB, (RS (x), R, (x))=detB, (R"(x),R%,(x))= { L otherwise fork >3.

Definition 2.3. For every positive integer k >3, the Bezout matrices B, (PkJ (x), Pk{l(x))z[bij ]k . areas

follows:
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If k=3, The Bezout matrix B, (P, (x),P; (x)) is

3 3 2
3 1 -1
-2 -1 1

If k=4, The Bezout matrix B, (P} (x),P, (x)) is

0 3 3 -2
3 6 1 -2
3 1 1 -1
-2 -2 -1 1

Let k >5, then the Bezout matrices B, (ka (x),P’, (x)) = [bij ]k _are defined by the following form:

0 1<i<t<k-1,

3, (l<i=t<k-1);(i=k-landt=k-2);(i=Llandt=0),
6, 2<i<k-landt=i-1,

=<1 (2<i<k-landt=i-lort=0);(i=kandt=-1),

-1, (i=k-landt=-1);(i=k andt=0),

-2, (1<i<k-landt=-1);(i=kand1<t<k-1)

4,  otherwise.

bi(k—t—l)

That is,
i 3 -2
1 -2
M : :
Bk(PkP(x),Pk'il(X))= 1 -
3 11 1 -1
_—2 -2 -2 -1 1 ok

for k>5.Where m isasquare matrix of order k—2 such that

0---0 0 O 3
0 3 6
3 6
M = .
6 4 4
3 4 4_(k—2)><(k—2)

For given a matrix A:[aﬁ] with a;; ’s being integers, A(mod m) means that every entries of A are

reduced modulo M , that is, A(mod m):(aij(mOd m)) . Let <A>m={(A)n(m0d m)‘nZO
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(detA,m)=1, (A) isacyclic group. We denote the order of the set (A) by (A),

Since detBk(PkF(x),PKF_l(x))zdetBk(ﬂp(x),Pk'il(x))zil for k>3, it is clear that the sets
<Bk(|:>kF(x),Pkﬁl(x))>m and <Bk(ﬂp(x)vpk:(x))>m are cyclic groups for m>2.

Now we consider the cyclic groups which are generated by the matrices Bk(PkF(X)lPk'il(X))’
B, (R (x).R%4(x)) and B, (R (x). R (x)).

Theorem2.1. Let m be any of the matrices B (RS (x),R%,(x)) . Bk(PkP(x),Pk'il(x)) and

Bk(ka(x),pk{l(x)). Suppose that « is the largest positive integer and P is a prime such that

A-a

(detM, p)=1 and ‘<M>p‘=‘<|\/|>pa‘.Then ‘<M>p4 _pte.

<|\/|> forevery 1>¢.
p

Proof. Let us consider the cyclic group <|3,k (ka (x), ka_l(x))> for K>3 and m>2. Suppose that @ isa

m

positive integer and <|3k (ka (x),RF, (x))> is denoted by o(m) - If
(Bk(PkF(x),Pkﬁl(x)))o(pM)El(mod p**t), then (Bk(PkF(x),Pk:(x)))o("M)E|(mod p*) where | is
the KxK identity matrix. Thus we obtain that o(pa) divides o(pa+l) . Also, writing

(Bk (PkF (x), Pk:(x)))o(paﬂ) -1 +(bi,-(a)' pa), by the binomial theorem, we obtain

(88 022 0o 1) <3 9 =1 o)

which yields that O(p*) divides O(p?).p. Thus, O(p**)=0(p*) or O(p**)=0(p*)-p- It is clear
that O(p**)=0(p*)-p holds if and only if there is a bij(a) which is not divisible by p . Since « is the
largest positive integer such that O(p)=0(p®), O(p*)=O(p**). There is an b, which is not

divisibleby P . So we get that o( p“*l) # o( p“*z) . The proof is completed by inductionon o .

The proofs for the cyclic groups <Bk(PkP(X)1 pk:(x))> and <|3k(ka (), PI<J—1(X))> are similar to the

m

above and are omitted.

Example.i KBs (PF (x).PF (), 1936073136 =7°-48.

— 48 and so ‘<BS(I%F(X),P4F(X))>

710
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~12 andso ‘(Bg(FgP(x),P;’(x)»nm — 733909085380974555492 = 11 .12.

i. ‘<B3(P3P(x),P2P(X))>H

it (B, (P (x), P} (x))),| 104 andso |(B, (R (x). P/ (x))),,| 634765625000~ 5* - 104.

Theorem2.2. Let G, be any of the cyclic groups <Bk(ka (X),Pk:(x))> , <Bk(PkP(X),ka:1(X))> and
<|3k(|3kJ (x),ﬂ({l(x)» and let mzﬂ po, (t>1) where P, ’s are distinct primes, then
m )
|Gm|=lcm[Gel,GeZ,---,Gek]
Py Py Py

Proof. Let us consider the cyclic group B, (PkJ (x), Pkﬂl(x)) ,then 24 m. Let

<Bk (R (), pkil(x))>

=Uu
P "

for 1<i<t and let ‘<Bk(PkJ(X),PkJ_1(X))> ‘:u,Thenwe have

p:"‘gij' i>],
the entry (i’j) of (Bk<PkJ (X)'PkJ-l(X)))un = p:"gij +1 i=],
(O i<j,
and
mgi'j, i> ],
teenty (i.§) of (B, (R (x),R (x))] = {ms, +1. i=}i
me;, <],

where &; and Ei‘j are integers for 0<i, j<k. Since m=c-p> for 1<n<t, U is of the form
m=c-u,. Thus we conclude that |u|=lcm[u;,u,,--,u,]-
The proofs for the cyclic groups <Bk(PkF(X)’Pk'i1(X))> and <Bk(PkP(x),Pkﬁl(x))> are similar to the

above and are omitted.

Example.i. Since |(B (RF (x), P ())),|=5°-78=1950. |(B, (RE (x),P5 (x))),|=1330 and 1375=5"11,
(B (R (x),PF ())),,,| - 259350 = lem[1950,1330].

i since (8 (1 (1), P (1),
(BP0, ().,

iii. Since ‘<B4(P4J(X),P3J(X))>3‘:zo,

=2°.7=112 . |(B,(PF (x),Pf (x))),|=%-26=702 and 2502-2°-3",

= 39312 = Iem[112,702] -

<BA(BJ(X),I%J(X))>5‘:1O4. ‘<B4(p43(x),P3J(x))>7‘:114 and

105=3-57, K B, (P’ (x),P; (x))>105‘ = 29640 = Icm[20,104,114] -
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3. Conclusion

Let M be any of the matrices Bk(PkF(X)lpklil(X))’ Bk(FiP(x),Pk:(x)) and Bk(PkJ(x),ﬂj_l(x)) and let

p=k be a prime such that (detM,p)=1. Then, we obtain that ‘(M) ‘ p“?_p’ for p<2099 and
P

0<v<k+l.
Open Problem. s the result above satisfied for every prime p>k.
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