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Abstract

In the first part of the paper we consider the main properties, with respect to stability and existence of solutions of
multi-sectoral economic models, of Metzlerian and Morishima matrices. In the second part we introduce various
generalized Metzlerian matrices, in order to enlarge the results of Ohyama (1972) in the study of stability and
comparative statics for a Walrasian-type equlibrium model.
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1. Introduction

Metzlerian matrices or Metzler matrices (in honor of the American economist L. A. Metzler (1913-1980)) are
square (real) matrices in which all the off-diagonal elements are nonnegative: ai j = 0, ∀i , j. Following the
terminology of Fiedler and Pták (1962) we can say that a square matrix A is a Metzlerian matrix if and only if
−A ∈ Z, where Z is the class of square matrices such that ai j 5 0, ∀i , j. Therefore, the relevant properties of
Matzlerian matrices can be derived from the “parallel” properties of the Z-matrices, i. e. of the square matrices
belonging to the Z-class. In Linear Algebra Metzlerian matrices are sometimes called essentially nonnegative
matrices or also quasi-positive matrices. These matrices appear in several applications, especially in economic
analysis, as they translate the assumption of gross substitutability in the study of stability (local and global) of the
equilibrium solution of a Walrasian economic model of general equilibrium.

If we denote by ei(p1, ..., pn), i = 1, ..., n, the n excess demand functions for the n goods exchanged in a Wal-
rasian market, where pi is the price of the i-th good, the j-th good is a gross substitute (respectively a weak gross
substitute) for the i-th good, if for the Jacobian matrix Je(p) we have

ei j ≡ ∂ei/∂p j > 0, ∀i , j

(ei j ≡ ∂ei/∂p j = 0, ∀i , j).

This notion was introduced in economic analysis by Mosak (1944) and by Metzler (1945) and subsequently widely
used in the study of the uniqueness of solutions in general equilibrium theory, in stability analysis of the same, in
comparative statics analysis (Hicksian Laws, Le Chatelier-Samuelson Principle) and in other economic and non-
economic subjects: see, e. g., Arrow and Hahn (1971), Bermann, Neumann and Stern (1989), Farina and Rinaldi
(2000), McKenzie (2002), Morishima (1964), Murata (1977), Nikaido (1968), Takayama (1985), Woods (1978).

This paper is structured as follows.

In Section 2 we give an overview of the main properties of Metzlerian matrices and of Morishima matrices.

In Section 3, by introducing new classes of ”generalized Metzlerian matrices” we perform a generalization of some
results of Ohyama (1972) on stability and comparative statics for a Walrasian-type economic system.

In this paper we adopt the following conventions:

• N = {1, 2, ..., n} is the set of the first n positive integers.

• Unless otherwise stated, all matrices and vectors are real.
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• [0] denotes the matrix or the vector with all zero entries, Ai denotes the i-th row of the matrix A, A j denotes its
j-the column.

• u is the vector whose entries are all 1. u1 = [1, 0, ..., 0]⊤ , u2 = [0, 1, ..., 0]⊤ , ...,

un = [0, 0, ..., 1]⊤ .

• By Akk we denote the k-th principal minor of order (n − 1) of the square matrix A, of order n > 1.

• If A and B are matrices of the same order (m, n), the notations A = B, A ≥ B, A > B stand, respectively, for:
ai j = bi j, ∀i, j; A = B but A , B; ai j > bi j, ∀i, j.When B = [0] , this means that A is, respectively, a nonnegative, a
semipositive, a positive matrix. The same convention is used to compare two vectors of the same dimension. The
notations A 5 B, A ≤ B, A < B are obvious.

• D is the set of diagonal matrices; D+ ⊂ D is the proper subset of D of matrices with a positive diagonal.

• ρ(A), A square, is the spectral radius of A, whereas λ∗(A) is the Perron-Frobenius root of A = [0] .

• A square matrix A of order n has a row dominant diagonal (in the sense of McKenzie (1960)) if there exist
numbers di > 0, i = 1, ..., n, such that

di | aii |>
∑
j,i

d j | ai j |, i = 1, ..., n.

If, in addition, aii < 0, i = 1, ..., n, then A has a negative row dominant diagonal. It can be proved (McKenzie
(1960)) that if A has a row dominant diagonal, then A has a column dominant diagonal, that is, there exist numbers
d j > 0, j = 1, ..., n, such that

d j | a j j |>
∑
i, j

di | ai j |, j = 1, ..., n.

Also the converse holds; therefore it is convenient to speak of “dominant diagonal”, omitting “row” or “column”.

McKenzie (1960) introduced also the notion of a matrix A with a quasi-dominant diagonal (see also Kemp and
Kimura (1978), Uekawa (1971, footnote 5) and Mckenzie (2002)). A square matrix A of order n has a quasi-
dominant diagonal if there exist numbers di > 0 such that

di | aii |=
∑
j,i

d j | ai j |, i = 1, ..., n,

with at least one strict inequality which must hold

a) for at least one index i ∈ N = {1, 2, ..., n} , if A is indecomposable or irreducible, i. e. there does not exist a
subset L , ∅ in N such that (i ∈ L, j < L) =⇒ ai j = 0;

b) for at least one index i ∈ L, L being any subset of N, if A is decomposable (i. e. not indecomposable).

McKenzie (1960) proves that A has a quasi-dominant diagonal if and only if it has a dominant diagonal.

A basic result on dominant diagonal matrices is: every matrix having a dominant diagonal is non-singular.

• A square matrix A (not necessarily symmetric) is said to be quasi-negative definite if x , [0] implies x⊤Ax < 0.
(If A is symmetric the previous inequality characterizes the negative definite matrices).

2. Metzlerian and Generalized Metzlerian Matrices

We have already recalled in the Introduction that A, real and square, is Metzlerian if every off-diagonal element of
A is nonnegative, i. e. if −A ∈ Z, in the terminology of Fiedler and Pták (1962). Therefore, all the characterizations
of the so-calledK-class of square matrices (always in the terminology of Fiedler and Pták), more usually calledM-
class, can be transferred to the Metzlerian class. For a survey of the characterizations of the K-class (orM-class)
see Fiedler and Pták (1962), Berman and Plemmons (1976), Plemmons (1977), Magnani and Meriggi (1981),
Poole and Boullion (1974).

We give in the following theorem only a partial overview of the results on Metzlerian matrices, obtained from the
corresponding results on K-matrices.

Theorem 1. Let A be a square n by n matrix with ai j = 0, ∀i , j (i. e. A is a Metzlerian matrix). Then the
following conditions are mutually equivalent.
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i) There exists an x ≥ [0] such that Ax < [0] .

ii) For any c 5 [0] , there exists an x = [0] such that Ax = c.

iii) The matrix A is non-singular and it holds A−1 ≤ [0] .

iv) The leading principal minors of A alternate in sign, beginning with the negative sign:

a11 < 0,

∣∣∣∣∣∣ a11 a12
a21 a22

∣∣∣∣∣∣ > 0, ..., (−1)n det(A) > 0.

v) The
(

n
k

)
principal minors of order k of A have the sign of (−1)k, k = 1, ..., n. In other words, A is Hicksian

(see, e. g., Kemp and Kimura (1978)).

vi) Each characteristic root of A has a negative real part: Re(λi) < 0, ∀i. In other words, A is stable or negative
stable.

vii) If A is written in the form A =
[
B − µI] , with B = [0] and µ ∈ R, any of the conditions of the present

theorem is equivalent to: µ > λ∗(B), where λ∗(B) denotes the Frobenius characteristic root or dominant
characteristic root of B (see, e. g., Berman and Plemmons (1976) and the next Theorem 5).

viii) A has a negative dominant diagonal.

ix) There exists a positive definite (symmetric) matrix H such that HA is quasi-negative definite (i. e. x , [0]
implies x⊤HAx < 0).

We have seen that a Metzlerian matrix is stable if and only if any one of the previous conditions i)-ix) of Theorem
1 holds. Now we want to better focalize the role of the Metzlerian assumption in the analysis of stability (see, e. g.,
Giorgi (2003), Kemp and Kimura (1978), Newman (1959), Murata (1977), Hershkowitz (1992), Hale and others
(1999)). We recall first the following definitions.

Definition 1. Let A be a (real) square matrix.

a) The matrix A is said to be stable (or negative stable) if every characteristic root of A has its real part negative:
Re(λi) < 0, ∀i.

b) The matrix A is said to be D-stable if DA is stable for every diagonal matrix D ∈ D+.

c) The matrix A is said to be totally stable if every principal submatrix of A is D-stable.

d) The matrix A is said to be S -stable if S A is stable for every (symmetric) positive definite matrix S .

e) The matrix A of order n is said to be Hicksian (in honor of the English economist J. Hicks (1904-1989)),
if all of its principal minors of order r have the sign of (−1)r, r = 1, ..., n. In the mathematical literature
Hicksian matrices are also called (NP)-matrices. The matrix A is said to be imperfectly Hicksian (see, e. g.,
Gandolfo (2010), Takayama (1985)) if every its principal minor of order (n − 1) has the sign of − det(A).

f ) Let A and B be any two real square matrices of the same order. The matrix B is said to be sign-similar to
A if the sign pattern (−,+, 0) of B is the same as the sign pattern of A, regardless of the magnitudes of the
entries in A or B. Let QA denote the set of square matrices sign-similar to a given matrix A. Then A is said
to be sign-stable or qualitatively stable if and only if every member of QA is stable.

The results contained in the following theorem are well-known (see the previously quoted authors).

Theorem 2. Let A be a (real) square matrix of order n. Then:

1) If A has a negative dominant diagonal, then A is D-stable and Hicksian.

2) A is stable if and only if there exists a positive definite matrix H such that (HA + A⊤H) is definite negative.
This is a well-known result of Lyapunov on the stability of matrices.
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3) If A is symmetric, then we have the following equivalences

{A is Hicksian} ⇐⇒ {A is negative definite
}⇐⇒ {A is stable} .

4) If A is quasi-negative definite, then A is totally S -stable and therefore totally stable, S -stable, D-stable and
stable. Moreover, A is Hicksian.

5) If A is totally stable, then A is D-stable (and obviously A is stable).

6) If A is qualitatively stable, then A is D-stable (and obviously A is stable); moreover, if it holds aii < 0,
∀i = 1, ..., n, then if A is qualitatively stable, then A is totally stable.

If we assume that A is Metzlerian, besides the equivalences described in Theorem 1, we get also the equivalences
contained in the following theorem (see Kemp and Kimura (1978), McKenzie (1960), Newman (1959), Giorgi
(2003)).

Theorem 3. Let A be Metzlerian; then the following equivalences hold{
A is totally stable

}⇐⇒ {A is D-stable} ⇐⇒ {A is totally stable
}⇐⇒

⇐⇒ {A is Hicksian } ⇐⇒ {A has a negative dominant diagonal
}⇐⇒

⇐⇒ {any one of the conditions of Theorem 1 holds
}
.

Arrow and McManus (1958) introduced the following definition of D-stable matrices, we may call “strong D-
stability”.

Definition 2. The square matrix A is said to be strongly D-stable if

D ∈ D =⇒{DA is stable ⇐⇒ D ∈ D+} .

The said authors proved the following result:

Theorem 4. (Arrow and McManus (1958)). If there exists E ∈ D such that E−1AE is Metzlerian and stable or it is
quasi-negative definite, then A is strongly D-stable.

Corollary 1. Let A be Metzlerian and stable. Then A is strongly D-stable.

Following Karlin (1959), we note that Metzlerian matrices may also be treated as a special transformation of
nonnegative (square) matrices, since by adding a sufficiently large positive multiple of the identity matrix I, we
can write, with A Metzlerian,

C = A + µI,

where C = [0] . It is therefore possible to obtain, for Metzlerian matrices, Perron-Frobenius-type results (see. e. g.
Arrow (1989), Kemp and Kimura (1978), Karlin (1959), Berman and Plemmons (1976)).

Theorem 5. Let A, of order n, be Metzlerian. Then A has a characteristic root λ∗(A) (Frobenius root or dominant
characteristic root) such that:

i) λ∗(A) is real, it is the largest real characteristic root of A; moreover, λ∗(A) = Re(λ), being λ any other
characteristic root of A.

ii) With λ∗(A) there is associated a semipositive characteristic vector x∗ ≥ [0] .

iii) It holds
[
µI − A

]−1 ≥ [0] if and only if µ > λ∗(A), µ ∈ R.

iv) λ∗(A) = 0 if and only if there exists a vector x ≥ [0] such that Ax = [0] .

If we assume that A is also indecomposable, the previous theorem can be strengthened.

Theorem 6. Let A, of order n, be Metzlerian and indecomposable. Then:

i) The characteristic vector x∗ associated to λ∗(A) can be chosen positive; no other characteristic vector associ-
ated to characteristic values λ different from λ∗(A) has this sign property.
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ii) It holds
[
µI − A

]−1 > [0] if and only if µ > λ∗(A), µ ∈ R.

iii) λ∗(A) is a simple root of the characteristic equation of A.

iv) λ∗(A) > 0 if and only if there exists a vector x ≥ [0] such that Ax > [0] .

Metzlerian matrices also arise in the study of positive dynamic systems (see, e. g., Farina and Rinaldi (2000)): if
we consider the linear system of differential equations

x′(t) = Ax(t), x([0]) ∈ Rn

with t = 0 and with solution
x(t) = eAt x([0]),

where eAt ≡ ∑+∞k=0
tk

k! Ak, it can be proved (see, e. g., Minc (1988)) that eAt = [0] if and only if A is Metzlerian.

A generalization of Metzlerian matrices, which has some importance in economic analysis, is given by the so-called
Morishima matrices (Morishima (1952, 1970)).

Definition 3. A square matrix A of order n is a Morishima matrix if there exists a permutation matrix Π such that

ΠAΠ−1 =

[
A11 A12
A21 A22

]
(1)

where A11 and A22 are square and Metzlerian and A12 5 [0] , A21 5 [0] .

Morishima (1952) requires the stronger condition that A11 and A22 are to be square and nonnegative. Moreover, he
proves that if ai j , 0, ∀i, j = 1, ..., n, then this stronger requirement is equivalent to: aii > 0, ∀i; sign ai j = sign a ji,
∀i , j; sign ai j = sign aikak j for any i, j, k distinct.

Taking into account that it holds[
I [0]

[0] −I

] [
A11 A12
A21 A22

] [
I [0]

[0] −I

]
= I∗AI∗ =

[
A11 −A12
−A21 A22

]
, (2)

we can derive properties of a Morishima matrix form those of the corresponding Metzlerian matrix or of the
corresponding nonnegative matrix. In particular, we have the following results concerning, respectively, stability
and Perron-Frobenius properties of a Morishima matrix.

Theorem 7. Let A be a Morishima matrix; then the equivalences of Theorem 3 hold.

Theorem 8. Let A be a strong Morishima matrix, i. e. in (1) it holds A11 = [0] , A22 = [0] . Furthermore, let A be
indecomposable. Then, there exist a characteristic root λ∗(A) such that:

i) λ∗(A) is a positive and simple root of the characteristic equation of A.

ii) λ∗(A) =| λ |, where λ is any other characteristic value of A.

iii) λ∗(A) > aii, ∀i = 1, ..., n.

iv) There exists a vector x∗ > [0] such that I∗x∗ is a characteristic vector of A associated to λ∗(A), where I∗ is
the matrix appearing in the similarity transformation (2).

v) If and only if µ > λ∗(A), the matrix
[
µI − A

]−1 exists and its diagonal blocks, corresponding to the subma-
trices A11 and A22 of A, are positive, whereas the blocks corresponding to the submatrices A12 and A21 of A
are negative.

Other generalized Metzlerian matrices will be considered in Section 3 of the present paper. We point out that still
other generalizations of the Metzlerian case, important in the analysis of stability of dynamic economic systems,
were considered by Mukherji (1972), Quirk (1974), Sato (1972, 1973).

3. Generalizations of Ohyama’s Results
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One of the most interesting attempts to enlarge the class of the Metzlerian assumptions in the study of stability and
comparative statics for a dynamic economic system, is due to Ohyama (1972). We briefly describe the Walrasian-
type model considered by Ohyama and the results this author has obtained. Then, we shall generalize these results.

We are given an economic system where (n + 1) commodities are exchanged, commodities labelled 0, 1, ..., n. The
respective aggregate excess demand functions are denoted by E0, E1, ..., En; these functions depend from a positive
vector of prices

P = [P0, P1, ..., Pn]⊤ > [0]

and from a vector of independent parameters (or shift parameters or exogenous variables)

z = [z1, z2, ..., zm]⊤ ,

vector belonging to a set Z ⊆ Rm.

Let us suppose that the functions
Ei = Ei(P, z), i = 0, 1, ..., n (3)

satisfy the following properties:

I) Every function Ei is continuously differentiable with respect to (P, z).

II) Walras’ Law is assumed to hold:

P > [0] =⇒
n∑

i=0

PiEi(P, z) = 0. (4)

III) Every function Ei is positively homogeneous of degree zero with respect to P :

λ > 0, P > [0] =⇒ Ei(λP, z) = Ei(P, z), i = 0, 1, ..., n. (5)

Being P0 > 0, we can consider, instead of functions (3), the corresponding functions

fi = fi(p, z) = Ei(
1
P0

P, z) = Ei(P, z), i = 0, 1, ..., n, (6)

where P0 is considered as a numéraire and p is a vector of relative prices:

p =
[
p1, p2, ..., pn

]⊤
= [P1/P0, P2/P0, ..., Pn/P0]⊤ > [0] . (7)

IV) Given z = z∗, with z∗ ∈ int(Z), then there exists an equilibrium vector P = P∗ > [0] such that

Ei(P∗, z∗) = 0, i = 0, 1, ..., n; (8)

therefore there exists a vector of relative equilibrium prices

p = p∗ =
[
P∗1/P

∗
0, P

∗
2/P

∗
0, ..., P

∗
n/P

∗
0

]⊤
> [0]

for which it holds
fi(p∗, z∗) = 0, i = 0, 1, ..., n.

V) We choose the units of commodities such that all prices are equal to unity at equilibrium (without loss of
generality):

P∗0 = P∗1 = ... = P∗n = 1 (9)

and therefore
p∗ = [1, 1, ..., 1]⊤ = u.

VI) If we adopt the notations
fi j ≡ Ei j(P∗, z∗), Ei j(P, z) ≡ ∂Ei/∂P j,
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the vector p∗ will be called a regular equilibrium vector if the matrix

F =
[
fi j

]
i, j = 1, 2, ..., n,

evaluated at (p∗, z∗) is non-singular: det F , 0.

We note that, by (6), (7) and (9), at (p, z) = (p∗, z∗), we have also fi j = ∂ fi/∂p j, i = 0, 1, ..., n; j = 1, 2, ..., n. In order
to obtain det F , 0 it is sufficient to assume that in the matrix F̂ =

[
fi j

]
, i, j = 0, 1, ..., n, singular by assumptions

(4) or (5), a principal submatrix of order n, such as, e. g., F, is non-singular at (p∗, z∗). This assures that also the
other n principal submatrices of order n are non-singular and puts into evidence that the choice of the numéraire is
not relevant for the “regularity” of the equilibrium point.

It is well-known that in economic analysis the matrix F is called “substitution matrix”. If F is Metzlerian, the
economic system described has the “weak gross substitutability property” at p∗ (see, e. g., Morishima (1964)). For
notational convenience, let us write

fi0 ≡
∂Ei(P∗, z∗)
∂P0

, i = 0, 1, ..., n

and

f0 j ≡
∂E0(P∗, z∗)
∂P j

, j = 0, 1, ..., n.

As usual, the dynamic behaviour of the normalized price vector p is described by a system of first-order differential
equations (together with an initial condition p(0) = po > [0]) of the type

p′(t) = DF(p(t) − p∗), t = 0 (10)

or of the type
p′(t) = WF(p(t) − p∗), t = 0, (11)

where D ∈ D+ and W =
[
wi j

]
, i, j = 1, ..., n, denotes a positive definite (symmetric) matrix. The global asymptotic

stability of the equilibrium solution p∗ of the linearized process (10) or (11) is assured if and only if DF or WF
are stable matrices, i. e. DF (WF) has all characteristic values with a negative real part.

In particular, we recall that if DF is stable for any choice of D in the class D+ of diagonal matrices with a positive
diagonal, we say that F is D-stable. If WF is stable for any choice of W in the class of (symmetric) positive definite
matrices, we say that F is W-stable.

Another interesting problem in economic analysis consists in establishing “comparative statics” results for the
system

fi(p, z) = 0, i = 1, ..., n. (12)

The comparative statics analysis of this system involves the investigation of changes in the equilibrium price vector
p∗ following a change in the values taken on by the shift parameters described by vector z. Under assumptions I)-
VI) we can use the classical Implicit Function Theorem (see, e. g., Apostol (1974)) in order to deduce in system
(12) a locally unique (vector) implicit function p(z) : there exists a neighborhood U(z∗) of z∗ such that for any
z ∈ U(z∗) the function p = h(z) is uniquely determined and has all components continuously differentiable on
U(z∗). Therefore, if we choose k ∈ {1, 2, ...,m} , from (12) we can deduce the system

n∑
j=1

(∂ fi(p, z)/∂p j)(∂p j/∂zk) + ∂ fi(p, z)/∂zk = 0, i = 1, 2, ..., n, (13)

with z ∈ U(z∗). In particular, keeping (6), (7) and (9) into account and using the notations of Assumption VI), we
can rewrite relation (13), for z = z∗, in the form

Fπ + Φk = [0] , (14)

where {
π = [π1, π2, ..., πn]⊤ =

[
∂p1/∂zk, ∂p2/∂zk, ..., ∂pn/∂zk

]⊤
Φk =

[
∂ f1/∂zk, ∂ f2/∂zk, ..., ∂ fn/∂zk

]⊤ ,
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for (p, z) = (p∗, z∗).

Being F non-singular, system (14) admits the unique solution

π = −(F−1)Φk, (15)

which may be called the fundamental relation of comparative statics (Takayama (1985)). Comparative statics
information on system (15) will be available if the knowledge of the sign patterns of F and Φk is sufficient to get
information on the sign pattern of π.

In order to complete and generalize the results obtained by Ohyama, we introduce the following notations and
definitions.

• A nonnegative square matrix S = [0] is a stochastic matrix if S u = u.

• The equilibrium price vector p∗ is:

a) a weak Metzlerian equilibrium if

either F is Metzlerian and fi0 = 0,∀i ∈ N or F is Metzlerian and f0i = 0,∀i ∈ N. (16)

b) a Metzlerian equilibrium if

F is Metzlerian and fi0 + f0i > 0,∀i ∈ N. (17)

c) a strongly Metzlerian equilibrium if

F is Metzlerian, fi0 = 0, f0i = 0, fi0 + f0i > 0,∀i ∈ N. (18)

d) an equilibrium of Ohyama, of, respectively, type I and type II, if it holds

fi0 > 0, f0i > 0, ∀i ∈ N (19)

and there exists an n × n stochastic definite positive matrix S such that, respectively, we have

S F is Metzlerian (20)

(“type I”; Ohyama calls this case “G1-Metzlerian competitive system”; see Ohyama (1972), page 195),

S (F + F⊤) is Metzlerian (21)

(“type II”;Ohyama calls this case “G2-Metzlerian competitive system”).

e) an equilibrium of Nikaido if it is of Ohyama of type II, with S = I.

f ) an equilibrium of Morishima generalized (in the sense of Ohyama), if N can be partitioned into several subsets,
disjoint and non-empty, N1,N2, ...,Nh, such that every matrix of the type

[
fi j

]
, i, j ∈ Nr, r = 1, 2, ..., h, is Metzlerian

and if i and j belong to distinct subsets, then it holds fi j 5 0. (The definition considered by Ohyama is not complete
and is stronger).

g) an equilibrium of Morishima, if in f ) we have h = 2.

Always in order to generalize the results of Ohyama, we introduce also the following definitions.

Definition 4. The matrix F =
[
fi j

]
, i, j = 1, 2, ..., n, is called

i) quasi-Metzlerian of type 0 (F ∈ Q0) if there exists a vector q > [0] and a positive definite matrix A such that

(Q + Q⊤) is Metzlerian (22)

(Q + Q⊤)q < [0] , (23)

being Q = AF.
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ii) quasi-Metzlerian of type 1 (F ∈ Q1) if F ∈ Q0 and, moreover, A ≥ [0] and Q is Metzlerian.

iii) quasi-Metzlerian of type 2 (F ∈ Q2) if F ∈ Q0, but with Q = A(F + F⊤).

The results obtained by Ohyama can be synthetized as follows (here π is the solution (15) of system (14)).

R.I) If p∗ is an equilibrium of Ohyama of type I, then F is stable and imperfectly Hicksian; moreover, with
Φk = uk, it holds π ≥ [0] , πk > 0.

R.II) If p∗ is an equilibrium of Ohyama of type II, then F is D-stable and Hicksian; moreover, with Φk = uk, it
holds πk > 0.

R.III) If p∗ is strongly Metzlerian and relations (19) hold, then F is D-stable and Hicksian; moreover, with
Φk = uk, it holds π ≥ [0] , πk > 0.

R.IV) If p∗ is an equilibrium of Nikaido, then F is D-stable and Hicksian; moreover, with Φk = uk, it holds
πk > 0.

R.V) If p∗ is an equilibrium of Morishima generalized and it holds

fi0 + 2
∑
j<Nr

fi j > 0, ∀i ∈ Nr, ∀r = 1, 2, ..., h,

then F is D-stable.

The following theorems generalize the results R.I)-R.V) of Ohyama.

Theorem 9. If F ∈ Q0, then F is stable and with Φk = uk, we have (ak1π1 + ... + aknπn) > 0.

Proof. From (23) we get, being Q = AF,

0 > (Q + Q⊤)iq = 2qiiqi +
∑
j∈N
j,i

(qi j + q ji)q j, ∀i ∈ N. (24)

This implies, being q > [0] , and by relation (22), that (Q + Q⊤) has a negative principal diagonal:

qii < 0, ∀i ∈ N. (25)

From (24) we have also
−2qiiqi >

∑
j∈N
j,i

(qi j + q ji)q j, ∀i ∈ N,

that is, taking (25) and (22) into account,

qi | qii + qii |>
∑
j∈N
j,i

(qi j + q ji)q j, ∀i ∈ N. (26)

Being q > [0] , relations (25) and (26) put into evidence that (Q+Q⊤) has a negative dominant diagonal; therefore
the matrix (Q + Q⊤) = AF + F⊤A is stable (see Theorem 2) and negative definite, being symmetric. Therefore,
being A definite positive, F is stable (Theorem 2). Then, we note that, being det F , 0 and taking the assumptions
made on A and Q into account, with Φk = uk, system (14) admits the representation

Fπ = −uk; Qπ = −Ak (27)

and it admits the unique solution

π = −F−1uk = −(F−1A−1)Auk = −Q−1Ak, (28)

where it holds π , [0] and also, taking (27) into account and the facts that A is symmetric and Q is quasi-negative
definite,

0 < −π⊤Qπ = π⊤Ak = Akπ = ak1 + ... + aknπn.

50



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 7, No. 2; 2015

�
Theorem 10. If F ∈ Q1, then F is stable and imperfectly Hicksian; moreover, with Φk = uk, we have π ≥ [0] ,
πk > 0.

Proof. As F ∈ Q1, then F ∈ Q0 and, thanks to Theorem 9, F is stable, (25) holds true and Q is quasi-negative
definite. Therefore Q is stable (see Theorem 2) and it holds, being Q Metzlerian, Q−1 ≤ [0] (Theorem 1). We have
therefore, being det F , 0, A ≥ [0] and Q = AF,

[0] A = [0] ≥ Q−1A−1A = F−1, (29)

that is
f −1
ii = (Fii/ det F) 5 0, ∀i ∈ N. (30)

From Q = AF we have A = AFF−1 = QF−1 and therefore

aii = Qi(F−1)i = qii f −1
ii +

∑
j∈N
j,i

qi j f −1
ji , ∀i ∈ N,

that is, by virtue of (25),
f −1
ii = (aii −

∑
j∈N
j,i

qi j f −1
ji )/qii, ∀i ∈ N,

The assumption that A is positive definite implies aii > 0 (if we would have aii 5 0 for some i ∈ N, for x = ui

we would get x⊤Ax = aii 5 0, being x , [0]). Therefore, being Q Metzlerian and taking (29), (25) and (30) into
account, it holds

f −1
ii = (Fii/ det F) < 0, ∀i ∈ N, (31)

so F is imperfectly Hicksian. We remark that withΦk = uk, relations (28) still hold; from the same relations, taking
(29) and (31) into account, we have

π = −(F−1)uk ≥ [0] , (32)

πk = − f −1
kk > 0.

�
Theorem 11. If F ∈ Q2, then F is W-stable and Hicksian; moreover, with Φk = uk, we have πk > 0.

Proof. Following the same lines of the proof of Theorem 9, we have that if F ∈ Q2, then (Q + Q⊤) = A(F +
F⊤) + (F + F⊤)A is negative definite. Being A positive definite by assumption, then (F + F⊤) is stable (Theorem
2) and, being symmetric, it is also negative definite. Therefore F is quasi-negative definite and also W-stable and
Hicksian (Theorem 2). Therefore, with Φk = uk, in the unique solution π = −(F−1)k of system (14), it holds
πk = ((−Fkk)/ det F) > 0. �
Before stating the next results, we note that, under assumptions I)-VI) of the present section, the so-called Walras
and homogeinity laws in differential form hold, i. e. we have

F⊤u = − [ f01, f02, ..., f0n
]⊤ (33)

Fu = − [ f10, f20, ..., fn0
]⊤ . (34)

Relation (33) can be obtained by differentiating, with respect to P j, j ∈ N, the two members of the equality
appearing in (4) after the implication operation and taking (8) into account, together with the conventions made on
P∗, p∗ and F for (P, z) = (P∗, z∗). The same procedure allows to get relation (34), by differentiating with respect
to λ the two expressions after the implication operation of relation (5) or also by means of the well-known Euler
Theorem on differentiable homogeneous functions.

Theorem 12. If p∗ is a weak Metzlerian equilibrium point, then F is D-stable and Hicksian; moreover, with
Φk = uk, we have π ≥ [0] , πk > 0. If p∗ is a Metzlerian equilibrium point or a strong Metzlerian equilibrium point,
then F is also W-stable.
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Proof. First, let us suppose that in (16) it holds fi0 = 0, ∀i ∈ N. From (34) we get

fii 5 −
∑
j∈N
j,i

fi j, ∀i ∈ N. (35)

As F is a Non-singular Metzlerian matrix, this excludes the case Fi = [0] for some i ∈ N; therefore we have

fii < 0, ∀i ∈ N. (36)

Hence, from (35) we obtain
| fii |=

∑
j∈N
j,i

| fi j |, ∀i ∈ N. (37)

Then, we remark that if λ is a characteristic value of F, with Re(λ) = 0, given the matrix K = (F − λI) =
[
ki j

]
,

we have, by (36), | kii |=| fii − λ |=| fii |, ∀i ∈ N, where the equality holds only if Re(λ) = Im(λ) = 0, which is
excluded by the assumption of the non-singularity of F. Therefore, with Re(λ) = 0, from relation (37) we have

| kii |>| fii |=
∑
j∈N
j,i

| fi j |=
∑
j∈N
j,i

| ki j |, ∀i ∈ N.

Therefore, the matrix K has a dominant diagonal and hence det K = det(F − λI) , 0, so, with Re(λ) = 0, we have
that λ is not a characteristic value of F. Therefore, every characteristic value of F has a negative real part, hence
F is stable. But being F a Metzlerian matrix, we have (see Theorem 1) F−1 ≤ [0] , F has a negative dominant
diagonal, F is D-stable and Hicksian. Under the assumption Φk = uk, this allows us to deduce from (15) the
relations (31) and (32). In the same way we perform the proof under the assumption f0i = 0, ∀i ∈ N.

If p∗ is a Metzlerian equilibrium point or also a strong Metzlerian equilibrium point, then F belongs both to Q1
and to Q2 (it is sufficient to choose, in the relations of Definition 4, q = u, A = I and take (33)-(34) into account,
together with assumptions (17) or (18)). From Theorems 10 and 11 the thesis follows. �
Theorem 13. If p∗ is an equilibrium of Nikaido, then F is W-stable and Hicksian; moreover, with Φk = uk we
have πk > 0.

Proof. By performing the proof as in Theorem 12, we obtain that if p∗ is an equilibrium of Nikaido, then F ∈ Q0
and F ∈ Q2. From Theorem 11 we obtain the thesis of the present theorem. �
Theorem 14. Let p∗ be an equilibrium of Morishima. Then, F is D-stable and Hicksian if

fi0 + 2
∑
j∈N
j<Nr

fi j = 0, ∀r ∈ {1, 2, ..., h} (38)

and any one of the following conditions holds:

a) h = 2;

b) h > 2, F is indecomposable but (38) holds with the strict sign for at least one index i ∈ L, for any subset
L , ∅ of N, such that

(i ∈ L, j < L) =⇒ fi j = 0.

Proof. From relation (38) we have, taking (34) into account,

− fii 5
∑
j∈N
j∈Nr

fi j −
∑
j∈N
j<Nr

fi j, ∀i ∈ Nr, ∀r ∈ {1, 2, ..., h} , (39)

the inequality being strict for the values of i specified in the assumptions a), b), c) of the present theorem. We build
the matrix G =

[
gi j

]
, with gi j = ± fi j, according to the fact that i and j both belong or both do not belong to only

one of the sets N1,N2, ...,Nh.We point out that G is a Metzlerian matrix.
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From (39), from the definition of a Morishima equilibrium, the non-singularity assumption on F (which excludes
zero rows in F) and from the equivalence between the decomposability (if it holds) of F and G, we obtain

gii < 0, ∀i ∈ N (40)

| gii |=
∑
j∈N
j,i

| gi j | ∀i ∈ N, (41)

where the inequality in (41) holds in the same way as in (39).

Now we prove that det G , 0. For the case a), it is sufficient to build the matrix

H =
[
hi j

]
, with hi j =


1, if i = j, i, j ∈ N1;
−1, if i = j, i, j ∈ N2;
0, in all the remaining cases.

Then, to remark, being G = HFH−1 = HFH, that G and F are similar and therefore, being F non-singular, it holds
det G , 0.

For the cases b) and c) it is sufficient to note that G has a row dominant diagonal (with D = I). Therefore, det G , 0,
hence G has no zero characteristic values. If λ is a characteristic value of G, with Re(λ) = 0, by (40) it will hold

| gii − λ |>| gii |, ∀i ∈ N.

It is therefore evident, by (41), that (G − λI) has a dominant diagonal, hence det(G − λI) , 0. It follows that every
characteristic value of G has a negative real part, i. e. G is stable. But, being G a Metzlerian matrix, then G has
a negative dominant diagonal (see Theorem 3). This property holds also for F (being fii = gii and, with i , j,
| fi j |=| gi j |); therefore F is D-stable and Hicksian (see Theorem 2). �
It is evident that the results of Theorems 12, 13 and 14 are more general than the corresponding results R.III),
R.IV) and R.V) of Ohyama. Now we prove that the results R.I) and R.II) of Ohyama are particular cases of,
respectively, Theorem 10 and Theorem 11.

Theorem 15. The results R.I) and R.II) of Ohyama can be deduced, respectively, from Theorem 10 and Theorem
11.

Proof. First we note that in every equilibrium of Ohyama relation (19) holds; that is, taking (33) and (34) into
account, we have

F⊤u < [0] (42)

Fu < [0] (43)

and moreover, in (20) and (21) the matrix S is a stochastic positive definite matrix. This ensures that in every
equilibrium of Ohyama it holds

F⊤S u < [0] , FS u < [0] , S F⊤u < [0] , S Fu < [0] . (44)

Indeed, from the assumption S = S ⊤, with S a stochastic matrix, we have S u = u and from, respectively, (42) and
(43) we obtain

F⊤S u = F⊤(S u) = F⊤u < [0] ,
FS u = F(S u) = Fu < [0] ,

that is, the first two relations of (44). In a similar way, recalling that S has all semipositive rows, it is possible to
prove the last two relations of (44), i. e.

S F⊤u < S [0] = [0] ; S Fu < S [0] = [0] .

It is therefore evident, with the choice q = u, A = S , that the relations q > [0] , A ≥ [0] , A positive definite, hold
true, and in the results R.I),R.II) of Ohyama the corresponding matrices Q = S F and Q = S (F+F⊤), defined by i)
and ii) of Definition 3, verify, by virtue of (44), relation (23). Moreover, by (20) and (21), Q is a Metzlerian matrix
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and hence also relation (22) is fulfilled. Therefore, the results R.I) and R.II) are particular cases of, respectively,
Theorem 10 and Theorem 11. �
4. Conclusions

In the second part of the present note we have obtained some results of stability and comparative statics for a
Walrasian-type model, under quantitative assumptions more general than the ones usually considered in the litera-
ture for these types of investigations. Our approach allows the presence of complementarity commodities ( fi j < 0,
i , j), weak complementarity commodities ( fi j 5 0, i , j) ando also the existence of Giffen commodities ( fii = 0).
Moreover, also a strong “asymmetric situation” in the elements of F and/or in its sign pattern, is tolerated.

Finally, we remark that, as far as we know, there are very few recent papers on economic applications of Metzlerian
matrices in economic theory. A paper of D. Furth (2002) is just titled: “Why are there nowadays only a few articles
on matrices in economic journals?”. According to this author an answer could be that most economists are no
longer interested in stability of linear or linearized systems. Indeed, mathematical economics is obviously strongly
influenced by the current trends of economic researches and perhaps these ones are more changeable in time than
other types of scientific researches. For the reader’s convenience we suggest also the useful book of Hale, Lady,
Maybee and Quirk (1999). On the other hand, there are several recent papers on Metzlerain matrices (less on
Morishima matrices and other generalized Metzlerian matrices), not however concerning economic models: it is
sufficient, for example, to digit “Metzler matrices” in the web-site of Mathematical Reviews or Zentralblatt für
Mathematik.
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