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Abstract

The statistical convergence in metric spaces is considered. Its equivalence to the statistical fundamentality in
complete metric spaces is proved. Introduced the concept of p-strong convergence, and proved its equivalence to
the statistical convergence. Tauberian theorems concerning statistical convergence in metric spaces are given.
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1. Introduction

The idea of statistical convergence was first proposed by A.Zigmund (Zygmund, 1979) in his famous monograph
where he talked about ”almost convergence”. The first definition of it was given by H. Fast (Fast, 1951) and H.
Steinhaus (Steinhaus, 1951). Later, this concept has been generalized in many directions. More details on this
matter and on applications of this concept can be found in (T.C. Brown and A.R. Freedman, 1990; B.J. Connor,
1988; R. Erdös and G. Tenenbaum, 1989; A.R. Freedman and J.J. Sember, 1981; J.A. Fridy, 1985; J.A. Fridy and
M.K. Khan, 1998; M. Kuchukaslan, U. Deger and O. Dovgoshey, 2012; M. Kuchukaslan and U. Deger, 2012;
I.J. Maddox, 1988; D. Maharam, 1976; G.D. Maio and L.D.R. Kocinac, 2008; H.I.Miller, 1995; G.M. Peterson,
1966; I.J. Schoenberg, 1959). It should be noted that the methods of non-convergent sequences have long been
known and they include e.g. Cesaro method, Abel method and etc. These methods are used in different areas
of mathematics. For the applicability of these methods is very important that the considered space has a linear
structure. Therefore, the study of statistical convergence in metric spaces is of special scientific interest. Different
aspects of this problem is devoted in M. Kuchukaslan, U. Deger and O. Dovgoshey, 2014; M. Kuchukaslan and U.
Deger, 2012. Statistical convergence is currently actively used in many areas of mathematics such as summation
theory (B.J. Connor, 1988; A.R. Freedman and J.J. Sember, 1981; J.A. Fridy, 1985), number theory (R. Erdös and
G. Tenenbaum, 1989), trigonometric series (A. Zygmund, 1979), probability theory (J.A. Fridy and M.K. Khan,
1998) measure theory (H.I. Miller, 1995), optimization (S. Pehlivan and M.A. Mamedov, 2000), approximation
theory (A.D. Gadjiev and C. Orhan, 2002; A.D. Gadjiev, 2011), fuzzy theory, etc. Generalization of statistical
convergence to the continuous case have done in (Bilalov, Sadigova).

It should be noted that the concept of statistical fundamentality (stat fundamentality ) was first introduced by J.A.
Fridy (J.A. Fridy, 1985) who proved its equivalence to statistical convergence with respect to numerical sequences.
This problem was raised in (G.D. Maio and L.D.R. Kocinac, 2008) concerning uniform space (X; U). It is proved
that if the sequence {xn}n∈N ⊂ X stat-convergent, then it is stat-fundamental. In the same paper raised the Problem
2.16 of the validity of converse statement.

In this paper we consider the statistical convergence in metric spaces. Statistical fundamentality is defined, and in
a complete metric space it is proved that the statistical fundamentality is equivalent to the statistical convergence.
Concept p-strong convergence in metric spaces is introduced and prove its equivalence to the one of statistical
convergence. Some Tauberian theorems concerning statistical convergence in metric spaces are introduced. It
should be noted that the issue of statistical convergence in metric spaces considered in (M. Kuchukaslan, U. Deger
and O. Dovgoshey, 2014; M. Kuchukaslan and U. Deger, 2012). In these papers the statistical boundedness,
the statistical equivalence of sequences in metric spaces and their relationship to the statistical convergence are
considered.
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2. Needful Information

Let (X; ρ ( · ; · )) be a metric space with a metric ρ. Denote by Oε (a) the open ball in X centered at the point a ∈ X
and with a radius ε: Oε (a) ≡ {x ∈ X : ρ (x; a) < ε}. AC means the complement of the set A ⊂ N to N : AC = N\A,
where N is a set of all positive numbers. χA ( · ) is the characteristic function of A; ⇒ will be a quantifier which
means ”follows”; ∧ will be a quantifier which means ”and”; M̄ will stand for the closure of M.

Let A ⊂ N be some set. Assume δn (A) = 1
n
∑n

k=1 χA (k). If ∃ lim
n→∞
δn (A) = δ (A), then δ (A) is called statistical

density of the set A.

Accept the following

Definition 1. We say that {xn}n∈N ⊂ X statistically converges (st-converges) to x ∈ X, if δ (Aε) = 0, where
Aε ≡ {n ∈ N : ρ (xn; x) ≥ ε}, and this kind of convergence is denoted as st- lim

n→∞
xn = x.

Put
K ≡ {K ⊂ N : δ (K) = 1} .

In the sequel, we will need the following easily provable

Lemma 1. Let K j ∈ K , j = 1; 2⇒ K1 ∩ K2 ∈ K .

Proof. In fact, let In ≡ {1; ...; n}. We have

K1 ∩ K2 = (K1 ∪ K2) \ [(K2\K1) ∪ (K1\K2)] .

Consequently
K1 ∩ K2 ∩ In = [(K1 ∪ K2) ∩ In] \ [((K2\K1) ∪ (K1\K2)) ∩ In] . (1)

As
((K2\K1) ∪ (K1\K2)) ∩ In = ((K2\K1) ∩ In) ∪ ((K1\K2) ∩ In) ,

taking into account

(K2\K1) ∩ In ⊂ KC
1 ∩ In ⇒

|(K2\K1) ∩ In|
|In|

≤
∣∣∣KC

1 ∩ In

∣∣∣
|In|

→ 0 , n→ ∞,

|(K1\K2) ∩ In|
|In|

→ 0 , n→ ∞,

we get
|((K2\K1) ∪ (K1\K2)) ∩ In|

|In|
→ 0, n→ ∞.

From (K1 ∩ In) ⊂ (K1 ∪ K2) ∩ In and K1 ∈ K it follows

|(K1 ∪ K2) ∩ In|
|In|

→ 1 , n→ ∞,

and hence K1 ∪ K2 ∈ K . Then from (1) we directly obtain

|K1 ∩ K2 ∩ In|
|In|

=
|(K1 ∪ K2) ∩ In|

|In|
− |((K2\K1) ∪ (K1\K2)) ∩ In|

|In|
→ 1, n→ ∞,

i.e. K1 ∩ K2 ∈ K .

3. Statistical Fundamentality

Accept the following

Definition 2. We say that {xn}n∈N ⊂ X is statistically fundamental (st-fundamental) in (X; ρ), if ∀ε > 0,
∃nε ∈ N : δ

(
∆nε
)
= 0, where

∆nε ≡
{
n ∈ N : ρ

(
xn; xnε

) ≥ ε} .
Let xn

st→ x in X, and ε > 0 be an arbitrary number. Put

Aε ≡ {n : ρ (xn; x) ≥ ε} .
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It is absolutely clear that δ
(
AC
ε/2

)
= 1. Take ∀nε ∈ AC

ε/2 : ρ
(
xnε ; x

)
< ε2 . We have{

n : ρ (xn; x) <
ε

2

}
⊂ {n : ρ

(
xn; xnε

)
< ε
}
,

i.e. AC
ε/2 ⊂ ∆C

nε , where ∆nε ≡
{
n ∈ N : ρ

(
xn; xnε

) ≥ ε}. Hence, δ
(
∆C

nε

)
= 1⇒ δ

(
∆nε

)
= 0.

Thus, the following lemma is true.

Lemma 2. Let xn
st→ x in (X; ρ). Then the sequence {xn}n∈N ⊂ X is st-fundamental in (X; ρ).

Let (X; ρ) be complete metric space, and the sequence {xn}n∈N ⊂ X be st- fundamental in (X; ρ). Then ∃n j ∈ N :
δ
(
K j

)
= 1, where K j ≡

{
n : ρ

(
xn; xn j

)
≤ 21− j

}
, j = 1, 2. By Lemma 1 we obtain K1 ∩ K2 ∈ K . Put

M1 ≡ O1
(
xn1

) ∩ O2−1
(
xn2

)
.

It is obvious that xn ∈ M1 , ∀n ∈ (K1 ∩ K2) ≡ K(1). Thus, ∃n3 ∈ N : K3 ∈ K , where K3 ≡
{
n : ρ

(
xn; xn3

) ≤ 2−2
}
.

Let K(2) = K(1) ∩ K3. It is clear that K(2) ∈ K . Now let

M2 ≡ M1 ∩ O2−2
(
xn3

)
.

Denote by d (M) the diameter of the set M, i.e.

d (M) = sup
x,y∈M
ρ (x; y) .

Continuing in the same way, we obtain a sequence of closed sets {Mn}n∈N, M1 ⊃ M2 ⊃ ..., whose diameters tend to
zero: d (Mn) ≤ 2−n+1 → 0 , n → ∞. Moreover, K(n) ∈ K , where K(n) ≡ {k ∈ N : xk ∈ Mn}. Take ∀x̃n ∈ Mn. We
have

ρ
(
x̃n; x̃n+p

)
≤ d (Mn)→ 0, n→ ∞, ∀p ∈ N.

Hence, the sequence {x̃n}n∈N is fundamental in (X; ρ) and as (X; ρ) is complete, it is clear that ∃x ∈ X : x̃n →
x , n → ∞. It is absolutely clear that x ∈ ∩

n
Mn, i.e. ∩

n
Mn is non-empty. From d (Mn) → 0 , n → ∞, it directly

follows that {x} =∩
n

Mn, i.e. ∩
n

Mn consists of one element. As K(m) ∈ K , then ∃ {nm}m∈N ⊂ N ; n1 < n2 < ... :

1
n

∣∣∣∣{k ∈ In : k ∈ KC
(m)

}∣∣∣∣ < 1
m
, ∀n > nm,

where In ≡ {1; ...; n}. Assume
N0 ≡

{
k ∈ N : nm < k ≤ nm+1 ∧ k ∈ KC

(m)

}
,

and

yk =

{
x , i f k ∈ N0 ∧ (k > n1) ;
xk, i f othervise.

Take ∀ε > 0. If k ∈ N0 ∧ (k > n1), then yk = x, and, as a result 0 = ρ (yk; x) < ε. If k < N0 ⇒ k ∈ K(m)⇒ xk ∈
Mm ⇒ ρ (xk; x) ≤ ρ (xk; xnm

)
+ ρ
(
xnm ; x

) ≤ 2−m+2 < ε, for sufficiently great values of m. Consequently, lim
k→∞

yk = x.

Let K̃ ≡ {k ∈ N : xk , yk}. Let us show that δ
(
K̃
)
= 0. Put nm < n < nm+1. Let us prove that

{k ≤ n : xk , yk} ⊂
{
k ≤ n : k ∈ KC

(m)

}
.

Let k ≤ n ∧ xk , yk . Consequently, k ∈ N0 ⇒ k ∈ KC
(m). Thus

1
n
|{k ≤ n : xk , yk}| ≤

1
n

∣∣∣∣{k ≤ n : k ∈ KC
(m)

}∣∣∣∣ < 1
m
.

It is clear that if n→ ∞, then m→ ∞. Then from the previous relation we get

lim
n→∞

|{k ≤ n : xk , yk}|
n

= 0. (2)
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Consequently, {k ≤ n : xk , yk}C ∈ K and lim
n→∞

yn = x. Let us show that st- lim
n→∞

xn = x. Take ∀ε > 0. We have

{k ≤ n : ρ (xk; x) ≥ ε} ⊂ {k ≤ n : xk , yk} ∪ {k ≤ n : ρ (yk; x) ≥ ε} . (3)

As, lim
k→∞

yk = x in (X; ρ), then ∃nε ∈ N :ρ (yk; x) < ε , ∀k ≥ nε. Consequently

|{k ≤ n : ρ (yk; x) ≥ ε}| ≤ nε ⇒
1
n
|{k ≤ n : ρ (yk; x) ≥ ε}| ≤ nε

n
→ 0 , n→ ∞.

Then, using (2), from (3) we obtain

1
n
|{k ≤ n : ρ (xk; x) ≥ ε}| ≤ 1

n
|{k ≤ n : xk , yk}|+

+
1
n
|{k ≤ n : ρ (yk; x) ≥ ε}| → 0, n→ ∞.

So, st- lim
n→∞

xn = x. Thus, we have proved the following theorem.

Theorem 1. Let (X; ρ) be a complete metric space and {xn}n∈N ⊂ X be some system. Then the following statements
are equivalent to each other:

1) ∃st − lim
n→∞

xn;

2) {xn}n∈N is st-fundamental;

3) ∃ {yn}n∈N ⊂ X : ∃ lim
n→∞

yn ∧ {n ∈ N : xn = yn} ∈ K .

This theorem immediately implies the following

Corollary 1. Let {xn}n∈N ⊂ X and ∃st- lim
n→∞

xn = x. Then ∃ {nk}k∈N ⊂ N : n1 < n2 < ..., lim
k→∞

xnk = x ∧ δ ({nk}k∈N) =

1.

4. p-strong Convergence

Let (X; ρ) be a metric space, and p ∈ (0,+∞) be some number. Following (A. Alotaibi and A.M. Alroqi, 2012) we
accept the following

Definition 3. The sequence {xn}n∈N ⊂ X is called p-strong convergent to x ∈ X, if lim
n→∞

1
n
∑n

k=1 ρ
p (xk; x) = 0, and

this kind of limit is denoted as p- lim
n→∞

xn = x.

The following theorem is true.

Theorem 2. It holds: i) If p- lim
n→∞

xn = x then ∃st- lim
n→∞

xn ∧ st- lim
n→∞

xn = x; ii) If ∃st- lim
n→∞

xn = x and ∃Or (x0) ⊂ X :
xn ∈ Or (x0) , ∀n ∈ N, then ∃p- lim

n→∞
xn = x.

Proof. i) Let p- lim
n→∞

xn = x. Take ∀ε > 0, and put K(n)
ε = {n ∈ In : ρ (xn; x) ≥ ε}. We have

εp |Kε|
n
≤ 1

n

∑
k∈K(n)

ε

ρp (xk; x) ≤ 1
n

n∑
k=1

ρp (xk; x)→ 0 , n→ ∞,

i.e. δ (Kε) = 0⇒ st- lim
n→∞

xn = x.

ii) Let ∃st- lim
n→∞

xn = x and ∃Or (x0) ⊂ X :xn ∈ Or (x0) , ∀n ∈ N. We have

ρ (xn; x) ≤ ρ (xn; x0) + ρ (x0; x) ≤ r + ρ (x0; x) = M.

Thus
1
n

n∑
k=1

ρp (xk; x) =
1
n

∑
k∈In\K(n)

ε

ρp (xk; x) +
1
n

∑
k∈Kε

ρp (xk; x) ,
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where K(n)
ε = {k ∈ In : ρ (xk; x) ≥ ε}, ε > 0 is an arbitrary number. So

1
n

∑
k∈In\K(n)

ε

ρp (xk; x) ≤ εp;

1
n

∑
k∈Kε

ρp (xk; x) ≤ Mp |Kε|
n
→ 0 , n→ ∞.

From the arbitrariness of ε we obtain that

1
n

n∑
k=1

ρp (xk; x) = 0⇒ p − lim
n→∞

xn = x.

Definition 4. The function µ : [0,∞) → [0,∞) is called a modulus, if: (i) µ (0) = 0 ⇔ x = 0; (ii) µ (x + y) ≤
µ (x) + µ (y) , ∀x, y ∈ [0,∞); (iii) µ is a monotone nondecreasing function; (iv) µ (+0) = 0.

According to (I.J. Maddox, 1988) we accept the following

Definition 5. Let (X; ρ) be a metric space and µ be a modulus. {xn}n∈N ⊂ X is called µ-convergent to x ∈ X, if

lim
n→∞

1
n

n∑
k=1

µ (ρ (xk; x)) = 0,

and this kind of convergence is denoted as µ- lim
n→∞

xn = x.

Similarly to Theorem 2 we prove the following

Theorem 3. Let ∃µ- lim
n→∞

xn = x. Then ∃st- lim
n→∞

xn ∧ st- lim
n→∞

xn = x.

5. Tauberian Theorems in Metric Spaces

Let (X; ρ) be a metric space and {xn}n∈N ⊂ X be some sequence. Let ∆ρn = ρ (xn; xn+1) , ∀n ∈ N. The following
theorem is true.

Theorem 4. Let st- lim
n→∞

xn = x and ∆ρn = ō
(

1
n

)
. Then ∃ lim

n→∞
xn ∧ lim

n→∞
xn = x.

Proof. We will follow (J.A. Fridy, 1985). Let st- lim
n→∞

xn = x. Then, by Theorem 1 ∃ {yn}n∈N ⊂ X : lim
n→∞

yn =

x ∧ {n : xn = yn} ∈ K . Every k ∈ N can be represented as k = mk + pk, where

mk =

{
max {i ≤ k : xi = yi} , Ak , ∅ ,
−1 , Ak = ∅ ,

Ak = {i ≤ k : xi = yi}. As proved in (A.R. Freedman and J.J. Sember, 1981), it holds that lim
k→∞

pk
mk
= 0. It is clear

that ∃M > 0 : ∆ρn ≤ B
n , ∀n ∈ N.

We have
ρ
(
ymk ; xk

)
= ρ
(
xmk ; xk

)
= ρ
(
xmk ; xmk+pk

)
≤

≤
mk+pk−1∑

i=mk

ρ (xi; xi+1) ≤
mk+pk−1∑

i=mk

∆ρi ≤ M
pk

mk
→ 0 , k → ∞.

As, lim
k→∞

ymk = x in (X; ρ), it directly follows that lim
k→∞

xk = x.

We say that {xk}k∈N ⊂ X is a gap sequence if ∆ρk = 0 except for certain indices k which occur at wide intervals or
gaps.

The following Tauberian theorem is true.

Theorem 5. Let {k (i)}i∈N ⊂ N be an increasing sequence such that lim infi
k(i+1)

k(i) > 1 and let {xk}k∈N ⊂ X be
corresponding gap sequence: ∆ρn = 0 if k , k (i) for i ∈ N. If st- lim

n→∞
xn = x, then lim

n→∞
xn = x.
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Proof. Quite similarly proved in (J.A. Fridy, 1985) For completeness of the exposition we present it here. Let
lim infi

k(i+1)
k(i) = 1 + 2δ > 1. Then for sufficiently great values of i we have

k (i + 1)
k (i)

> 1 + δ > 1, (4)

i.e.
k (i + 1) − k (i) > δ k (i) .

This means that the number of terms in the (i + 1)-st block ( throughout which xk is constant) is greater than δ k (i).
Now, let us assume that lim

n→∞
xn , x. Take ε > 0. Let k ∈ N be sufficiently great, such that ρ (xk; x) ≥ ε. Thus if

such a k is chosen from the (i + 1)-st block, where i is large enough to ensure that (4) holds, we have

1
k (i + 1)

|{k ≤ k (i + 1) : ρ (xk; x) ≥ ε}| > k (i + 1) − k (i)
k (i + 1)

>
δ

1 + δ
.

Thus, 1
n |{k ≤ n : ρ (xk; x) ≥ ε}| does not tend to zero, so st- lim

n→∞
xn , x.
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