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Abstract

We consider the graph E3; with three generators oy, 07,d, where o) has an edge with each of o, and 6. We
then define the Artin group of the graph E3; and consider its reduced Perron representation of degree three. After
we specialize the indeterminates used in defining the representation to non-zero complex numbers, we obtain a
necessary and sufficient condition that guarantees the irreducibility of the representation.
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1. Introduction

To any undirected simple graph 7', we introduce the Artin group, A, which is defined as an abstract group with
vertices of I as its generators and two relations: xy = yx for vertices x and y that have no edge in common and
xyx = yxy if the vertices x and y have a common edge.

Let A, be the graph having n vertices o;’s (1 < i < n ) in which o; and o4 share a comon edge, where
i=1,2,..,n—1. We notice that the Artin group of A, is the braid group on n + 1 strands. That is, A(A,) = B+
(J.S.Birman, 1975).

Having defined A,, we consider E, ,, which is the graph obtained from A, by adding a vertex ¢ and an edge
connecting o, and 6. Here 1 < p < n. It is easy to see that the graph A, embeds in the graph E,,; ,. That is,
A(A,) C A(E,11,p). This induces an injection on By, to A(E,+1,,). In other words, a representation of A(E,1,,)
yields a representation of B, ;.

Knowing the reduced Burau representation of B,.; of degree n, Perron extends such a representation to a rep-
resentation of B,.; of degree 2n. The representation obtained is referred to as Burau bis representation. Next,
Perron constructs for each 4 = (4y,...,4,) a representation ¥, : A(E,.1,) — GLy,(Q(t,dy,...,d,)), where
t,dy,...,d, ,...,4, areindeterminates. We specialize t,d,, . .., d, to non zero complex numbers, and we study
this representation explicitly in the case n = 2 and p = 1. We then reduce the complex specialization of the rep-
resentation ¢, to a representation of degree 3, namely A(E3;) — GL3(C). A necessary and sufficient condition
which guarantees its irreducibility is obtained in that case.

2. Burau bis Representation

Perron’s strategy is to begin with the Burau representation of the braid group and extend it to a representation of
A(E,41,p). He begins with the reduced Burau representation: B,,; — GL,(Z][t, t~'1) defined as follows:

0

0
0
~t

0
0

0o |

S~ =
—_— O

In—i—l

where I; stands for the k X k identity matrix. Here, i = 2,...,n— 1.
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oy —> Ji =

o> J, =

Knowing that this representation is of degree n, Perron extends it to a representation of B,.; of degree 2n. Let R;
denote an n X n block of zeros with a ¢ placed in the (i, ) th position, and let I, denote the n X n identity matrix.
The obtained representation is referred to as the Burau bis representation. It is defined as follows:

W : Byt = Ghy(Z[1,17'])

w((r»:(,’;[ 2) l<i<n

For more details, see (T.E.Brendle, 2002, B.Perron, 1999).

3. Perron Representation

The Burau bis representation extends to A(E,.,p) for all possible values of n and p in the following way.
b d)

Letb=]:|,d=|:]|,and A= (4y,...,4,).
o) \d,

We define the following n X n matrices:

A= (b, b, ..., A,b)
B=(0,...,0,b,0,...,0)
C=d, Ao, ..., 0,d)
D=(0,...,0,d,0,...,0),

where 0 denotes a column of n zeros.

Foreachi = 1,...,n, we have that b; satisfies the following conditions

thi = —tdi 1 + (1 +)d; = diy1, i # p,

tbp = _tdp—l + (1 + t)dp - dp+l +1,
Db = =1+ dy + 1),
i=1

setting any undefined d; equal zero.

For any choice 1 =(4y,...,4,), we get a linear representation

{yhﬁ : A(En+l,p) - GlZn(R),

where R is the field of rational fractions in n+1 indeterminates Q(z, dy, ..., d,,).

Yaloy) — (,’e ?)
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I,+A B
o= (-4 )

For more details, see (T.E.Brendle, 2002).

4. Reducibility of y, : A(E3;1) = GL4(C)

Having defined Perron’s representation, we set n = 2 and p = 1 to get the following vectors. b = (Zl) ,d= (dl) ,
2

and A = (/ll,/lg).

. . _ /l]bl /lzbl _ bl 0 _ /11d1 /lzdl _
We get the following 2 X 2 matrices A = (/llbz /1252)’ B = (b2 O)’ C = (/lldz /lzdz)’ and D =
d 0
dy 0}

Simple computations show that the parameters satisfy the following equations:

e thy = —td; + (1 + t)d,
e th)=(1+0d; —d, +1t
o L1by+ by =—-(1+t+d))
Having defined the 2 X 2 matrices A, B, C and D, we obtain the multiparameter representation A(E3 ). This

representation is of degree 4. We specialize the parameters Ay, A, by, by, dy, d;, t to values in C — {0}. We further
assume that r # —1 and d, = —¢. The representation ¢, : A(E3,) — GL4(C) is defined as follows:

1 0 0 O
01 0 O
(o) = f 0 -t 1l
0 0 0 1
1 0 0 O
01 0 O
(o) = 00 1 ol
0 ¢t t -t
and
1+ /hb] /lzb] bl 0
| by b+l by O
w/l(é‘) B Aidy Aody 1+d, Of
-t —tAy —t 1

The graph Es; has 3 vertices 01,0, and §. Since p = 1, it follows that the vertex ¢ has a common edge with
o, = 0. Therefore, the following relations are satisfied.

010201 = 02010 (1)
0'26 = 50’2 (2)
o180 = 6016 3
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We note that relation (1) is actually Artin’s braid relation of the classical braid group, B; having o and o as
standard generators. This assures that a representation of A(E3)yields a representation of Bs.

Lemma 1 The representation ¥, : A(E31) — GL4(C) is reducible.

Proof. For simplicity, we write o7 instead of y,(k) , where k is a generator of A(E3;).The subspace S =
<el + %82’ es, e4> is an invariant subspace of dimension 3. To see this:

1. oi(e; + Z—TEz) =e + %‘32 +tez3 €S

2. oo(e + Z—feg) =e + %62 + tZ—fe3 es

3. 8er + e2) = (1 + iby + Daby)er + (Niby + $(Aaby + 1))er+
(Adid; + %/12d1)33 + (=t + %’2/12)64

= (1+ Aiby + Lbo)er + Fe2) + (lidy + 2 dady)es+

(=14, + %’2/12)574 €S

4. oje3 = —tez €S

5. 00e3=e3+tes €8

6. des = bi(er + 2ex) + (1 +dy)es —tey € S

7. o1eqg =e3+e4 €8

8. oney4 =—tey €8

9. fey =es €8

5. On the Irreducibility of xﬁ:l : A(E31) = GL3(C)

We consider the representation y, : A(E3 ;) — GL4(C) restricted to the basis ej, e; + %62’ e3, and e4. The matrix
of o; becomes
1 0 ¢+ O
01 ¢ O
0 0 1 1
Similarly, we determine the matrices of o, and ¢. It is easy to see that the first column of the matrices of all
generators is (1,0,0,0,0)”, where T is the transpose. We thus reduce our representation to a 3-dimensional one by
deleting the first row and the first column to get ¥/, : A(E31) — GL3(C). The representation is defined as follows:

1 ¢t 0
Yi(o) =10 -t 0f,
0 1 1
b
/ 10 %
%(0'2)= 0 1 t |,
0 0 -t

and

1+ 416y + by Aid) + Z_T/bdl —tA) + %?2/12

’ 5) =
Ya(0) b 1 +d, _
0 0 1
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We then diagonalize the matrix corresponding to ¥,(c1) by an invertible matrix, say 7', and conjugate the matrices
of ¥ (c2) and ¢/, (6) by the same matrix T'. The invertible matrix T is given by

0 1 t
T=[0 0 -1-¢f.
1 0 1
In fact, a computation shows that
1 0 0
T\ ()T =|0 1 0
0 0 -t
After conjugation, we get
-2 0 —(1+1+1%)

1+1

—1.47 _ | ttba+b t+by1) t(by+b t+byt)
T yio)T = | =555 1 ba+n |

1
141 1+

Ty, ()T
1 t
T T+ T+

bydy t t (=t+b1t=d; (1+1))[br A (14+1)+b1 (A1 +t1+2,1)]
—t(A; + by + i 1+ by + b1 (A1 + i bi(1+D) .

_t b 1
141 1+1 1+1

The entries of the matrices T‘lw;(az)T and T‘H//’A((S)T are well-defined since we assume in our work that r # —1.
For simplicity, we denote T‘llffjl(a'l)T by ¢\ (c1), T‘I(J/;(az)T by ¢/,(02), and T‘lz//’l(()')T by ¢/,(6).

We now prove some propositions to determine a sufficient condition for irreducibility of ¢/, : A(E3 1) — GL3(C).
Proposition 2 1(by + bt + bat) + (1 + 1 + ) (aby(1 + ) + bi(A + 1+ 110) = =t + D> + 1)

Proof. The proof easily follows by considering the following relations:

e thy = —td; —t(1 +1)
e thy = (1 +0d, +2t

o /l]b] + /bbz = —(1 +l+d1)

Proposition 3 The two expressions 1 + t + > and b1t + bat + by cannot be both equal to zeros.

Proof. We assume, for contradiction, that both are equal to zeros.
By substituting  thy = —td; —t(1+¢) and tb, = (1+0)d,+2t in bit+byt+b, = 0, we get —t(1+1+1>) = —1>.
By assuming that 1 + ¢ + > = 0, we get that ¢ = 0, a contradiction.

Proposition 4 —¢ + bt — d;(1 + 1) # 0.

Proof.  Assume, for contradiction, that —¢ + bt — d;(1 + ) = 0. Having that bt = (1 + 1)d; + 2¢t, we get
—t+bit—di(1+t)=—t+ {1 +0d +1t+1t—-di(1 +1) =t This implies that = 0, a contradiction.

We use Proposition 2, Proposition 3 and Proposition 4 to prove the following Lemma. We recall that all the
indeterminates used in defining the representations are specialized to non zero complex numbers and, in addition,
the complex number associated with 7 is not equal to —1.
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Lemma 5 If t # =i, then any non zero subspace S, which is invariant under the action of the representation
V' 1 A(E3)) — GI3(C) containing the standard unit vector es, must be the whole space C3.

_ 2
Proof. We have that y/,(02)(e3) = W) o g Moatbitihyt) )y Lo e S,

1+t by (1+1) 1+¢
. . —(1+1+7%) 1(byr+by 1+byt)
Since e3 € S, it follows that €1t T €2 es. @)
Moreover,
Y(6)(e3) =
—t+bit—d, (1+1) (=t+b t—d (1+0)[A2ba (1+1)+b (A +1+1,1)] 1+t+d, (1+)+1—b;t

el + e + e3€S.

1+t bi(1+1) 1+t

This also implies that
—t+bit—di(1+1)
e
1+1¢

+ (=t + b1t —di(1 +1))[Aaby(1 + 1)+ b1(A; + 1+ A440)]
bi(1+1)

1 e €S. 2)

Having proved that 1 + ¢ + ¢> and bt + byt + b, can’t both be zeros, we consider the following cases:
Casel. 1 +t+7 =0

By Proposition 3 and (1), we get that e, € S. By Proposition 4 and (2), we get that e; € S. Thus, S is the whole
space.

Case2. 1 +t+£ %0

Let us multiply (1) by —# + byt — d; (1 + t) which is proved not to be zero in Proposition 4. We also multiply (2) by
1 + ¢+ # 0. If we add the obtained equations, we get
—t+bit—di(1+1)
bi(1+1)

[t(by + b1t + brt) + (1 + 1 + lz)(/lzbg(l +1)+b1(A; +t+ A1))]er €S. 3)

By Proposition 2, we have that t(by + bt + byt) + (1 + t + 12)(Aaby(1 + 1) + by(A; + t + ;1)) = —(t + 1)>(£> + 1).
Assuming that r # —1 and t # =i, we get [#(b, + b1t +byt) + (1 + 1 + P by(L+16) + b4 + 1+ 440) #0.

By Proposition 4 and by (3), we get
e € S.

From (1) we conclude that
el €8S.

Thus, S is the whole space C3.

Next, we present the following theorem which gives a sufficient condition for irreducibility of ¥/, : A(E3;) —
GL;(C).

Theorem 6 If t # +i, then the representation ', : A(E31) — GL3(C) is irreducible.

Proof. Let S be a non zero proper subspace of C>, which is invariant under the action of Y. By Lemma 5, we
have that ez ¢ S'.

Then S is one of the following subspaces:
° 5 =(er)
o S =(e)
e S = (e + uey), where u € C*

o § = (e, e)

-
1+t

Case 1. S = (e1). We have that ¢/, (c2)(e1) € S. This implies that ’([’21:’(’+;’2’) € §S. This gives a contradiction

1+1
because ¢ # 0.
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141

Case 2. § = (ey). We have that y/,(6)(e2) € S. This implies that |1 + 420, + by (4; + )| € S. This gives a

1+

contradiction since b; # 0.

-
1+t

Case 3. S = (e; +uey), u € C*. We have that ¢/, (02)(e; + ue,) € S. This implies that % +u|€S. This

—t
T+t
gives a contradiction since ¢ # 0.

Cased. S = (e, er).
2
Th

t(by+bt+bst)

We have that /,(02)(e;) € §. This implies that G

€ §. This gives a contradiction since ¢ # 0.

=t
1+t

Therefore, we conclude that the representation is irreducible because there is no proper non zero invariant subspace
under the action of ¥/

We now give a necessary condition for irreducibility.
Theorem 7 If t = +i, then the subspace {e1, e3) is a proper invariant subspace.

Proof.
L. y\(o1)(e)) = e €85.

=
1+1

2. Y\(o2)(er) = % = ae; + bes, where a and b € C - {0}.

1+

2 _
Here, we have a = ==, b = =L, an

d 1(by+bit+byt)
1+1° 1+2°

_ .. . 2 _
) = (. This is true since ¢t~ = —1.

1
1+

3. Y (0)er) = |~ + B2 + (= | = aey + bes

_t
1+

where a and b are given by a = ﬁ and b = -,

4. y'\(o)e3) = —tez €.

—(L+1+1*
1+t

5. Yi(02)(e3) = | et | = aey + bes,

1
1+
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_ =(+1+) _ 1
where a = =G —and b= 1.

_t
1+t

6. l//:l(5)€3 _ (—z+b|z—d|(l+t))(le(/112i;;rz)+h1(/ll+t+/11t)) — ae, + bes,

1+t

where a and b are given by a = ILH and b = ]LH

by t=d i A+D) (b b (14D +bi (L +1+ 4, 1) 0

By Proposition 2, we have b LD

Thus, we have determined a necessary and sufficient condition for irreducibility.

Theorem 8 Let A1, A2, b1,bs,d,t € C— {0} and t # —1. The representation /', : A(E31) — GL3(C) is irreducible
if and only if t # =+i.
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