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Abstract

In this paper, we study the solution of nonlinear equation ⊗k♦k
c1

u(x) = f (x,�k−1Lk♦k
c1

u(x)) where ⊗k♦k
c1

is the product
of the Otimes operator and Diamond operator where c1 is positive constants, k is a positive integer, p + q = n, n is the
dimension of the Euclidean space Rn, for x = (x1, x2, . . . , xn) ∈ Rn,u(x) is an unknown function and f (x,�k−1.Lk♦k

c1
u(x))

is a given function. It was found that the existence of the solution u(x) of such equation depending on the conditions of f

and �k−1Lk♦k
c1

u(x).

Keywords: The hyperbolic kernel of Marcel Riesz, Diamond operator, Schander’s estimates

1. Introduction

The operator ♦k has been first by A. Kananthai (1997) and is named as the Diamond operator iterated k times and is
defined by

♦k =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝ p∑

i=1

∂2

∂x2
i

⎞⎟⎟⎟⎟⎟⎠2

−
⎛⎜⎜⎜⎜⎜⎜⎝ p+q∑

j=p+1

∂2

∂x2
j

⎞⎟⎟⎟⎟⎟⎟⎠
2⎞⎟⎟⎟⎟⎟⎟⎟⎠

k

, (1)

p+ q = n, n is the dimension of the space Rn, for x = (x1, x2, . . . , xn) ∈ Rn and k is a nonnegative integer. The operator ♦k

can be expressed in the form ♦k = �k�k = �k�k where �k is the Laplacian operator iterated k times defined by

�k =

⎛⎜⎜⎜⎜⎝ ∂2

∂x2
1

+
∂2

∂x2
2

+ . . . +
∂2

∂x2
n

⎞⎟⎟⎟⎟⎠k

(2)

and �k is the ultra-hyperbolic operator iterated k times defined by

�k =

⎛⎜⎜⎜⎜⎜⎝ ∂2

∂x2
1

+
∂2

∂x2
2

+ · · · + ∂
2

∂x2
p

− ∂2

∂x2
p+1

− ∂2

∂x2
p+2

− · · · − ∂2

∂x2
p+q

⎞⎟⎟⎟⎟⎟⎠k

. (3)

Next, W. Satsanit has been first introduced ⊗k operator and ⊗k is defined by

⊗k =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎝ p∑

i=1

∂2

∂x2
i

⎞⎟⎟⎟⎟⎟⎠3

−
⎛⎜⎜⎜⎜⎜⎜⎝ p+q∑

j=p+1

∂2

∂x2
j

⎞⎟⎟⎟⎟⎟⎟⎠
3⎤⎥⎥⎥⎥⎥⎥⎥⎦

k

=

⎛⎜⎜⎜⎜⎜⎜⎝ p∑
i=1

∂2

∂x2
i

−
p+q∑

j=p+1

∂2

∂x2
j

⎞⎟⎟⎟⎟⎟⎟⎠
k [ ⎛⎜⎜⎜⎜⎜⎝ p∑

i=1

∂2

∂x2
i

⎞⎟⎟⎟⎟⎟⎠2

+

⎛⎜⎜⎜⎜⎜⎝ p∑
i=1

∂2

∂x2
i

⎞⎟⎟⎟⎟⎟⎠ ·⎛⎜⎜⎜⎜⎜⎜⎝ p+q∑
j=p+1

∂2

∂x2
j

⎞⎟⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎜⎝ p+q∑

j=p+1

∂2

∂x2
j

⎞⎟⎟⎟⎟⎟⎟⎠
2 ]k

= �k

(
�2 − 1

4
(� +�)(� − �)

)k

=

(
3
4
♦� + 1

4
�3

)k

(4)

where ♦, � and � are defined by (1), (2) and (3) with k = 1 respectively.

Consider the nonlinear equation
⊗ku(x) = f (x,�k−1Lku(x)) (5)

where ⊗k is the operator iterated k times is defined (4), and Lk is the operator iterated k times is defined by

Łk = (
3
4
�2 +

1
4
�2)k (6)
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and �k−1 is the ultra-hyperbolic operator iterated k − 1 times defined by (3). Let f defined and have continuous first
derivatives for all x ∈ Ω ∪ ∂Ω, where Ω is an open subset of Rn and ∂Ω denotes the boundary of Ω and f be a bounded
function, that is

| f (x,�k−1Lku(x))| ≤ N, x ∈ Ω (7)

with the boundary condition
�k−1Lku(x) = 0 , x ∈ ∂Ω. (8)

Then, we obtain
u(x) = RH

2(k−1)(x) ∗ (RH
4k(x) ∗ (−1)2kRe

4k(x)) ∗ (S ∗k(x))∗−1 ∗ W(x) (9)

as a solution of (5) with the boundary condition

u(x) = (RH
4k(x) ∗ (−1)2kRe

4k(x)) ∗ (S ∗k(x))∗−1 ∗ (RH
2(k−2)(x))(m) (10)

for x ∈ ∂Ω, m = n−4
2 , n ≥ 4 and n is even dimension for k = 2, 3, 4, 5, ..... and W(x) is a continuous function for x ∈ Ω∪∂Ω.

The function RH
2(k−2)(x) defined by (15) with α = 2(k − 2) and , Re

4k
(x) is given by (20) with γ = 4k.

The purpose o this work to extend the ♦k operator defined by (1) to be

♦k
c1
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝ 1
c4

1

⎛⎜⎜⎜⎜⎜⎝ p∑
i=1

∂2

∂x2
i

⎞⎟⎟⎟⎟⎟⎠2

−
⎛⎜⎜⎜⎜⎜⎜⎝ p+q∑

j=p+1

∂2

∂x2
j

⎞⎟⎟⎟⎟⎟⎟⎠
2⎞⎟⎟⎟⎟⎟⎟⎟⎠

k

. (11)

Where c1 is positive constant and k is a non-negative integer

Now, we study the nonlinear equation of the form

⊗k♦k
c1

u(x) = f (x,�k−1Lk♦k
c1

u(x)) (12)

with f defined and having continuous first derivative for all x ∈ Ω ∪ ∂Ω where Ω is an open subset of Rn and ∂Ω denoted
the boundary of Ω , f is bounded on Ω that is | f | ≤ N, N is constant ,♦k

c1
defined by (11) and �k defined by (3) and Lk

defined by (6).

We can find the solution u(x) of (12) which unique under the boundary condition �k−1Lk♦k
c1

u(x) = 0 for all x ∈ Ω. By
(R.Courant, 1996 p.369) there exists a unique solution W(x) of the equation �W(x) = f (x,W(x)) for all x ∈ Ω with
the boundary condition W(x) = 0 for all x ∈ ∂Ω where W(x) = �k−1Lk♦k

c1
u(x). Moreover, if we put p = k = 1 in

�k�k
c1

M(x) = W(x), we found that M(x) = IH
2 (x) ∗ NH

2 (x) ∗ W(x) is solution of the inhomogeneous wave equation where
IH
2 (x) and NH

2 (x) are defined by (18) and (19) with α = β = 2 respectively.

Before going that points , the following definitions and some concepts are needed.

2. Preliminaries

Definition 2.1 Let x = (x1, x2, ..., xn) be a point of the n-dimensional Euclidean space Rn. Denoted by

υ = (x2
1 + x2

2 + ... + x2
p) − x2

p+1 − x2
p+2 − ... − x2

p+q (13)

w = c2
1(x2

1 + x2
2 + ... + x2

p) − x2
p+1 − x2

p+2 − ... − x2
p+q (14)

where p + q = n. The interior of forward cone defined by
Γ+ = {x ∈ Rn : x1 > 0, υ > 0,w > 0}. For any complex number α, define the function

RH
α (υ) =

⎧⎪⎪⎨⎪⎪⎩ υ
α−n

2

Kn(α) , for x ∈ Γ+,
0, for x � Γ+,

(15)

and

S H
β (w) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩w
β−n

2

Kn(β) , for x ∈ Γ+,
0, for x � Γ+,

(16)

where the constant Kn(α),Kn(β) is given by the formula

Kn(α) =
π

n−1
2 Γ( 2+α−n

2 )Γ( 1−α
2 )Γ(α)

Γ( 2+α−p

2 )Γ( p−α
2 )

. (17)
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The function RH
α (u), S H

β (w) is called the ultra-hyperbolic kernel of Marcel Riesz and was introduced by Y. Nozaki (1964,
p.72). It is well known that RH

α (u) and S H
β (w) is an ordinary function if Re(α) ≥ n and Re(β) ≥ n and is a distribution if

Re(α) < n and Re(β) < n. By putting p = 1 in (13), (14) and (17) using the Legendre’s duplication of

Γ(2z) = 22z−1π−
1
2 Γ(z)Γ(z +

1
2

)

then (15) and (16) reduce to

IH
α (x) =

⎧⎪⎪⎨⎪⎪⎩ u
α−n

2

Hn(α) , for x ∈ Γ+,
0, for x � Γ+,

(18)

and

NH
β (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩ w
β−n

2

Hn(β) , for x ∈ Γ+,
0, for x � Γ+,

(19)

respectively, where

Hn(α) = π
n−2

2 2α−1Γ(
2 + α − n

2
)Γ(
α

2
).

u = x2
1 − x2

2 − x2
3 − ... − x2

n

and
Hn(β) = π

n−2
2 2β−1Γ(

2 + β − n

2
)Γ(
β

2
).

w = c2
1x2

1 − x2
2 − x2

3 − ... − x2
n.

The functions IH
α (x) and NH

β (x) are precisely called the Hyperbolic kernel of Marcel Riesz.

Definition 2.2 Let x = (x1, x2, ..., xn) be a point of Rn and the function Re
γ(x) and Le

ρ(x) is defined by

Re
γ(x) =

X
γ−n

2

Pn(γ)
(20)

and

Le
ρ(x) =

Y
ρ−n

2

Pn(ρ)
(21)

where
X = x2

1 + x2
2 + ... + x2

n

and
Y = c2

1(x2
1 + x2

2 + ... + x2
p) + (x2

p+1 + x2
p+2 + ... + x2

p+q)

Pn(γ) =
π

n
2 2γΓ

(
γ
2

)
Γ
(

n−γ
2

) (22)

γ is a complex parameter and n is the dimension of Rn.

Definition 2.3 Let c1 be positive number, p+ q = n and k is a nonnegative integer. The ultra-hyperbolic operators iterated
k times �k and �k

c1
are defined by

�k =

⎛⎜⎜⎜⎜⎜⎝ ∂2

∂x2
1

+
∂2

∂x2
2

+ · · · + ∂
2

∂x2
p

− ∂2

∂x2
p+1

− ∂2

∂x2
p+2

− · · · − ∂2

∂x2
p+q

⎞⎟⎟⎟⎟⎟⎠k

and

�k
c1
=

⎛⎜⎜⎜⎜⎜⎜⎝ 1
c2

1

⎛⎜⎜⎜⎜⎜⎝ p∑
i=1

∂2

∂x2
i

⎞⎟⎟⎟⎟⎟⎠ −
⎛⎜⎜⎜⎜⎜⎜⎝ p+q∑

j=p+1

∂2

∂x2
j

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠

k

. (23)

The Laplacian operators iterated k times �k and �k
c1

are defined by

�k =

⎛⎜⎜⎜⎜⎝ ∂2

∂x2
1

+
∂2

∂x2
2

+ . . . +
∂2

∂x2
n

⎞⎟⎟⎟⎟⎠k

and

�k
c1
=

⎛⎜⎜⎜⎜⎜⎜⎝ 1
c2

1

⎛⎜⎜⎜⎜⎜⎝ p∑
i=1

∂2

∂x2
i

⎞⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎜⎝ p+q∑

j=p+1

∂2

∂x2
j

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠

k

. (24)
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Lemma 1 Given the equation

�ku(x) = δ (25)

and

�k
c1

v(x) = δ. (26)

Where �k and �k
c1

defined by (3) and (13) respectively, x ∈ Rn and δ is the Dirac-delta distribution. Then we obtain

u(x) = RH
2k(x) , v(x) = S H

2k(x)

are an elementary solution of (15) and (16) respectively where RH
2k

(x) and S H
2k

(x) are defined by (15) and (16) with

α = β = 2k.

Proof. (S.E. Trione, 1987, p.11).

Lemma 2 Given the equation

�ku(x) = δ (27)

and

�k
c1

v(x) = δ. (28)

Where �k and �k
c1

defined by (2) and (24) respectively, x ∈ Rn and δ is the Dirac-delta distribution. Then we obtain

u(x) = (−1)kRe
2k(x) , v(x) = (−1)kLe

2k(x)

are an elementary solution of (17) and (18) respectively, Re
2k

(x) and Le
2k

(x) are defined by (19) and (20) with γ = ρ = 2k

Proof. (W.F. Donoghue, 1969, p.118).

Lemma 3 Let S α(x)and Rβ(x) be the function defined by (13) and (14) respectively. Then

S α(x) ∗ S β(x) = S α+β(x)

and

Rβ(x) ∗ Rα(x) = Rβ+α(x)

where α and β are a positive even number.

Proof. (Aguirre Manuel A., 2008, pp.171-190). �

Lemma 4 The function R−2k(x) and (−1)kS −2k(x) are the inverse in the convolution algebra of R2k(x) and (−1)kS 2k(x) ,

respectively.That is

R−2k(x) ∗ R2k(x) = R−2k+2k(x) = R0(x) = δ(x)

and

(−1)kS −2k(x) ∗ (−1)kS 2k(x) = (−1)2kS −2k+2k(x) = S 0(x) = δ(x)

Proof. (S.E. Trione, 1987, p.123), (W.F. Donoghue, 1969, p.118, p.158), and (A. Kananthai, 2000, p.10).

Lemma 5 Given P is a hyper-function then

Pδk(p) + kδ(k−1)(p) = 0

where δ(k) is the Dirac-delta distribution with k derivatives.

Proof. (I.M.Gelfand, 1964, p.233).

Lemma 6 Given the equation

�ku(x) = 0. (29)

Where �k is defined by (3) and x = (x1, x2, . . . , xn) ∈ Rn then u(x) = (RH
2(k−1)(υ))

(m) is a solution of (29) where

(RH
2(k−1)(υ))

(m) is defined by (15) with m - derivatives and α = 2(k − 1), m = n−4
2 , n ≥ 4 and n is even dimension.
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Proof. We first to show that the generalized function δ(m)(r2 − s2) where r2 = x2
1 + x2

2 + . . . + x2
p and s2 = x2

p+1 + x2
p+2 +

. . . + x2
p+q , p + q = n is a solution of the equation

�u(x) = 0. (30)

Where � is defined by (3) with k = 1 and x = (x1, x2, . . . , xn) ∈ Rn

∂

∂xi

δ(m)(r2 − s2) = 2xiδ
(m+1)(r2 − s2)

∂2

∂x2
i

δ(m)(r2 − s2) = 2δ(m+1)(r2 − s2) + 4x2
i δ

(m+2)(r2 − s2)

�δ(m)(r2 − s2) =
p∑

i=1

∂2

∂x2
i

δ(m)(r2 − s2)

= 2pδ(m+1)(r2 − s2) + 4r2δ(m+2)(r2 − s2)

= 2pδ(m+1)(r2 − s2) + 4(r2 − s2)δ(m+2)(r2 − s2)

+ 4s2δ(m+2)(r2 − s2)

= 2pδ(m+1)(r2 − s2) − 4(m + 2)δ(m+1)(r2 − s2)

+ 4s2δ(m+2)(r2 − s2)

= (2p − 4(m + 2))δ(m+1)(r2 − s2) + 4s2δ(m+2)(r2 − s2).

By Lemma 1 with P = r2 − s2. Similarly,

p+q∑
j=p+1

∂2

∂x2
j

δ(m)(r2 − s2) = (−2q + 4(m + 2))δ(m+1)(r2 − s2)

+ 4r2δ(m+2)(r2 − s2).

Thus

�δ(m)(r2 − s2) =
p∑

i=1

∂2

∂x2
i

δ(m)(r2 − s2) −
p+q∑

j=p+1

∂2

∂x2
i

δ(m)(r2 − s2)

= (2(p + q) − 8(m + 2))δ(m+1)(r2 − s2) − 4(r2 − s2)δ(m+2)(r2 − s2)

= (2n − 8(m + 2))δ(m+1)(r2 − s2) + 4(m + 2)δ(m+1)(r2 − s2)

= (2n − 4(m + 2))δ(m+1)(r2 − s2).

If 2n − 4(m+ 2) = 0, we have �δ(m)(r2 − s2) = 0. That is u(x) = δ(m)(r2 − s2) is a solution of (29) with m = n−4
2 , n ≥ 4 and

n is even dimension. We write
�ku(x) = �(�k−1u(x)) = 0

From the above proof we have �k−1u(x) = δ(m)(r2 − s2) with m = n−4
2 , n ≥ 4 and n is even dimension. Convolving the

above equation by RH
2(k−1)(x), we obtain

RH
2(k−1)(x) ∗ �k−1u(x) = RH

2(k−1)(x) ∗ δ(m)(r2 − s2)

�k−1(RH
2(k−1)(x)) ∗ u(x) = (RH

2(k−1)(υ))
(m), where υ = (r2 − s2)

δ ∗ u(x) = u(x) = (RH
2(k−1)(υ))

(m).

Thus u(x) = (RH
2(k−1)(υ))

(m) is a solution of (29) with m = n−4
2 , n ≥ 4 and n is even dimension.

Lemma 7 Given the equation

�k
c1

u(x) = 0 (31)

where �k
c1

is defined by (23). Then we obtain u(x) =
(
S H

2(k−1)(x)
)(m)

as a solution of (31) where
(
S H

2(k−1)(x)
)(m)

is defined by

(16) with m derivative and β = 2(k − 1), m = n−4
2 , n ≥ 4 and n is even dimension.

Proof. The proof of Lemma 7 is similar to the proof of Lemma 6.
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Lemma 8 Given the equation

LkG(x) = δ(x) (32)

where Lk = ( 3
4�2+ 1

4�2)k, � and � is defined by (2) and (3) with k = 1 respectively. Then we obtain G(x) is an elementary

solution of (32) where

G(x) =
(
RH

4k(x) ∗ (−1)2kRe
4k(x)

)
∗
(
C∗k(x)

)∗−1
(33)

and

C(x) =
3
4

RH
4 (x) +

1
4

(−1)2Re
4(x). (34)

C∗k(x) denotes the convolution of S it self k−times ,
(
C∗k(x)

)∗−1
denotes the inverse of C∗k(x) in the convolution algebra.

Moreover G(x) is a tempered distribution.

Proof. From (32), we have

Lk =

(
3
4
�2 +

1
4
�2

)k

G(x) = δ(x)

or we can write (
3
4
�2 +

1
4
�2

) (
3
4
�2 +

1
4
�2

)k−1

G(x) = δ(x).

Convolving both sides of the above equation by RH
4 (x) ∗ (−1)2Re

4(x),(
3
4
�2 +

1
4
�2

)
∗
(
RH

4 (x) ∗ (−1)2Re
4(x)

) (3
4
�2 +

1
4
�2

)k−1

G(x) = δ(x) ∗ RH
4 (x) ∗ (−1)2Re

4(x)

or (
3
4
�2(RH

4 (x) ∗ (−1)2Re
4(x)) +

1
4
�2(RH

4 (x) ∗ (−1)2Re
4(x))

)
∗
(

3
4
�2 +

1
4
�2

)k−1

G(x) = δ(x) ∗ RH
4 (x) ∗ (−1)2Re

4(x).

By properties of convolution, we obtain(
3
4
�2((−1)2Re

4(x)) ∗ RH
4 (x)) +

1
4
�2(RH

4 (x)) ∗ (−1)2Re
4(x)

)
∗
(

3
4
�2 +

1
4
�2

)k−1

G(x) = δ(x) ∗ RH
4 (x) ∗ (−1)2Re

4(x).

By Lemma 1 and Lemma 2, we obtain(
3
4

RH
4 (x) +

1
4

(−1)2Re
4(x)

)
∗
(

3
4
�2 +

1
4
�2

)k−1

G(x) = RH
4 (x) ∗ (−1)2Re

4(x)

keeping on convolving both sides of the above equation by RH
4 (x) ∗ (−1)2Re

4(x) up to k − 1 times, we obtain

C∗k(x) ∗ G(x) =
(
RH

4 (x) ∗ (−1)2Re
4(x)

)∗k

the symbol ∗k denotes the convolution of itself k−times. By properties of Rα(x), we have(
RH

4 (x) ∗ (−1)2Re
4(x)

)∗k
= RH

4k(x) ∗ (−1)2kRe
4k(x).

C∗k(x) ∗ G(x) =
(
RH

4k(x) ∗ (−1)2kRe
4k(x)

)
G(x) =

(
RH

4k(x) ∗ (−1)2Re
4k(x)

)
∗ (C∗k(x))∗−1

is an elementary solution of (32) where RH
4k

(x) and Re
4k

(x) are deined by (15), (20) with α = γ = 4k respectively.

Lemma 9 Given the equation

�u(x) = f (x, u(x)) (35)

where f is defined and has continuous first deivatives for all x ∈ Ω∪∂Ω,Ω is an open subset of Rn and ∂Ω is the boundary

of Ω. Assume that f is bounded, that is | f (x, u)| ≤ N and the boundary condition u(x) = 0 for x ∈ ∂Ω. Then we obtain

u(x) as a unique solution of (35).
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Proof. We can prove the existence of the solution u(x) of (35) by the method of iterations and the Schuder’s estimates.
The details of the proof are given by Courant and Hilbert, (R.Courant, 1966, pp.369-372).

3. Main Results

Theorem

Consider the nonlinear equation
⊗k♦k

c1
u(x) = f (x,�k−1Lk♦k

c1
u(x)) (36)

Where �k, ♦k
c1

are defined by (3) , (11) respectively and the operator Lk is defined by (6). Let f be defined and having
continuous first derivatives for all x ∈ Ω∪ ∂Ω , Ω is an open subset of Rn and ∂Ω denotes the boundary of Ω and n is even
with n ≥ 4. Suppose f is bounded function, that is

| f (x,�k−1Lk♦k
c1

u(x))| ≤ N (37)

for all x ∈ Ω and the boundary condition
�k−1Lk♦k

c1
u(x) = 0 (38)

for all x ∈ ∂Ω. Then we obtain

u(x) = RH
2(k−1)(x) ∗ G(x) ∗ (−1)kLe

2k(x) ∗ S H
2k(x) ∗ W(x) (39)

as a solution of (36) with the boundary condition

u(x) = G(x) ∗ (−1)kLe
2k(x) ∗ S H

2k(x) ∗ (RH
2(k−2)(υ))

(m) (40)

for all x ∈ ∂Ω , m = (n − 4)/2, W(x) is a continuous function for x ∈ Ω ∪ ∂Ω, and G(x) defined by (33). The
function Le

2k
(x), S H

2k
(x) are defined by (22), (16) with ρ = 2k, β = 2k respectively and (RH

2(k−2)(υ))
(m) is defined by (15) with

α = 2(k − 2). Moreover, for k = 1 we obtain

M(x) =
(
RH
−2(x) ∗ (−1)2Re

−4(x)
)
∗
(
C∗1(x)

)
∗ (−1)kS −2(x) ∗ u(x)

as a solution of the inhomogeneous equation
��c1 M(x) = W(x).

Where � and �c1 are defined by (3), (23) with k = 1 respectively and u(x) is obtained from (48). Furthermore, if we put
p = k = 1 then the operator �k and �k

c1
reduces to

∂2

∂x2
1

− ∂
2

∂x2
2

− ∂
2

∂x2
3

− · · · − ∂
2

∂x2
n

and
1
c2

1

∂2

∂x2
1

− ∂
2

∂x2
2

− ∂
2

∂x2
3

− · · · − ∂
2

∂x2
n

respectively and the solution M(x) = IH
2 (x) ∗ NH

2 (x) ∗ W(x) which is the inhomogeneous wave equation⎛⎜⎜⎜⎜⎝ ∂2

∂x2
1

− ∂
2

∂x2
2

− ∂
2

∂x2
3

− · · · − ∂
2

∂x2
n

⎞⎟⎟⎟⎟⎠ . ⎛⎜⎜⎜⎜⎝ 1
c2

1

∂2

∂x2
1

− ∂
2

∂x2
2

− ∂
2

∂x2
3

− · · · − ∂
2

∂x2
n

⎞⎟⎟⎟⎟⎠ M(x) = W(x).

Where IH
2 (x) is defined by (18) with α = 2 and NH

2 (x) is defined by (19) with β = 2. Proof. We have

⊗k♦k
c1

u(x) = ��k−1Lk♦k
c1

u(x)

= f (x,�k−1Lk♦k
c1

u(x)). (41)

Since u(x) has continuous derivative up to order 6k for k = 1, 2, 3, . . . and �k−1Lk♦k
c1

u(x) exists as the generalized function.
Thus we can assume

�k−1Lk♦k
c1

u(x) = W(x) , ∀x ∈ Ω. (42)

Then (41) can be written in the form
⊗k♦k

c1
u(x) = �W(x) = f (x,W(x)) (43)

by (37)
| f (x,W(x))| ≤ N , x ∈ Ω (44)

and by (38), W(x) = 0, x ∈ ∂Ω or
�k−1Lk♦k

c1
u(x) = 0 , ∀x ∈ ∂Ω. (45)

We obtain a unique solution of (43) which satisfies (37) by Lemma 9. Since
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RH
2(k−1)(x) , (−1)kLe

2k
(x) and S H

2k
(x) are the elementary solution of the operators �k−1 , �k

c1
and �k

c1
respectively, and by

Lemma 8, we have G(x) is an elementary of the operator Lk where G(x) defined by (33), i.e.

�k−1RH
2(k−1)(x) = δ , �k

c1
(−1)kLe

2k(x) = δ (46)

and
�k−1

c1
S H

2k(x) = δ , LkG(x) = δ (47)

From (42)
�k−1Lk♦k

c1
u(x) = W(x).

Convolving the above equation by RH
2(k−1)(x) ∗ G(x) ∗ (−1)kLe

2k
(x) ∗ S H

2k
(x), we obtain(

�k−1Lk♦k
c1

u(x)
)
∗
(
RH

2(k−1)(x) ∗ G(x) ∗ (−1)kLe
2k(x) ∗ S H

2k(x)
)

=
(
RH

2(k−1)(x) ∗ G(x) ∗ (−1)kLe
2k(x) ∗ S H

2k(x)
)
∗ W(x).

By the properties of convolution, we obtain

(�k−1RH
2(k−1)(x)) ∗ (LkG(x))(♦k

c1
∗ (−1)kLe

2k ∗ S H
2k) ∗ u(x)

=
(
RH

2(k−1)(x) ∗ G(x) ∗ (−1)kLe
2k(x) ∗ S H

2k(x)
)
∗ W(x)

or
δ ∗ δ ∗ δ ∗ u(x) =

(
RH

2(k−1)(u) ∗ G(x) ∗ (−1)kLe
2k(x) ∗ S H

2k(x)
)
∗ W(x)

Thus
u(x) =

(
RH

2(k−1)(x) ∗ G(x) ∗ (−1)kLe
2k(x) ∗ S H

2k(x)
)
∗ W(x) (48)

as a solution of (36).

Next, consider the condition (45). From
�k−1Lk♦k

c1
u(x) = 0. (49)

By Lemma 6, we have
Lk♦k

c1
u(x) = (RH

2(k−2)(υ))
(m). (50)

Where m = n−4
2 , n ≥ 4 and n is even dimension. Convolving both sides of (50) by G(x) ∗ (−1)kLe

2k
(x) ∗ S H

2k
(x).We obtain(

G(x) ∗ (−1)kLe
2k(x) ∗ S H

2k(x)
)
∗ Lk�k

c1
u(x) = G(x) ∗ (−1)kLe

2k(x) ∗ S H
2k(x) ∗ (RH

2(k−2)(υ))
(m)

By the properties of convolution, we obtain

(LkG(x)) ∗ (♦k
c1

(−1)kLe
2k(x) ∗ S H

2k(x)) ∗ u(x) = G(x) ∗ (−1)kLe
2k(x) ∗ S H

2k(x) ∗ (RH
2(k−2)(υ))

(m)

By Lemma 8 and Lemma 1, Lemma 2, we obtain

δ ∗ δ ∗ u(x) = (G(x) ∗ (−1)kLe
2k(x) ∗ S H

2k(x)) ∗ (RH
2(k−2)(x))(m)

Thus for x ∈ ∂Ω and k = 2, 3, 4, 5, . . . ....

u(x) = G(x) ∗ (−1)kLe
2k(x) ∗ S H

2k(x) ∗ (RH
2(k−2)(υ)

(m) (51)

as required. Now, for k = 1 in (48), we have

u(x) = δ(x) ∗ G(x) ∗ (−1)Le
2(x) ∗ S 2(x) ∗ W(x). (52)

By Lemma 8, we have
G(x) =

(
RH

4 (x) ∗ (−1)2Re
4(x)

)
∗
(
C∗1(x)

)∗−1
.

Taking into account (52), we obtain

u(x) =
(
RH

4 (x) ∗ (−1)2Re
4(x)

)
∗
(
C∗1(x)

)∗−1 ∗ (−1)1Le
2(x) ∗ S H

2 (x) ∗ W(x) (53)

as a solution of (36) for k = 1.

Convolving both sides of (53) by (
RH
−2(x) ∗ (−1)2Re

−4(x)
)
∗
(
C∗1(x)

)
∗ (−1)Le

−2(x).
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By Lemma 4, we obtain(
RH
−2(x) ∗ (−1)2Re

−4(x)
)
∗
(
C∗1(x)

)
∗ (−1)Le

−2(x) ∗ u(x) = RH
2 (x) ∗ S H

2 (x) ∗ W(x).

By Lemma 1, we obtain
M(x) =

(
RH
−2(x) ∗ (−1)2Re

−4(x)
)
∗
(
C∗1(x)

)
∗ (−1)Le

−2(x) ∗ u(x) (54)

as a solution of the inhomogeneous equation
��c1 M(x) = W(x). (55)

Now, consider the boundary condition for k = 1 in (38), we have

L♦c1 u(x) = 0 or �c1�c1 Lu(x) = 0

for x ∈ ∂Ω. Thus by Lemma 6, for k = 1 we obtain

L�c1 u(x) = δ(m)(x) (56)

for x ∈ ∂Ω where δ(m)(x) = S H
0 (x).We convolved the above equation by G(x) ∗ (−1)Le

2(x) where G(x) is defined by (33)
with k = 1 and (−1)Le

2(x) is defined by (22) with ρ = 2, we obtain

G(x) ∗ (−1)Le
2(x) ∗ (L�c1 u(x)

)
= δ(m)(x) ∗ G(x) ∗ (−1)Le

2(x).

By properties of convolution

LG(x) ∗ �B(−1)Le
2(x) ∗ u(x) = δ(m)(x) ∗ G(x) ∗ (−1)Le

2(x).

By Lemma 8 and Lemma 2, we obtain,

δ(x) ∗ δ(x) ∗ u(x) = δ(m)(υ) ∗ G(x) ∗ (−1)Le
2(x).

It follows that
u(x) = δ(m)(υ) ∗ G(x) ∗ (−1)Le

2(x). (57)

By (33) with k = 1, we have
G(x) =

(
RH

4 (x) ∗ (−1)2Re
4(x)

)
∗
(
C∗1(x)

)∗−1
.

Taking into account (57), we obtain

u(x) = δ(m)(υ) ∗
(
RH

4 (x) ∗ (−1)2Re
4(x)

)
∗
(
C∗1(x)

)∗−1 ∗ (−1)Le
2(x) f or x ∈ ∂Ω. (58)

Now consider the case k = 1, p = 1 and q = n − 1 that is from (56), RH
2 (x) reduced to IH

2 (x) where IH
2 (x) is defined by

(18) with α = 2 and S H
2 (x) reduced to NH

2 (x) where NH
2 (x) is defined by (19) with β = 2 and then the operator � defined

by (3) reduces to the wave operator

�∗ =
∂2

∂x2
1

− ∂
2

∂x2
2

− ∂
2

∂x2
3

− · · · − ∂
2

∂x2
n

and �c1 defined by (26) reduces to the wave operator

�∗
c1
=

1
c2

1

∂2

∂x2
1

− ∂
2

∂x2
2

− ∂
2

∂x2
3

− · · · − ∂
2

∂x2
n

and then the solution M(x) reduced to
M(x) = IH

2 (x) ∗ NH
2 (x) ∗ W(x)

which is the solution of inhomogeneous wave equation

�∗�∗
c1

M(x) = W(x).

or ⎛⎜⎜⎜⎜⎝ ∂2

∂x2
1

− ∂
2

∂x2
2

− ∂
2

∂x2
3

− · · · − ∂
2

∂x2
n

⎞⎟⎟⎟⎟⎠ . ⎛⎜⎜⎜⎜⎝ 1
c2

1

∂2

∂x2
1

− ∂
2

∂x2
2

− ∂
2

∂x2
3

− · · · − ∂
2

∂x2
n

⎞⎟⎟⎟⎟⎠ M(x) = W(x).

Where c1 is a positive constant. �
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