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Abstract

In this paper, we consider a general Rosenau-Kawahara-RLW equation. The exact bright and dark soliton solutions
for the considered model are obtained by sech and tanh ansatzes methods. The mass and momentum conserved
quantities are also calculated for the case of bright soliton solution.
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1. Introduction

Nonlinear partial differential equations (PDEs) are special classes of mathematics and physics, which have been
studied intensively in past several decades. It is well known that seeking traveling-wave solutions for PDEs, by
using different methods, has long been a major concern for mathematicians, physicists, and engineers. However,
the existence of soliton type solutions for PDEs is of particular interest because of their extensive applications in
many physics areas such as nonlinear optics, plasmas, fluid mechanics, condensed matter, electro magnetics and
many more. Most famous equations with soliton solutions include the nonlinear Schrödinger (NLS), Korteweg-de
Vries (KdV) (Korteweg, & Vires, 1895), Regularized Long Wave (RLW) (Benjamin, Bona, & Mahony, 1972),
sine-Gordon (sG) and Rosenau equation (Rosenau, 1988), and so on. In this paper, we will investigate soliton
solutions of the following generalized Rosenau-Kawahara-RLW equation:

ut − αuxxt + βuxxxxt + γux + δunux + εuxxx + λuxxxxx = 0. (1)

where α,β,γ,δ,ε and λ are real valued constants while the parameter n , 0 dictates the power law nonlinearity,
which includes many important cases below:

When α = ε = λ = 0, the equation (1) becomes the general Rosenau equation:

ut + βuxxxxt + γux + δunux = 0. (2)

When α = β = 0, the equation (1) becomes the general Kawahara (or fifth-order KdV) equation:

ut + γux + δunux + εuxxx + λuxxxxx = 0. (3)

When β = ε = λ = 0, the equation (1) becomes the general RLW equation:

ut − αuxxt + γux + δunux = 0. (4)

and other cases refer (Zuo, 2009; Esfahani, 2011; Razborova, Ahmed, & Biswas, 2014).

Our interest in this paper is to search for the soliton solutions for the equation (1). The technique that will be used
is solitary wave ansatzes in the form of sech and tanh functions, which are one of the most effective direct methods
to construct solitary wave solutions of PDEs, see (Esfahani, 2011; Razborova, Ahmed, & Biswas, 2014; Triki, &
Wazwaz, 2009; Biswas, 2009) and references therein.
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2. Sech Ansatz Method

To obtain bright soliton solution of the equation (1), we assume a solitary wave ansatz of the form (Esfahani, 2011;
Razborova, Ahmed, & Biswas, 2014; Triki, & Wazwaz, 2009; Biswas, 2009):

u(x, t) = Asechpξ. (5)

where ξ = k(x − ct), A is the amplitude of the soliton and k is the inverse widths of the solitary wave, and c
represents the velocity of the soliton and the exponent p will be determined later. From (5), we obtain

ut = Apkcsechpξtanhξ, (6)

ux = −Apksechpξtanhξ, (7)

unux = −An+1 pksech(n+1)pξtanhξ, (8)

uxxt = −Ak3cp(p + 1)(p + 2)sechp+2ξtanhξ + Ak3cp3sechpξtanhξ, (9)

uxxx = Ak3 p(p + 1)(p + 2)sechp+2ξtanhξ − Ak3 p3sechpξtanhξ, (10)

uxxxxt = Ak5cp(p + 1)(p + 2)(p + 3)(p + 4)sechp+4ξtanhξ (11)

−2Ak5cp(p + 1)(p + 2)(p2 + 2p + 2)sechp+2ξtanhξ

+Ak5cp5sechpξtanhξ,

uxxxxx = −Ak5 p(p + 1)(p + 2)(p + 3)(p + 4)sechp+4ξtanhξ (12)

+2Ak5 p(p + 1)(p + 2)(p2 + 2p + 2)sechp+2ξtanhξ

−Ak5 p5sechpξtanhξ,

Substituting (6)-(12) into (1) gives

Akp[c − γ − p2k2(αc + ε) + k4 p4(βc − λ)]sechpξtanhξ (13)

+Ak3 p(p + 1)(p + 2)[αc + ε + 2k2(p2 + 2p + 2)(λ − βc)]sechp+2ξtanhξ

+Ak5 p(p + 1)(p + 2)(p + 3)(p + 4)(βc − λ)sechp+4ξtanhξ

−δAn+1 pksech(n+1)pξtanhξ = 0.

Equating the highest exponents of sechp+4ξtanhξ and sech(n+1)pξtanhξ terms in (13), we get

(n + 1)p = p + 4, (14)

which yields the following analytical condition

p =
4
n
. (15)

Now, from (13), setting the coefficients of sechp+ jξtanhξ ( j = 0, 2, 4) to zero, we obtain bright soliton solution of
the equation (1):

u(x, t) = Asech
4
n [k(x − ct)]. (16)

where A =
{ (n+1)(3n+4)(n+4)[4a(λ−βγ)(n2+4n+8)+αγ+ε]

8δ(n+2)[4βa(n2+4n+8)−α]
} 1

n , k = n
√

a, c = δAnn4

8βk4(n+1)(n+2)(3n+4)(n+4) +
λ
β

and

a = (λ−βγ)(n2+4n+8)+
√

(βγ−λ)2(n2+4n+8)2+16(αλ+βε)(αγ+ε)(n+2)2

(αλ+βε)(n+2)2 .

Note that the equation (1) possesses the mass and momentum conserved quantities that are respectively given by

M =
∫ +∞
−∞

u(x, t)dx =
AΓ( 1

2 )Γ( 2
n )

kΓ( 1
2 +

2
n )
, (17)
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and

P =
∫ +∞
−∞

u2(x, t)dx =
A2Γ( 1

2 )Γ( 4
n )

kΓ( 1
2 +

4
n )
, (18)

where Γ(t) represents gamma function that is defined as

Γ(t) =
∫ +∞

0
exxt−1dx. (19)

3. Tanh Ansatz Method

Similar of the sech ansatz method, we assume a solitary wave ansatz of the following form (Razborova, Ahmed,
& Biswas, 2014; Triki, & Wazwaz, 2009; Biswas, 2009):

u(x, t) = Atanhpξ. (20)

where ξ = k(x − ct), and the parameters A, k, c, p will be determined later. From (20), we obtain

ut = Akcp(tanhp+1ξ − tanhp−1ξ), (21)

ux = −Akp(tanhp+1ξ − tanhp−1ξ), (22)

unux = −An+1kp[tanh(n+1)p+1ξ − tanh(n+1)p−1ξ], (23)

uxxt = −Ak3cp
[
(p − 1)(p − 2)tanhp−3ξ − (3p2 − 3p + 2)tanhp−1ξ (24)

+(3p2 + 3p + 2)tanhp+1ξ − (p + 1)(p + 2)tanhp+3ξ
]
,

uxxx = Ak3 p
[
(p − 1)(p − 2)tanhp−3ξ − (3p2 − 3p + 2)tanhp−1ξ (25)

+(3p2 + 3p + 2)tanhp+1ξ − (p + 1)(p + 2)tanhp+3ξ
]
,

uxxxxt = −Ak5cp
[
(p − 1)(p − 2)(p − 3)(p − 4)tanhp−5ξ (26)

−(p + 1)(p + 2)(p + 3)(p + 4)tanhp+5ξ − 5(p − 1)(p − 2)(p2 − 3p + 4)tanhp−3ξ

+5(p + 1)(p + 2)(p2 + 3p + 4)tanhp+3 + 2(5p4 − 10p3 + 25p2 − 20p + 8)tanhp−1ξ

−2(5p4 + 10p3 + 25p2 + 20p + 8)tanhp+1ξ
]

uxxxxx = Ak5 p
[
(p − 1)(p − 2)(p − 3)(p − 4)tanhp−5ξ (27)

−(p + 1)(p + 2)(p + 3)(p + 4)tanhp+5ξ − 5(p − 1)(p − 2)(p2 − 3p + 4)tanhp−3ξ

+5(p + 1)(p + 2)(p2 + 3p + 4)tanhp+3 + 2(5p4 − 10p3 + 25p2 − 20p + 8)tanhp−1ξ

−2(5p4 + 10p3 + 25p2 + 20p + 8)tanhp+1ξ
]
.

Substituting (21)-(27) into (1) gives

Akp
[
γ − c − k2(αc + ε)(3p2 − 3p + 2) + 2k4(λ − βc)(5p4 − 10p3 (28)

+25p2 − 20p + 8)
]
tanhp−1ξ + Akp

[
c − γ + k2(αc + ε)(3p2 + 3p + 2)

+2k4(βc − λ)(5p4 + 10p3 + 25p2 + 20p + 8)
]
tanhp+1ξ

+Ak3 p(p − 1)(p − 2)
[
αc + ε + 5k2(βc − λ)(p2 − 3p + 4)

]
tanhp−3ξ

−Ak3 p(p + 1)(p + 2)
[
αc + ε + 5k2(βc − λ)(p2 + 3p + 4)

]
tanhp+3ξ

−Ak5 p(p − 1)(p − 2)(p − 3)(p − 4)(βc − λ)tanhp−5ξ

+Ak5 p(p + 1)(p + 2)(p + 3)(p + 4)(βc − λ)tanhp+5ξ

−δAn+1kp[tanh(n+1)p+1ξ − tanh(n+1)p−1ξ] = 0.
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Equating the exponents of tanh(n+1)p+1ξ and tanhp+3ξ terms in (28), we get

(n + 1)p + 1 = p + 3, (29)

which yields the following analytical condition

p =
2
n
. (30)

For simplicity, we only discuss the following two cases of n = 1 and n = 2.

3.1 Case 1:n=1

The equation (1) becomes the Rosenau-Kawahara-RLW equation:

ut − αuxxt + βuxxxxt + γux + δuux + εuxxx + λuxxxxx = 0. (31)

For n = 1, substituting (30) into (28), setting the coefficients of tanh jξ ( j = ±1,±3, 5, 7) to zero, we obtain a dark
1-soliton solution of the Rosenau-Kawahara-RLW equation (31):

u(x, t) = Atanh2[k(x − ct)]. (32)

where A = 3(λ−βγ)
2βδ , k =

√
βγ−λ

8(αλ+βε) and c = λ
β
.

3.2 Case 2:n=2

The equation (1) becomes the modified Rosenau-Kawahara-RLW equation:

ut − αuxxt + βuxxxxt + γux + δu2ux + εuxxx + λuxxxxx = 0. (33)

For n = 2, substituting (30) into (28), setting the coefficients of tanh jξ ( j = 0,±2,±4, 6) to zero, we obtain a dark
1-soliton solution of the modified Rosenau-Kawahara-RLW equation (33):

u(x, t) = Atanh[k(x − ct)]. (34)

where A =
√

3(λ−βγ)
βδ
, k =

√
βγ−λ

2(αλ+βε) and c = λ
β
.

4. Discussion

In this paper, we apply sech ansatz method and tanh ansatz method to derive exact bright and dark 1-soliton
solutions of the general Rosenau-Kawahara-RLW equation. In addition, more explicit solutions for the general
Rosenau-Kawahara-RLW equation can be obtain by other techniques, such as tanh-coth method, exp-function
method and G′/G-expansion method, and so on.
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