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Abstract

We count the number of occurrences of t as the summands (i) in the compositions of a positive integer n into r
parts; and (ii) in all compositions of n; and subsequently obtain other results involving compositions. The initial
counting further helps to solve the enumeration problems for complete homogeneous symmetric polynomial.
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1. Introduction

For each nonnegative integer r, complete homogeneous symmetric polynomial h,(xy, ..., x; ) is the sum of all
distinct monomials of degree r in the variables: x;, ..., x, Formally

he(xq, ..., x,) = Z Xi, Xiy o Xi,

Example:

he(x1,%5,%3) = xf + x5 + x5 + 232, + x,%3 + x3x3 + x.x3 + x5 x5 + x,%3

+x2xi 4+ x2x2 + x2x2 + xPxyx; + X x5x3 + X Xy X3

The number of terms of the polynomial is 15; the numbers of occurrences of 1, 2, 3 and 4 as the exponents in
different terms among 15 terms are 12, 9, 6 and 3 respectively; and the number of occurrences of each of
x1,X,and x; as the bases in different terms among 15 terms is 10.

Evidently h,.(x,...,x;) has some enumerating problems. We give the solutions of the problems from some
combinatorial enumerations for the compositions of a positive integer. The paper has two main parts: (a)
counting for compositions and (b) counting for h, (x4, ..., xi ).

The main results are as shown:

1. The number of occurrences of an integer t as the summands in the compositions of n into r parts

= r (") nzrzza-r+12e21
2. The number of occurrences of t as the summands in all compositions of n

= (n—t +3) 2n-t=2 >t >1
3. The number of occurrences of t as the exponents in different terms among all the terms of h,.(xy, ..., x} )

r ky -t —1
=z l()( , ) r k=2, r-1>2t=>1
i=2 NI i— 2
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4. The number of occurrences of each variable as the bases in different terms among all the terms of

h (%1, o, xg )
SRR W IIn [
T kL L") Vi -2
2. Counting for Compositions
For counting, we use some simple notations as shown.
1. Compositions of n into r summands = C(n, r).

The notation C(n, r) without any qualification means all compositions of n into r summands. Otherwise we use an
adjective to specify the compositions. For example, we write simply ‘some C(n, r)’ to mean some compositions of
n into r summands.

2. Number of C(n,r) = NC(n,r).
3. Number of occurrences of tin C(n,r) = N(t)C(n, r).
4. Some particular C(n, r) that start with a common summand k = k+C(n—k,r—-1).

We use the symbol of equivalence (=) between C(n, r) and its implication; and similarly between k + C(n -k, r —
1) and its implication.

Examples: C(4,3)=1+1+2, 1+2+1, 2+1+1.
NC(4,3)=3; N(1)C(4,3)=6; andN(2)C(4,3)=3.

Some particular C(6, 4), which start with a common summand 2, are:
2+C(4,3) = 2+1+1+2, 2+1+2+1, 2+2+1+1

2.1 Number of Occurrences of t in the Compositions of n into r Parts

The number of the compositions of a positive integer n into r parts or summands is (;fji) This is a known
result. Here we obtain the result in a process of recursive substitution starting with a basic sequential
arrangement of n into r summands. The procedure and result lead to count the number of occurrences of t in the
compositions of n into r parts.

First we count NC(n, r) forn>r > 1.

(a) By convention, n itself is a composition of n so that r is equal to 1 for the composition. Therefore, for n >1
and r = 1, we have: NC(n, r) = NC(n, 1) = 1.

(b) For n >r > 2, we can write a basic sequential arrangement of C(n, r) in the following way.

Cin,r) = 1+C(n-1,r-1), 2+C(n-2,r-1),..., (n—-r+1)+C(r-1,r-1) (1.1)
Consequently forn>r > 2,
NC(n,r) = NC(n-1,r-1) + NC(n-2,r-1) + ... + NC(r-1,r-1) 1.2)

(1.1) and (1.2) yield the successive results as shown.
MHCn,2 = 1+(n-1), 2+(n-2),..., (n-1)+1.
Hence NC(n,2) = n-1.

@ii)C(n,3) = 1+C(h-1,2), 2+C(n-2,2), ..., (n-2)+C(2,2)
Hence NC(n,3) = NC(n-1,2) + NC(n-2,2) + ... + NC(2,2)
=(n-2)+...+1

= (")

Similarly

NC(n,4) = NC(nh-1,3) + NC(n-2,3) + ... +NC(3,3)

= X3 i_zl)

= ("3
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In general forn>r>2, NC(n,r) = (’Tl:i) and including the initial result with this, we get:

NC(n,r) = (B7]), n=zr=1 (2)

We count below N(t)C(n, r) by the above process and results.
The basic conditions of n, tand rare:n>t>1,n>r>%landr=t.

(@) Whenn >1and r =1 then t = n so that N(t)C(n, r) = N(n)C(n, 1) = 1. For n >t > 1, mathematically we can
write: N(t)C(n, 1) = 0. These are the initial results in the counting of N(t)C(n, r).

(b) When n and r are the fixed integers for n > r > 2 then we find some fixed C(n, r). In one of these C(n, r),
each of r — 1 summands is smallest or 1 so that the rest is greatest. Consequently the greatest value of a summand
tisn—r+ 1. Thatis, when n >r > 2 then the condition of tis:n—r+1>t>1. From (1.1) we find:

(i) Some C(n, r) start with a common summand t; and these are: t + C(n —t, r — 1).

(ii) t can occur at other places of different compositions under some orall of C(n—-1,r-1), C(n-2,r-1), ...,
C(r-1,r-1).

The smallest positive integer: 1 can occur as the summands in different compositions under C(n—1, r— 1), C(n —
2,r—1),...,C(r—1, r—1). Yet occurrences of > 2 have some limitations. Since n —r + 1 > ¢, it follows that if
n—r <t- 2 thent cannot occur in a C(n, r). More precisely, we cannot find the occurrences of

2inC(r-1,r-1);
3inC(r,r-1and C(r-1,r-1);
4inC(r+1,r-1),C(r,r—1)and C(r—1,r-1);

In general t cannot occur in any composition under C(r +t—-3,r-1),C(r+t-4,r-1), ...,C(r-1,r-1) for
r>2and ¢ > 2. Other compositions under C(n — 1, r-1), C(n—2,r-1), ..., C(r + t— 2, r — 1) may contain t.
Then from (i) and (ii), we get: forn >r>2andn—-r+1>¢>1,

N{t)C(n,r) = NC(n-t,r-1) + [N®OC(h-1,r-1) + NMOCnh-2,r-1) +
+N@O)C(r+t-2,r-1)]
=>N®OChn = (7550 + INOC(h-1,r-1) + NOHCMh-2,r-1) +
+NOC(r+t-2,r-1)] (3)
Whenr=2,thenforn>2andn-1>¢>1,
N({)C(n,2) =1+N(@®)C(t 1) = 1+1
=2 (3.1)
Evidently N(t)C(n, 2) is constant and independent of t and n. (3.1) is the primary case of (3); and then the rest of
()is:forn>r>3andn—-r+1>¢>1,
NOC(h,n = (P75 + INOCh-1,r-1) + NOHCM-2,r-1) +
+ NIOC(r+t-2,r-1)] (3.2
Now our aim is to count N(t)C(n, r) applying (3.1) and (3.2).
1. To count N(t)C(n, r) fort=1
Forn>2, N(1)C(n,2) = 2
Forn>3, N(1)C(n, 3) n-2+ [N(1)C(n-1,2) + N(1)C(n—-2,2) +... + N(DC(2,2)]
=3(h-2).
(";2) + [N()C(n-1,3) + N()C(n-2,3) +...+ N(1)C(, 3)]
= ("33 +3[(N-3)+(n-4)+...+1]
=4 (")
Similarly forn =5 N(1)C(n,5) = (";%) + 4372} (*3%)
=5(";%)

3

Forn>4, N(1)C(n, 4)



www.ccsenet.org/jmr Journal of Mathematics Research \ol. 7, No. 2; 2015

n-—2
r—2

Ingeneral forn>r>2, N(1)C(n,r) = r(
2. To count N(t)C(n, r) fort=2
n, r and t have the conditions: n>r>2and n—r + 1 >t > 1. Hence when t = 2 then the conditions of n and r are:
n-1>r>2andn=>3.
Forn >3, N(2)C(n, 2) = 2.
Forn>4,N(2)C(n,3)=n-3+[N(2)C(n-1,2) + N(2)C(n—2,2) + ... + N(2)C(3, 2)]

=3(n-3).
Forn>5,N(2)C(n,4)= (", %) +[N@C(n—1,3) + N@2)C(n-2,3) + ... + N(2)C(4, 3)]

= (")%) +3[(n-4)+(n-5)+...+1]
= 4" ?%).

Thus forn>6, N(2)C(n,5) = ("7 %) +43r2d (*5°)

- 5(n3— 3).
Ingeneral forn—-1>r>2,N@2)C(n, r) = r (’;:2 .
By the similar operation, we get:
Forn—-2>r>2, N(3)C(n, r)
Forn—-3>r>2, N(4)C(n, r)

|

=~ =

~

X33
|

N 6 s

— —

In this way
n—t—1

_5 ),anZZ,n—r+12t21 4)

N@®C(n,r) = 7 (
2.2 Number of Occurrences of t in All Compositions of n
Let the number be denoted by N(t)C(n).
When n > 1 and t = n, then N(t)C(n) = N(n)C(n) = 1.
The restrictions in (4) are:
n>r>2, n-r+1>t>1 < n>t>1, n-t+1>r>2
Hence forn>t>1,

N(OC) = Zn:tZHN(t)C(n,r)

n-t+1 n—t—1
- Zrzz r ( r—2 )
SNECM) = (n-t +3)2" 72 n>t>1 (5)
2.3 Other Results from (2), (4) and (5)
(a) Number of summands in the compositions of n
From (5), we get:
Number of the summands in the compositions of n for n > 2

= Number of occurrence of t for t = n + Number of occurrences of t forn >t >1

n-1
=1 +Z (n-t+3)2nt-2

t=1

n-1 n-1
=1+ 2"‘2[(n+3)z 27t — Z tZ‘f]
t=1 t=1

=(Mn+1)2"n-2 (6)
Obviously (6) holds for n = 1 also.
(b) A proposition from (5)
Proposition 1. If t; and t, are the summands in the compositions of n, and n, respectively such that

n,— ty = n, —t, ,then the number of occurrences of t, in the compositions of n; is equal to the number
of occurrences of t, in the compositions of n,.
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(¢) Number-number relationship
By Pascal’s Identity, we get:
r(32) =r () -r (G
The above relation implies the following number-number relationship from (4) and (2).
Number of occurrences of 1 in C(n, r)
= Number of the summands in C(n, r) — Number of the summands in C(n — 1, r) @)
(d) Number-sum relationship
From (6), we get a number-sum relationship as shown.
Number of the summands in the compositions of all n integers: 1, 2, ..., n
n

= lel(i+1)2"‘2

=n2n-1
= Sum of the summands in the compositions of n. (8)
3. Counting for Complete Homogeneous Symmetric Polynomial: h,.(xq, ..., Xx)

3.1 Number of Terms of the Polynomial

The result is known. Here we count the number applying (2) and VVandermonde's identity. Let some terms of the
polynomial contain some fixed m of k variables. The number of these terms = NC(r, m) = (;1 :1 )

We have k 5 r in the problem. Hence we find: (i) either 1 <m <k <r (iij)or1 <m <r <k.

Case 1: When 1 <m <k < r then the number of terms

= 2571:1(7]:1) (7:1_—11
= an:l(kfm) (1:1_—11
- (k;-r;l) — (k+rr—1)

Case 2: When 1 <m <r <k then the number of terms

=2 GG

= =G G
= Ym=o0 (rlr(l)(rr__;l

— (k+7r-1

=77
It follows that the number of terms does not depend on equality or any inequality between k and r, which are all
taken into consideration in the process of solution. Thus we find:

The number of terms of h, (xy, ... x,) = (**777) (9)
3.2 Number of Occurrences of an Integer t as the Powers
Appling (4), we can count the number of occurrences of an integer t as the powers in different terms among all
(1) terms of Ay (xy, ..., xp).
The conditionof tis: r>t>1.
Case 1. The terms in which the integer r occurs as the powers on the variablesare: x7, ..., xj .
Therefore when t = r then the number of occurrences of t is k.
Case 2. Whent <, clearly thenr, k # 1. From (4), we get:
The number of occurrences of t

T ky m—t—1

- > l()( - ) rk>2 r-1>t>1 (10)
i=2 [—2
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(10) has some technical terms for some particular values of k, r and t such that the values of these terms are all 0.
The particulars in the context are described below.

(i) If m is an integer in (2, ..., r) then the product m (<) ("~ 3") or m (X)) (r o ) is one among r —

1 terms of (10). The value of the term is obviously 0 if m > r —t + 1. For example, if the triplet (k, r, t) is (12, 7,

4) then the values of the last three terms of (10) where m € (5, 6, 7) are all 0. This implies that if the number of

bases in a term of h,(x,, ...,x;,) iS5, 6 or 7 then the number of occurrences of 4 as the powers on the bases is 0,

or in other words 4 cannot occur as the powers on any of these bases.

(if) When r > k then the last r — k terms have the factors: (, %) ..., (¥) insuccession such that the values of

these r — k terms are all 0. In other words, for r > k, the number of occurrences of t is equal to the summation:
=20 () (5,

3.3 Number of Occurrences of a Variable x,, asthe Bases

From Case 1 and Case 2 of Topic 3.2, we get:

Total number of bases in all terms of the polynomial

RO IMRI ] (b AL

The number of occurrences of every variable x,, € (x,..,x;) in complete homogeneous symmetric
polynomial of degree r in the variables: x;, ..., x; is same. Hence from (11.1), we get:

The number of occurrences of a variable x,, asthe bases
P r_lzr '<k>(r_t_1> 11.2
- k Lugoy Luiey i)\ 2 (112)
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