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Abstract

We prove Calderón-Zygmund estimates for a class of parabolic problems whose model is the non-homogeneous
parabolic p(x, t)-Laplacian equation

∂tu − div
(
|Du|p(x,t)−2Du

)
= f − div

(
|F|p(x,t)−2F

)
.

More precisely, we will show that the spatial gradient Du is as integrable as the inhomogeneities f and F, i.e.

|F|p(x,t), | f |
γ1
γ1−1 ∈ Lq

loc ⇒ |F|p(x,t) ∈ Lq
loc for any q > 1,

where γ1 is the lower bound for p(x, t). Moreover, it is possible to use this approach to establish the Calderón-
Zygmund theory for parabolic obstacle problems with p(x, t)-growth.
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1. Introduction

In this manuscript, we consider nonlinear parabolic equations of the type

∂tu − diva(z,Du) = f − div
(
|F|p(z)−2F

)
in ΩT := Ω × (0,T ), (1)

where Ω ⊆ Rn is a bounded domain of dimension n ≥ 2 and T > 0 is the height of the space-time cylinder ΩT .
Moreover, ∂tu denotes the partial derivative with respect to the time variable t, while Du denotes the one with
respect to the space variable x. Furthermore, we write z := (x, t) for points in ΩT and ∂PΩT = (Ω̄ × {0}) ∪ (∂Ω ×
(0,T )) for the parabolic boundary of ΩT . The vector-field a(z,Du) satisfies certain nonstandard p(x, t)-growth
and ellipticity conditions which we will note above. First of all, we want to mention the aim of this paper and
the importance of nonstandard growth problems. The goal of this paper is to establish local Calderón-Zygmund
estimates for Du of solutions to the parabolic problem (1), since these estimates imply that Du is as integrable as
the inhomogeneities f and F, i.e.

|F|p(x,t), | f |
γ1
γ1−1 ∈ Lq

loc ⇒ |F|p(x,t) ∈ Lq
loc for any q > 1,

where γ1 is the lower bound for p(x, t). Moreover, we want to mention that the approach we use here, could also
be utilized to establish the Calderón-Zygmund theory for parabolic obstacle problems related to (1). Notice that
in (Erhardt, 2014) the Calderón-Zygmund estimates for parabolic obstacle problem related to the model case with
a(z,Du) = a(z)|Du|p(z)−2Du, where µ ≤ a(z) ≤ L satisfies a certain VMO condition, has been already proved. But
it is possible to combine the approach of this paper with the one in (Erhardt, 2014) to gain the Calderón-Zygmund
estimates for parabolic obstacle problems with irregular obstacles related to the parabolic problem (1).

1.1 Physical Motivation

The motivation of considering parabolic partial differential equations is based on the fact that evolutionary
equations and systems can be used to model physical processes, e.g. heat conduction or diffusion processes. The
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Navier-Stokes equations, the basic equations of fluid mechanics, is one important example. Also parabolic obstacle
problems are motivated by numerous applications, e.g. in mathematical physics, mechanics, control theory or
in mathematical biology. For more details and a good overview, we refer to the monograph (Scheven, 2011).
Moreover, we want to highlight the importance on nonstandard growth in applications. The following system of a
Navier-Stokes equation describes electro-rheological fluids−div((1 + |E(u)|2)

p(x)−2
2 E(u)) + Dπ = f (x, u,Du),

div(u) = 0,

where E(u) is the symmetric part of the gradient Du, π denotes the pressure and the variable growth exponent p(x)
is a Hölder continuous function. Such fluids are of high technological interest because of their ability to change
the mechanical properties under the influence of exterior electro-magnetic field, cf. (Ettwein & Růǔička, 2003),
(Růǔička, 2000). For example, many electro-rheological fluids are suspensions consisting of solid particles and
a carrier oil. These suspensions change their material properties dramatically if they are exposed to an electric
field, see (Růǔička, 2004). Most of the known results concern the stationary models, see for example (Acerbi &
Mingione, 2001 & 2002a,b). Moreover, the non-stationary case, i.e. the model depending on variable exponents
p(x, t) has been studied in (Acerbi, Mingione & Seregin, 2004). Here, we are going to study similar parabolic
problems with p(x, t)-growth and we will establish a further regularity result. Other applications are the models
for flows in porous media, see (Antontsev & Shmarev, 2005).

1.2 General Assumptions

First of all, we shall consider vector-fields a : ΩT × Rn → Rn which are assumed to be Carathéodory functions -
i.e. a(z,w) is measurable in the first argument for every w ∈ Rn and continuous in the second one for a.e. z ∈ ΩT

- and satisfy the following nonstandard growth, monotonicity and ellipticity conditions for some growth exponent
function p : ΩT → ( 2n

n+2 ,∞) and structure constants 0 < µ ≤ 1 < L and s ∈ [0, 1]:

|a(z,w)| ≤L(1 + |w|)p(z)−1, (2)

(a(z,w) − a(z,w0)) · (w − w0) ≥µ(s2 + |w|2 + |w0|2)
p(z)−2

2 |w − w0|2, (3)

|Dwa(z,w)| ≤L(1 + |w|)p(z)−2 (4)

Dwa(z,w)ξ · ξ ≥µ(s2 + |w|2)
p(z)−2

2 (5)

for all z ∈ ΩT and w,w0, ξ ∈ Rn. Moreover, there exist constants γ1, γ2 < ∞ such that the growth exponent
p : ΩT → ( 2n

n+2 ,∞) satisfies

2n
n + 2

< γ1 ≤ p(z) ≤ γ2 and |p(z1) − p(z2)| ≤ ω(dP(z1, z2)) (6)

for any z1 = (x1, t1), z2 = (x2, t2) ∈ ΩT , where ω : [0,∞) → [0, 1] denotes a modulus of continuity which is
assumed to be concave and non-decreasing with limϱ↓0 ω(ϱ) = 0 = ω(0). The parabolic distance is given by
dP(z1, z2) := max{|x1 − x2|,

√
|t1 − t2|} for z1, z2 ∈ ΩT . In addition, for ω(·) we assume that

lim sup
ϱ↓0

ω(ϱ) log
(

1
ϱ

)
= 0. (7)

By virtue of (7) we may assume that there exists R ∈ (0, 1] depending on ω(·) such that

ω(ϱ) log
(

1
ϱ

)
≤ 1 for all ϱ ∈ (0,R]. (8)

Here, we want to mention that the monotonicity property (3) is a consequence of the ellipticity condition (5).
Finally, we suppose the following continuity assumption

|a(z1,w) − a(z2,w)| ≤
√

Lω(dP(z1, z2))
[
(1 + |w|)p(z1)−1 + (1 + |w|)p(z2)−1

]
· [1 + log(1 + |w|)] (9)

for all z1, z2 ∈ ΩT and w ∈ Rn.

1.3 Historical Background - a Short Overview

11



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 7, No. 1; 2015

The history of the Calderón-Zygmund theory for nonlinear problems starts in the elliptic case. The result for the
stationary p-Laplacian equation was established in (Iwaniec, 1983), while the result for the p-Laplacian system
was proved in (DiBenedetto & Manfredi, 1993). The fact, that for elliptic equations with VMO coefficients, the
Calderón-Zygmund estimates for the gradient on Lq-level for q > p are valid, was shown in (Kinnunen & Zhou,
1999). Notice that, VMO-type conditions are very weak assumptions on the regularity of the coefficients. General
elliptic equations, also involving nonstandard growth conditions, have been treated in (Acerbi & Mingione, 2005)
who built on previous ideas of Caffarelli and Peral in (Cafferelli & Peral, 1998) valid for homogeneous equations
with highly oscillating coefficients. For the case of higher order systems with nonstandard p(x)-growth conditions
we refer to (Habermann, 2008). In (Eleuteri & Habermann, 2010) some Calderón-Zygmund results for equations
and systems with nonstandard growth conditions, mainly for obstacle problems with p(x)-growth, were established.
The result for the parabolic evolutionary p-Laplacian system has finally been achieved by Acerbi and Mingione
in (Acerbi & Mingione, 2007) who introduced the necessary new tools for developing a local Calderón-Zygmund
theory for the time dependent, parabolic case, see also (Misawa, 2005) for the special case F ∈ BMO. Later
on, extensions to general parabolic systems have been obtained in (Duzaar, Mingione & Steffen, 2011), see also
(Scheven, 2010). Moreover, a Calderón-Zygmund theory for obstacle problems was first established in (Bögelein,
Duzaar & Mingione, 2011) and then, Scheven extends this result to obstacle problems with VMO-coefficients
in (Scheven, 2011 & 2014). Furthermore, the Calderón-Zygmund theory for elliptic and parabolic measure data
equations are proved in (Mingione, 2007a,b) and (Baroni & Habermann, 2012), respectively. The global gradient
estimates for degenerate and singular parabolic systems are again established in (Bögelein, 2013).

In the context of nonstandard p(x, t)-growth we want to mention that the Calderón-Zygmund theory for parabolic
p(x, t)-Laplacian systems was shown in (Baroni & Bögelein, 2013), see also the monograph (Baroni, 2013), while
the Calderón-Zygmund theory for parabolic obstacle problems related to the parabolic p(x, t)-Laplacian was estab-
lished in (Erhardt, 2014), see also the monograph (Erhardt, 2013). As we already mentioned above the approach
we use here, could also applied to parabolic obstacle problems with p(x, t)-growth. Therefore, we are able to prove
the result in (Erhardt, 2014) for parabolic obstacle problem with irregular obstacles related to (1).

1.4 The Function Spaces

The spaces Lp(Ω), W1,p(Ω) and W1,p
0 (Ω) stand for the usual Lebesgue and Sobolev spaces.

Parabolic Lebesgue-Orlicz spaces. We start by the definition of the nonstandard p(z)-Lebesgue space. The space
Lp(z)(ΩT ,Rk) is defined as the set of those measurable functions v : ΩT → Rk for k ∈ N, such that |v|p(·) ∈
L1(ΩT ,Rk), i.e.

Lp(z)(ΩT ,Rk) :=
{

v : ΩT → Rk is measurable in ΩT :
∫
ΩT

|v|p(·) dz < +∞
}
.

The set Lp(·)(ΩT ,Rk) equipped with the Luxemburg norm

∥v∥Lp(·)(ΩT ) := inf
{
λ > 0 :

∫
ΩT

∣∣∣∣∣ vλ
∣∣∣∣∣p(z)

dz ≤ 1
}

becomes a Banach space.

Parabolic Sobolev-Orlicz spaces. Next, we introduce nonstandard parabolic Sobolev spaces. By W p(·)
g (ΩT ) we

denote the Banach space

W p(·)
g (ΩT ) :=

{
u ∈ [g + L1(0,T ; W1,1

0 (Ω))] ∩ Lp(·)(ΩT ) | Du ∈ Lp(·)(ΩT ,Rn)
}

equipped by the norm ∥u∥W p(·)(ΩT ) := ∥u∥Lp(·)(ΩT ) + ∥Du∥Lp(·)(ΩT ). If g = 0 we write W p(·)
0 (ΩT ) instead of W p(·)

g (ΩT ).
Finally, we shall assume that

F ∈ Lp(·)(ΩT ,Rn) and f ∈ Lγ
′
1 (ΩT ). (10)

Definition 1. We identify a function u ∈ L1(ΩT ) as a weak solution of the parabolic equation (1), if and only if
u ∈ C0([0,T ]; L2(Ω)) ∩W p(·)(ΩT ) and∫

ΩT

[
u · φt − |Du|p(·)−2Du · Dφ

]
dz = −

∫
ΩT

[
f · φ + |F|p(·)−2F · Dφ

]
dz (11)

holds, whenever φ ∈ C∞0 (ΩT ).
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Notice that the existence of a weak solution of (1) is guaranteed by the result in (Erhardt, 2013b), see also (Erhardt,
2013a).

Our next aim is to introduce the dual space of W p(·)
0 (ΩT ). Therefore, we denote by W p(·)(ΩT )′ the dual of

W p(·)
0 (ΩT ). Here and in the following, we write ⟨⟨·, ·⟩⟩ΩT

for the pairing between W p(·)(ΩT )′ and W p(·)
0 (ΩT ), see

also (Erhardt, 2013a). Furthermore, if v ∈ W p(·)(ΩT )′, we define the norm ∥v∥W p(·)(ΩT )′ = sup{⟨⟨v,w⟩⟩ΩT
|w ∈

W p(·)
0 (ΩT ), ∥w∥W p(·)

0 (ΩT ) ≤ 1}. By w ∈ W(ΩT ) :=
{
w ∈ W p(·)

0 (ΩT )|wt ∈ W p(·)(ΩT )′
}

we mean that there exists

wt ∈ W p(·)(ΩT )′, such that

⟨⟨wt, φ⟩⟩ΩT
= −

∫
ΩT

w · φt dz for all φ ∈ C∞0 (ΩT ).

The previous equality makes sense due to the inclusions W p(·)(ΩT ) ↪→ L2(ΩT ) � (L2(ΩT ))′ ↪→ W p(·)(ΩT )′ which
allow us to identify w as an element of W p(·)(ΩT )′. As a consequence of this embedding, functions w ∈ W(ΩT ) that
vanish on the lateral boundary also satisfy C0([0,T ]; L2(Ω)). More precisely, we refer the following lemma which
is established in (Erhardt, 2013a,b).

Lemma 2. Let n ≥ 2. Assume that the exponent function p : ΩT → [γ1, γ2] satisfies (6)-(8). Then W(ΩT ) is
contained in C0([0,T ]; L2(Ω)). Moreover, if u ∈ W(ΩT ) then t 7→ ∥u(·, t)∥2L2(Ω) is absolutely continuous on [0,T ],

d
dt

∫
Ω

|u(·, t)|2 dx = 2 ⟨∂tu(·, t), u(·, t)⟩ , for a.e. t ∈ [0,T ],

where ⟨·, ·⟩ denotes the duality pairing between W1,p(·,t)(Ω)′ and W1,p(·,t)
0 (Ω). Moreover, there is a constant c for

which ∥u∥C0([0,T ];L2(Ω)) ≤ c∥u∥W(ΩT ) holds for every u ∈ W(ΩT ).

1.5 Intrinsic Geometry

Before we are able to state the result, we have to mention a very important concept in the parabolic regularity
theory. Therefore, we introduce symmetric parabolic cylinders with center in z0 = (x0, t0) ∈ ΩT of the form
Qϱ(z0) := Bϱ(x0) × (t0 − ϱ2, t0 + ϱ2), where (t0 − ϱ2, t0 + ϱ2) ⊂ (0,T ) and Bϱ(x0) ⊂ Ω denotes a ball with radius
ϱ > 0 and center x0. To obtain the relevant (scaling invariant) local estimates we will use, in order to re-balance
the non-homogeneity of parabolic problems, certain scaled cylinders, i.e. so-called intrinsic cylinders of the form

Q(λ)
ϱ (z0) := Bϱ(x0) × Λ(λ)

ϱ (t0), where Λ(λ)
ϱ (t0) :=

(
t0 − λ

2−p0
p0 ϱ2, t0 + λ

2−p0
p0 ϱ2

)
,

where λ > 0 and p0 := p(z0). The reason for such scaled cylinder is based on the fact (explained by the easiest
problem), that a multiple c · u of a solution to ∂tu − div(|Du|p−2Du) = 0 is no longer a solution, except c ∈ {0, 1},
p = 2 or u ≡ 0. Such kind of intrinsic cylinders were introduced in the case p =const. in the pioneering work of
DiBenedetto and Friedman in (DiBenedetto & Friedman, 1985a,b). The way we use the idea of intrinsic cylinders
goes back to Bögelein and Duzaar in (Bögelein & Duzaar, 2012). The delicate aspect in this technique relies in the
fact that the cylinders will be constructed in such a way, that the scaling parameter λ > 0 and the average of |Du|p(·)

over Q(λ)
ϱ (z0) are coupled in the following way:

−
∫

Q(λ)
ϱ (z0)
|Du|p(·) dz ≈ λ.

2. Strategy of the Proof and Preliminary Results

In this section, we establish the result and describe the strategy of the proof.

2.1 The statement and the strategy of the proof

First of all, we state the main result of this paper.

Theorem 3. Assume that p : ΩT → [γ1, γ2] satisfies (6)-(8) and the assumptions (2)-(5) and (9) on the vector-field
a : ΩT ×Rn → Rn are valid. Moreover, the inhomogeneities (10) are given. Additionally, we suppose that the data
has the higher integrability properties

|F|p(·) ∈ Lq
loc(ΩT ) and | f |γ′1 ∈ Lq

loc(ΩT ) for some q > 1.
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Then, every weak solution u ∈ C0([0,T ]; L2(Ω)) ∩W p(·)(ΩT ) of the parabolic equation (1) satisfies

|Du|p(·) ∈ Lq
loc(ΩT ).

Moreover, for κ,K ≥ 1 there exists a radius r0 > 0 depending on n, γ1, γ2, q, µ, L, σ, κ, K, ω(·) and a constant
c = c(n, γ1, γ2, q, µ, L, σ, κ,K, ω(·)), such that the following holds: If∫

ΩT

(|Du|p(·) + |F|p(·) + | f |γ′1 + 1) dz ≤ K (12)

is satisfied, then for every parabolic cylinder Q2r ≡ Q2r(z0) b ΩT with radius r ∈ (0, r0], there holds

−
∫

Qr

|Du|p(·)q dz ≤ c

−∫
Q2r

|Du|p(·) dz
(
−
∫

Q2r

(|F|p(·) + | f |γ′1 + 1)q dz
) 1

q


1+d(p0)(q−1)

, (13)

where p0 = p(z0) and d(p0) is defined in 
2p0

p0(n + 2) − 2n
if p0 < 2,

p0

2
if p0 ≥ 2.

(14)

Now, we briefly describe the plan of the paper and the strategy of the proof. As we mentioned in the introduction
the desired result of this manuscript is to prove the gradient estimate (13). This estimate implies that Du is as
integrable as the inhomogeneities F and f , cf. Theorem 3. For the proof of the gradient estimate we will use some
comparison arguments to derive the needed a priori estimate. In Section 2.3, we will compare the solution of (1)
with the solution of a certain homogeneous parabolic Cauchy-Dirichlet problem with nonstandard growth, then we
will compare the solution of the Cauchy-Dirichlet problem with the solution of a parabolic problem with frozen
exponent, i.e. with exponent p0 = p(z0). Moreover, we will need several technical tools to gain the desired gradient
estimate, e.g. the higher integrability result of Bögelein and Duzaar, cf. Theorem 6, a localization argument of
Baroni and Bögelein, cf. Lemma 7, and the Lipschitz bound, which is a consequence of the C1,α-regularity of
DiBenedetto and Friedman, cf. Theorem 9. Later on, we will transfer these a priori estimates via comparison
argument to our nonstandard growth problem. All these preliminary results and many more are stated in Section
2.2. Finally, in Section 3 we will prove the main result. Here, we start with a so-called stopping time argument.
This argument is very important in the regularity of parabolic problems, since there we will choose the correct
cylinders, cf. (Kinnunen & Lewis, 2000) and (Acerbi & Mingione, 2005) for instance. Then, we will apply the
comparison estimates of Section 2.3 on certain intrinsic cylinders. The next step is to derive estimates on the level
sets, followed by the final estimate, which is in principle the desired gradient estimate. The final step of the proof
of Theorem 3 is to adjust the exponent. In this step we will conclude the validity of (13).

2.2 Technical Tools and Preliminary Results

In this section, we cite several important technical tools, which we need for the proof of the desired Calderón-
Zygmund estimates. Moreover, we will prove some tools which are important to derive our main result.

An iteration lemma. In order to ”re-absorb” certain terms, we will use the following iteration lemma, which is a
standard tool and can be found in (Giaquinta, 1983). The iteration results reads as follows.

Lemma 4. Let 0 < ϑ < 1, A,C ≥ 0 and β > 0. Then, there exists a constant c = c(β, ϑ), such that there holds: For
any non-negative bounded function satisfying Φ(t) ≤ ϑΦ(s) + A(s − t)−β +C for all 0 < r ≤ t < s ≤ ϱ, we have

Φ(r) ≤ c
[
A(ϱ − r)−β +C

]
.

A version of the Vitali’s covering Theorem. Moreover, we will need a version of the Vitali’s covering Theorem
for non-uniformly intrinsic parabolic cylinders, which is stated in (Bögelein & Duzaar, 2011). The result is the
following:

Lemma 5. Assume that M ≥ 1, λ ≥ 1 and p : ΩT → (γ1, γ2) satisfies the conditions (6)-(8). Then, there exists
a constant χ = χ(n, L1, γ1) ≥ 5, such that the following is true: Let F = {Qi}i∈I be a family of axially parallel
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parabolic cylinders of the from Qi = Q(λ)
ϱi (zi) := Bϱi (xi)×

(
ti − λ

2−p(zi)
p(zi) ϱ2

i , ti + λ
2−p(zi)

p(zi) ϱ2
i

)
with uniformly bounded radii,

uniformly in the sense that

ϱi ≤ min
{
ϱ0,

[
(βnM)

p(zi)
2 λ−1

] 2
p(zi)(n+2)

}
∀ i ∈ I, (15)

where ϱ0 :=
[
6
√
βnM

]− 2
α ≤ 1. Then, there exists a countable sub-collection G ⊆ F of disjoint parabolic cylinders,

such that
∪

Q∈F
Q ⊂ ∪

Q∈G
χQ, where χQ denotes the χ-time enlarged cylinder Q, i.e. if Q = Q(λ)

ϱ (z) then χQ = Q(λ)
χϱ (z).

Iwaniec’s inequality. Here, we state a useful estimate which is a consequence of Iwaniec’s inequality for Orlicz
spaces, see (Iwaniec & Verde, 1999). Let ϑ > 0, Q ⊂ Rn+1 and g ∈ Lς(Q) for some ς > 1. Then, there holds

−
∫

Q
|g| logσ

(
e +

|g|
(g)Q

)
dz ≤ c(ϑ, ς)

(
−
∫

Q
|g|ς dz

) 1
ς

for all ς > 1. (16)

Thereby, the constant c(ϑ, ς) blows up as ς ↓ 1. Moreover, c(ϑ, ς) depends continuously on ϑ and therefore, it can
be replaced by a constant c(γ1, γ2, ς) if ϑ ∈ [γ′2, γ

′
1].

A higher integrability estimate. The higher integrability result will play a key role in the proof of the Calderón-
Zygmund estimates. In the case p(·) =const. the needed higher integrability estimate goes back to Kinnunen and
Lewis (Kinnunen & Lewis, 2000). In the following, we cite higher integrability estimate for degenerate parabolic
equations with nonstandard growth from (Erhardt, 2013c), which is a little modification of the result in (Bögelein
& Duzaar, 2011), because they considered parabolic problem of the form

∂tu − div a(z,Du) = div
(
|F|p(·)−2F

)
in ΩT

instead of (1). Notice that this modification is a simple exercise. The statement reads as follows:

Theorem 6. Let σ > 0 and p : ΩT → [γ1, γ2] satisfy (6)-(8). Then, there exists ε0 = ε0(n, γ1, γ2, µ, L, L1, σ) ∈
(0, σ], such that the following holds: Whenever a function u ∈ C0([0,T ]; L2(Ω)) ∩W p(·)(ΩT ) is a weak solution of
the parabolic equation (1), where (2)-(3) are in force and f ∈ Lγ

′
1(1+σ)(ΩT ), F ∈ Lp(·)(1+σ)(ΩT ), then

|Du|p(·)(1+ε0) ∈ L1
loc(ΩT ).

Moreover, for any K ≥ 1 there exists a radius ϱ1 ≡ ϱ1(n, γ1, γ2, L1,K, ω(·)) > 0, such that there holds: If (12) and
ε ∈ (0, ε0], then for any parabolic cylinder Q2r ≡ Q2r(z0) ⊆ ΩT with r ∈ (0, ϱ1], there holds

−
∫

Qr

|Du|p(·)(1+ε) dz ≤ c
(
−
∫

Q2r

(|Du|p(·) + |F|p(·) + | f |γ′1 + 1) dz
)1+εd

+ c −
∫

Q2r

(|F|p(·) + | f |γ′1 + 1)(1+ε) dz, (17)

for a constant c = c(n, γ1, γ2, µ, L, L1), where d is defined in (14).

To apply this result, we need a further technical tool, more precisely a non uniform intrinsic geometry argument.
This we will mention in the following lemma, where we provide a parabolic localization technique. This lemma
goes back to (Baroni & Bögelein, 2013). Obviously the difficulty stems from the necessity to couple the technique
of intrinsic geometry with the localization needed to treat the variable exponent growth conditions.

Lemma 7. Let κ,K,H ≥ 1 and p : ΩT → [γ1, γ2] satisfy (6) and (8). Then, there exists a radius ϱ2 =

ϱ2(n, γ1, γ2, κ,K,H, ω(·)) ∈ (0,R1], such that the following holds: Whenever, Du, F ∈ Lp(·)(ΩT ,Rn) and f ∈
Lγ
′
1 (ΩT ) satisfy (12) and Q(λ)

ϱ (z0) ⊂ ΩT is a parabolic cylinder with ϱ ∈ (0, ϱ2] and λ ≥ 1, such that

λ ≤κ−
∫

Q(λ)
ϱ (z0)
|Du|p(·) + H(|F|p(·) + | f |γ′1 + 1) dz.

Then, we have

λ ≤
(
Γ̃

4ϱn+2

) p0
2

, p2 − p1 ≤ ω(Γ̃ϱα) and λω(Γ̃ϱα) ≤ e
3nL1 p0
α , (18)
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where p0 := p(z0), p1 := inf
Q(λ)
ϱ (z0)

p(·) and p2 := sup
Q(λ)
ϱ (z0)

p(·) and

Γ̃ := 4βnκKH, βn := max
{
1, (2αn)−1

}
, α := min

{
1, γ1

n + 2
4
− n

2

}
. (19)

Our next aim is to adapt the local estimate from Theorem 6 to intrinsic cylinders of the form Q(λ)
ϱ (z0) := Bϱ(x0) ×

Λ
(λ)
ϱ (t0) for z0 = (x0, t0) ∈ ΩT , ϱ > 0 and λ ≥ 1, where Λ(λ)

ϱ (t0) := (t0 − λ
2−p0

p0 ϱ2, t0 + λ
2−p0

p0 ϱ2). We will determine
the parameter λ ≥ 1 in dependence on the solution itself and we will use this intrinsic coupling to compensate
the anisotropic scaling behaviour of the parabolic inequality. On cylinders of this type, the higher integrability
estimate from the above theorem takes the following from.

Corollary 8. Let K, c∗, ĉ ≥ 1 and σ > 0. Assume that the vector field a : ΩT × Rn → Rn satisfies (2)-(3) and
p : ΩT → R fulfills (6) and (7). Further, suppose that f ∈ Lp(·)′(1+σ)(ΩT ), F ∈ Lp(·)(1+σ)(ΩT ) are in force and for
z0 ∈ ΩT , ϱ ∈ (0, ϱ1] and λ ≥ 1 with Q(λ)

2ϱ (z0) ⊂ ΩT , satisfying

λp2−p1 ≤ ĉ, where p1 := inf
Q(λ)

2ϱ (z0)
p(·) and p2 := sup

Q(λ)
2ϱ (z0)

p(·). (20)

Then, there exists ε0 = ε0(n, γ1, γ2, µ, L, σ) ∈ (0, σ] such that the following holds: Whenever

v ∈ C0(Λ(λ)
2ϱ (t0); L2(B2ϱ)(x0)) ∩W p(·)(Q(λ)

2ϱ (z0))

is a weak solution of

∂tv − div a(z,Dv) = f − div |F|p(·)−2F on Q(λ)
2ϱ (z0)

satisfying (12) (with Du replaced by Dv) and

−
∫

Q(λ)
2ϱ (z0)
|Dv|p(·) dz ≤ c∗λ (21)

Then, there holds the higher integrability estimate

−
∫

Q(λ)
ϱ (z0)
|Dv|p(·)(1+ε0) dz ≤ cλ1+ε0 (22)

with a constant c ≥ 1 depending only on n, γ1, γ2, µ, L, K, c∗ and ĉ.

Notice that there is a similar result is given by (Baroni & Bögelein, 2013). The main difference is, that they
consider the parabolic system ∂tv − div(a(z)|Dv|p(·)−2Dv) = 0, where a : ΩT → R is a measurable function with
µ ≤ a(z) ≤ L for any z ∈ ΩT , while we consider again the equation (1). Furthermore, in the standard growth case,
there is also as similar result given in (Scheven, 2014).

Proof. First, we assume that z0 = 0. Then, we rescale the problem from intrinsic cylinders Q(λ)
ϱ , Q(λ)

2ϱ to the
standard parabolic cylinders Qϱ, Q2ϱ. Therefore, we have to transform in time and then, we could apply the
Theorem 6. Here, we have to discuss two cases. On the one hand the case p0 := p(0) ≥ 2 and on the other
hand p0 := p(0) < 2. We start with the case p0 := p(0) ≥ 2 and define for (x, t) ∈ Q2ϱ the rescaled exponent

p̃(x, t) = p(x, λ
2−p0

p0 t). Furthermore, we consider the rescaled function ṽ(x, t) := λ−
1

p0 v(x, λ
2−p0

p0 t), which implies

Dṽ(x, t) = λ−
1

p0 Dv(x, λ
2−p0

p0 t) and ∂tṽ(x, t) = λ
1−p0

p0 vt(x, λ
2−p0

p0 t) for all (x, t) ∈ Q2ϱ. Moreover, we observe the rescaled
vector-field ã(·) and the rescaled inhomogeneities F̃ and f̃ as follows:

ã(x, t,w) := λ
1−p0

p0 a(x, λ
2−p0

p0 t, λ
1

p0 w), F̃(x, t) := λ−
1

p0 F(x, λ
2−p0

p0 t), and f̃ (x, t) := λ
1−p0

p0 f (x, λ
2−p0

p0 t)

for all (x, t) ∈ Q2ϱ and w ∈ Rn. Then, ṽ is a weak solution of the parabolic equation

∂tṽ − div ã(x, t,Dṽ) = f̃ − div(|F̃|p̃(·)−2F̃) in Q2ϱ,
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i.e. for the rescaled parabolic problem of the parabolic equation (1). The next step is to ensure that the rescaled
exponent p̃ and the rescaled vector-field ã(·) satisfy the conditions (6) and also the structure condition, i.e. the

growth and monotonicity property (2) and (3). Since, p0 ≥ 2, λ ≥ 1 and therefore λ
2−p0
2p0 ≤ 1, we have

| p̃(x1, t1) − p̃(x2, t2)| =
∣∣∣∣∣p(x1, λ

2−p0
p0 t1) − p(x2, λ

2−p0
p0 t2)

∣∣∣∣∣ ≤ ω
max

|x1 − x2|,
√
λ

2−p0
p0 |t1 − t2|




= ω
(
max

{
|x1 − x2|, λ

2−p0
2p0

√
|t1 − t2|

})
≤ ω

(
max

{
|x1 − x2|,

√
|t1 − t2|

})
= ω(dP(z1, z2)),

where we used (6). Thus, we have shown

| p̃(x1, t1) − p̃(x2, t2)| ≤ ω(dP((x1, t1), (x2, t2))) (23)

for any choice of (x1, t1), (x2, t2) ∈ Q2ϱ. Next, we check the assumptions (2) and (3) for the vector-field ã. There-
fore, we apply (2) to the vector-field ã(·). This yields

|ã(x, t,w)| =
∣∣∣∣∣λ 1−p0

p0 a(x, λ
2−p0

p0 t, λ
1

p0 w)
∣∣∣∣∣ = λ 1−p0

p0

∣∣∣∣∣a(x, λ
2−p0

p0 t, λ
1

p0 w)
∣∣∣∣∣ ≤ λ 1−p0

p0 L(1 + |λ
1

p0 w|)p(x,λ
2−p0

p0 t)−1

=λ
1−p0

p0 L(1 + λ
1

p0 |w|)p̃(·)−1 ≤ λ
p̃(·)−p0

p0 L(1 + |w|)p̃(·)−1 ≤ λp2−p1 L(1 + |w|)p̃(·)−1 ≤ ĉL(1 + |w|)p̃(·)−1

for all (x, t) ∈ Q2ϱ and w ∈ Rn, where we finally used (20). Thus, we have

|ã(x, t,w)| ≤ĉL(1 + |w|)p̃(·)−1 (24)

for all (x, t) ∈ Q2ϱ and w ∈ Rn. Finally, we can conclude that

( ã(x, t,w) − ã(x, t,w0) ) · (w − w0) = λ−
p0
p0

(
a
(
x, λ

2−p0
p0 t, λ

1
p0 w

)
− a

(
x, λ

2−p0
p0 t, λ

1
p0 w0

))
· (λ

1
p0 w − λ

1
p0 w0)

≥ λ−
p0
p0 µ(s2 + |λ

1
p0 w|2 + |λ

1
p0 w0|2)

p̃(·)−2
2 |λ

1
p0 w − λ

1
p0 w0|2

= λ
p̃(·)−p0

p0 µ(λ−
2

p0 s2 + |w|2 + |w0|2)
p̃(·)−2

2 |w − w0|2

≥ µ
ĉ

(λ−
2

p0 s2 + |w|2 + |w0|2)
p̃(·)−2

2 |w − w0|2

for all (x, t) ∈ Q2ϱ and w,w0 ∈ Rn, since λ
p̃(·)−p0

p0 = λ
− p0−p̃(·)

p0 ≥ λ−(p2−p1) ≥ ĉ−1, where we used (20) for the last step.
This yields the desired assumption

(ã(x, t,w)−ã(x, t,w0)) · (w − w0) ≥ µ(s̃2 + |w|2 + |w0|2)
p̃(·)−2

2 |w − w0|2 (25)

for all (x, t) ∈ Q2ϱ and w,w0 ∈ Rn with s replaced by s̃ := sλ−
1

p0 ∈ (0, 1). Now, we are in the situation to apply
Theorem 6 with ( µĉ , ĉL) instead of (µ, L). Therefore, we conclude that Dṽ ∈ Lp(·)(1+ε0)

loc (Q2ϱ,Rn) and moreover the
following quantitative estimate holds:

−
∫

Qϱ
|Dṽ|p(·)(1+ε0) dz ≤ c

−∫
Q2ϱ

(|Dṽ|p̃(·) + |F̃| p̃(·) + | f̃ |γ′1 + 1) dz
1+ε0d

+ c −
∫

Q2ϱ

(|F̃|p̃(·) + | f̃ |γ′1 + 1)(1+ε0) dz

for a constant c = c(n, γ1, γ2, µ, L, ĉ). Notice that p0 = p(0) = p̃(0). Next, we transform from v to ṽ, use the

17



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 7, No. 1; 2015

previous estimate and then, we scale back from ṽ to v. This yields, using (20), (12) and (21), that

−
∫

Q(λ)
ϱ

|Dv|p(·)(1+ε0) =−
∫

Qϱ
λ

p̃(·)
p0

(1+ε0)|Dṽ|p̃(·)(1+ε0) dz = −
∫

Qϱ
λ

p̃(·)−p1+p1
p0

(1+ε0)|Dṽ| p̃(·)(1+ε0) dz

≤−
∫

Qϱ
λ

p2−p1
p0

(1+ε0)
λ

p1
p0

(1+ε0)|Dṽ|p̃(·)(1+ε0) dz ≤ cλ1+ε0−
∫

Qϱ
|Dṽ|p̃(·)(1+ε0) dz

≤ cλ1+ε0

−∫
Q2ϱ

(|Dṽ| p̃(·) + |F̃| p̃(·) + | f̃ |γ′1 + 1) dz
1+ε0d

+ cλ1+ε0 −
∫

Q2ϱ

(|F̃|p̃(·) + | f̃ |γ′1 + 1)(1+ε0) dz

≤ cλε0(1−d)

−∫
Q(λ)

2ϱ

|Dv|p(·) dz

1+ε0d

+ cλ1+ε0−
∫

Q(λ)
2ϱ

(|F|p(·) + | f |γ′1 )(1+ε0) dz + cλ1+ε0

= cλε0(1−d)

−∫
Q(λ)

2ϱ

|Dv|p(·) dz

1+ε0d

+ cλ1+ε0−
∫

Q(λ)
2ϱ

(|F|p(·) + | f |γ′1 )(1+ε0) dz + cλ1+ε0

≤ cλε0(1−d)(c∗λ)1+ε0d + c · (c∗λ)1+ε0 + cλ1+ε0 = cλ1+ε0 .

with a constant c = c(n, γ1, γ2, µ, L,K, c∗, ĉ). This finishes the proof of the lemma in the case p0 ≥ 2.

Finally, we have to prove the case 2n
n+2 < p0 < 2. Here, we define p̃, ṽ, F̃, f̃ and ã similarly as above, i.e.

p̃(x, t) := p
(
λ

p0−2
2p0 x, t

)
, ṽ(x, t) := λ−

1
2 v

(
λ

p0−2
2p0 x, t

)
, F̃(x, t) := λ−

1
p0 F

(
λ

p0−2
2p0 x, t

)
, f̃ (x, t) := λ−

1
2 f

(
λ

p0−2
2p0 x, t

)
, and

ã(x, t,w) := λ
1−p0

p0 a
(
λ

p0−2
2p0 x, t, λ−

1
p0 w

)
(26)

for (x, t) ∈ Q2ϱ̃, where ϱ̃ := λ
p0−2
2p0 ϱ. A straightforward computation shows that ṽ is a weak solution of the equation

∂tṽ − div ã(x, t,Dṽ) = f̃ − div(|F̃|p̃(·)−2F̃) in Q2ϱ̃,

where ã, ṽ, p̃, F̃ and f̃ are the time quantities defined just above. Notice, that ã satisfies the growth and monotonicity
condition (24) and (25). Similar to (23), we can also conclude that | p̃(z1)− p̃(z2)| ≤ ω (dP(z1, z2)) is valid, for every
z1, z2 ∈ Q2ϱ̃, since p0 < 2 and λ ≥ 1. Applying again Theorem 6 and repeating the computations from above we
obtain the assertion of the lemma also in the case p0 < 2. �

A priori estimates. For the proof of the Calderón-Zygmund estimates for the spatial gradient we will need a
gradient estimate. To this aim, we refer in the next theorem Lipschitz bounds for solutions to parabolic equations
with standard growth, that will be employed for suitable comparison problems. These Lipschitz bounds will be very
important for the proof of the gradient estimate via comparison and they are due to the fundamental contributions
of DiBenedetto and Friedman (DiBenedetto & Friedman, 1985a,b) and can be retrieved from (DiBenedetto, 1993,
Chapter 8). Later on, we will transfer these a priori estimates via comparison argument to our nonstandard growth
problem and mainly, to our parabolic obstacle problem. Therefore, we denote

C(λ)
ϱ (z0) := Bϱ(x0) × (t0 − λ

2−p
p ϱ2, t0 + λ

2−p
p ϱ2).

Note that the scaling of cylinders C(λ)
ϱ (z0) does not depends on the center z0. Later on, we will apply the subsequent

Theorem with the choice p = p0 ≡ p(z0). Thus, the cylinder C(λ)
ϱ (z0) becomes the intrinsic cylinder Q(λ)

ϱ (z0). The
precise statement of this result reads as follows and was established in (Scheven, 2014, Theorem 5.3).

Theorem 9. Suppose that the vector-field b : ΩT × Rn → Rn satisfies (2)-(5) with p(·) = p = const. and a(·)
replaced by b(·) and furthermore, that b(·) is differentiable with respect to the spatial variable with

|Dxb(z,w)| ≤ γL(1 + |w|)p−1

for all z ∈ ΩT and w ∈ Rn, where γ ≥ 0 is a fixed constant. Assume that w ∈ C0([0, T ]; L2(Ω)) ∩ Lp(0, T ; W1,p(Ω))
is a weak solution of the parabolic equation ∂tw − div b(z,Dw) = 0 on ΩT and that C(λ)

2ϱ (z0) ⊂ ΩT is an intrinsic
cylinder with

−
∫

C(λ)
2ϱ (z0)
|Dw|p dz ≤ c∗λ.

18



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 7, No. 1; 2015

Then, there holds

sup
C(λ)
ϱ (z0)

|Dw| ≤ cLipλ
1
p ,

where the constant cLip depends only on p, n, µ, L, γ and c∗.

In section 2.3 we will prove the gradient estimate via comparison. For this aim, we will apply the following
comparison lemma which reads as follows:

Lemma 10. Assume that the vector-fields a, b : Q(λ)
ϱ (z0)×Rn → Rn satisfy the growth condition (2) and b(·) addi-

tionally the monotonicity property (3) with exponents p(·), which fulfil (6)-(7). Further, let F ∈ Lp(·)(Q(λ)
ϱ (z0),Rn),

f ∈ Lγ
′
1 (Q(λ)

ϱ (z0),R) and assume that v,w ∈ C0(Λ(λ)
ϱ (t0); L2(Bϱ(x0)))∩W p(·)(Q(λ)

ϱ (z0)) are solutions of the parabolic
equations

∂tv − div a(z,Dv) = f − div(|F|p(·)−2F) in Q(λ)
ϱ (z0) (27)

respectively

∂tw − div b(z,Dw) = 0 in Q(λ)
ϱ (z0) (28)

with v = w on ∂PQ(λ)
ϱ (z0). Then, we have a comparison estimate of the form∫

Q(λ)
ϱ (z0)
|Dv − Dw|p(·) dz ≤ κ̃

∫
Q(λ)
ϱ (z0)

(s + |Dv|)p(·) dz + cκ̃

∫
Q(λ)
ϱ (z0)
|a(z,Dv) − b(z,Dv)|p′(·) dz

+ cκ̃

∫
Q(λ)
ϱ (z0)
|F|p(·) + | f |γ′1 + 1 dz

(29)

for every radius ϱ ∈ (0, 1] and κ̃ ∈ (0, 1) with a constant cκ̃ = c(κ̃, n, γ1, γ2, µ, L). Once again, in the case p(·) ≥ 2,
we may omit the first integral on the right-hand side, and the constant does not depend on κ̃. Furthermore, for
every exponent p(·) > 2n

n+2 , there holds the energy estimate∫
Q(λ)
ϱ (z0)
|Dw|p(·) dz ≤ c(γ1, γ2)

∫
Q(λ)
ϱ (z0)

(s + |Dv|)p(·) dz + c
∫

Q(λ)
ϱ (z0)
|a(z,Dv) − b(z,Dv)|p′(·) dz

+ c
∫

Q(λ)
ϱ (z0)
|F|p(·) + | f |γ′1 + 1 dz

(30)

where c = c(n, γ1, γ2, µ, L) and ϱ ∈ (0, 1].

Proof. First, we consider the weak formulation of the parabolic equations (27) and (28) and test the equations with
v − w ∈ C0(Λ(λ)

ϱ (t0); L2(Bϱ(x0))) ∩W p(·)
0 (Q(λ)

ϱ (z0)). Subtracting the resulting equations, we get

⟨⟨∂tv − ∂tw, v − w⟩⟩Q(λ)
ϱ (z0) +

∫
Q(λ)
ϱ (z0)

(a(z,Dv) − b(z,Dw)) · D(v − w) dz

=

∫
Q(λ)
ϱ (z0)

f (v − w) dz +
∫

Q(λ)
ϱ (z0)

(|F|p(·)−2F) · D(v − w) dz.

Moreover, we can conclude that

⟨⟨∂tv − ∂tw, v − w⟩⟩Q(λ)
ϱ (z0) +

∫
Q(λ)
ϱ (z0)

(b(z,Dv) − b(z,Dw)) · D(v − w) dz

=

∫
Q(λ)
ϱ (z0)

f (v − w) dz +
∫

Q(λ)
ϱ (z0)

(|F|p(·)−2F) · D(v − w) dz +
∫

Q(λ)
ϱ (z0)

(b(z,Dv) − a(z,Dv)) · D(v − w) dz

≤ cε

∫
Q(λ)
ϱ (z0)
|F|p(·) + | f |γ′1 + 1 dz

 + cε(γ1, γ2, ε)
∫

Q(λ)
ϱ (z0)
|a(z,Dv) − b(z,Dv)|p′(·) dz

+ c(γ1, γ2)ε
∫

Q(λ)
ϱ (z0)
|D(v − w)|p(·) + |v − w|γ1 dz

(31)
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for ϱ ∈ (0, 1] with a constant c = c(γ1, γ2, L) and ε ∈ (0, 1), where we used Young’s inequality. Next, we treat the
first integral on the left-hand side as usual to infer that this integral is non-negative. Therefore, we use Lemma 2
and the fact that u(·, 0) = v(·, 0). This yields

2 ⟨⟨∂tv − ∂tw, v − w⟩⟩Q(λ)
ϱ (z0) =

∫
Bϱ(x0)

|v(x, t) − w(x, t)|2dx ≥ 0

for all t ∈ Λ(λ)
ϱ (t0). Further, we apply the monotonicity condition (3) to (31). This yields∫

Q(λ)
ϱ (z0)

(s2 + |Dv|2 + |Dw|2)
p(·)−2

2 |Dv − Dw|2 dz ≤ c
∫

Q(λ)
ϱ (z0)
|F|p(·) + | f |γ′1 + 1 dz


+ cε(γ1, γ2, ε)

∫
Q(λ)
ϱ (z0)
|a(z,Dv) − b(z,Dv)|p′(·) dz

+ c(γ1, γ2)ε
∫

Q(λ)
ϱ (z0)
|D(v − w)|p(·) + 1 dz

(32)

for ϱ ∈ (0, 1] with a constant c = c(γ1, γ2, L) and ε ∈ (0, 1). In the case p(·) ≥ 2, this implies immediately the
comparison estimate (29) by choosing ε = 1

2c(γ1,γ2) . Therefore, we have only to prove the case 2n
n+2 < p(·) < 2. For

this aim, we use Young’s inequality with exponents 2
2−p(·) and 2

p(·) in order to estimate, for any δ > 0

|Dv − Dw|p(·) ≤δ(s2 + |Dv|2 + |Dw|2)
p(·)
2 + δ1−

2
p(·) (s2 + |Dv|2 + |Dw|2)

p(·)−2
2 |Dv − Dw|2

≤δ(s2 + |Dv|2 + |Dw|2)
p(·)−2

2 (s2 + 3|Dv|2 + 2|Dw − Dv|2) + δ1−
2

p(·) (s2 + |Dv|2 + |Dw|2)
p(·)−2

2 |Dv − Dw|2

≤8δ(s + |Dv|)p(·) + c(γ1, γ2, δ)(s2 + |Dv|2 + |Dw|2)
p(·)−2

2 |Dv − Dw|2,

where we used the fact p(·) − 2 < 0 for the last estimate. Integrating this estimate over Q(λ)
ϱ (z0), estimating the

right-hand side further by (32) and finally, choosing ε = 1
2c(γ1,γ2) and δ = κ̃

16 . This implies the claimed comparison
estimate (29). The second claim (30) is again an easy consequence of (29). �

2.3 Proof of the Comparison Estimate

First, we let K ≥ 1 and suppose that (12) is valid. Next, we fix κ,H ≥ 1 to be specified later. In the following, we
consider a cylinder Q(λ)

ϱ (z0) = Bϱ(x0) × Λ(λ)
ϱ (t0) with center z0 = (x0, t0) ∈ ΩT , ϱ ∈ (0, 1], where λ ≥ 1 and which

satisfies Q(λ)
2ϱ (z0) b ΩT and

λ

κ
≤ −
∫

Q(λ)
2ϱ (z0)
|Du|p(·) dz + −

∫
Q(λ)

2ϱ (z0)
H

(
|F|p(·) + | f |γ′1 + 1

)
dz ≤ λ. (33)

Then, we denote by v ∈ W(Q(λ)
2ϱ (z0)) the unique solution of the initial-boundary value problems∂tv − div a(z,Dv) = 0 in Q(λ)

2ϱ (z0),
v = u on ∂PQ(λ)

2ϱ (z0).
(34)

Moreover, the function w ∈ C0(Λ(λ)
ϱ (t0); L2(Bϱ(x0))) ∩ Lp0 (Λ(λ)

ϱ (t0); W1,p0 (Bϱ(x0))) denotes the unique solution of
the homogeneous initial-boundary value problem∂tw − div a(z0,Dw) = 0 in Q(λ)

ϱ (z0),
w = v on ∂PQ(λ)

ϱ (z0),
(35)

where a(·) denotes the vector-field which satisfies the structure assumptions (2)-(9). Notice that the existence of v
and w is satisfied by (Erhardt, 2013a).

Step 1: Proof of the first comparison estimate. We start by comparing the parabolic problem (1) with the parabolic
boundary problem (34). Here, we apply Lemma 10 to conclude the first comparison estimate∫

Q(λ)
2ϱ (z0)
|Du − Dv|p(·) dz ≤ κ̃

∫
Q(λ)

2ϱ (z0)
(s + |Du|)p(·) dz + cκ̃

∫
Q(λ)

2ϱ (z0)
|Du|p(·) + |F|p(·) + | f |γ′1 + 1 dz

≤ c
(
κ̃ +

cκ̃
H

)
λ|Q(λ)

2ϱ (z0)|
(36)
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for every κ̃ ∈ (0, 1) and ϱ ∈ (0, 1] with constants cκ̃ = c(κ̃, n, γ1, γ2, µ, L) and c = c(n, γ1, γ2, µ, L), where we used
(33). Furthermore, we have from (30) the following energy estimate∫

Q(λ)
2ϱ (z0)
|Dv|p(·) dz ≤ cλ|Q(λ)

2ϱ (z0)| (37)

for every ϱ ∈ (0, 1] with a constant c = c(n, γ1, γ2, µ, L), where we also used (33).

Step 2: Proof of the higher integrability. Now, we let ε0 = ε0(n, γ1, γ2, µ, L, σ) > 0 be the higher integrability
exponent from Corollary 8 and set

ϱ3 := min
{
ϱ1,
ϱ2

2
, 1

}
∈ (0, 1] , (38)

where ϱ2 is the radius from Lemma 7 and ϱ1 the one for the higher integrability from Corollary 8 with the choices
f , F = 0. Therefore, ϱ3 depends on n, γ1, γ2, µ, L, κ,K,H, ω(·). In the course of the proof, we shall further reduce
the value of ϱ3 when necessary, but without changing its dependencies. In the following, we assume that

ϱ ≤ ϱ3.

Due to assumption (33) we are allowed to apply Lemma 7 on Q(λ)
2ϱ (z0) which yields that

p2 − p1 ≤ ω(Γ̃(2ϱ)α) and λp2−p1 ≤ λω(Γ̃(2ϱ)α) ≤ e
3nL1 p0
α ≤ e

3nL1γ2
α , (39)

since λ ≥ 1, where Γ̃ and α are defined in (19). Here, we set ĉ = ĉ(n, γ1, γ2, L1) := e
3nL1γ2
α . Thus, assumption

(20) from Corollary 8 is valid. The assumption (21) is also fulfilled by the energy estimate (37), where have to
replace the constant c by the constant ĉ. The application of the Corollary 8 ensures that Dv ∈ Lp(·)(1+ε0)(Q(λ)

2ϱ ,R
n)

and moreover, the following higher integrability estimate

−
∫

Q(λ)
ϱ (z0)
|Dv|p(·)(1+ε0) dz ≤ cλ1+ε0 . (40)

Notice, since we have from (38) that ϱ ≤ ϱ1, we are allowed to apply Corollary 8. Next, we reduce the value of ϱ3,
such that

ω(Γ̃(2ϱ3)α) ≤ ε1

γ′1
, where ε1 :=

√
1 + ε0 − 1 ≤ ε0 (41)

is satisfied. Thus, by (39), for any z ∈ Q(λ)
2ϱ (z0) there holds

p0(1 + ε1) ≤ p(·)(1 + ω(Γ̃(2ϱ)α))(1 + ε1) ≤ p(·)(1 + ω(Γ̃(2ϱ3)α))(1 + ε1) < p(·)(1 + ε1)2 = p(·)(1 + ε0).

Furthermore, we have Dv ∈ Lp0(1+ε1)(Q(λ)
ϱ (z0),Rn) together with the following estimate

−
∫

Q(λ)
ϱ (z0)
|Dv|p0(1+ε1) dz ≤ −

∫
Q(λ)
ϱ (z0)
|Dv|p(·)(1+ω(Γ̃(2ϱ)α))(1+ε1) dz + 1 ≤

−∫
Q(λ)
ϱ (z0)
|Dv|p(·)(1+ε0) dz

 (1+ω(Γ̃(2ϱ)α))(1+ε1)
1+ε0

+ 1

≤ cλ(1+ω(Γ̃(2ϱ)α))(1+ε1) + 1 = cλ(1+ε1)λ(1+ω(Γ̃(2ϱ)α)) + 1 ≤ cλ(1+ε1)

(42)

with a constant c = c(n, γ1, γ2, µ, L, c∗, ĉ), where we used the Hölder’s inequality, (39), (40) and the fact that λ ≥ 1.
Finally, we observe the following

p′0(p2 − 1) = p0

(
1 +

p2 − p0

p0 − 1

)
≤ p0

(
1 +
ω(Γ̃(2ϱ3)α)
γ1 − 1

)
≤ p0

(
1 +
ε1

γ1

)
≤ p0 (1 + ε1) .

The previous computation combined with (42) implies

−
∫

Q(λ)
ϱ (z0)
|Dv|p′0(p2−1) dz ≤

−∫
Q(λ)
ϱ (z0)
|Dv|p0(1+ε1) dz

 p2−1
(p0−1)(1+ε1)

≤ cλ
p2−1
p0−1 = cλ1+ p2−p0

p0−1 ≤ cλ (43)
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with a constant c = c(n, γ1, γ2, µ, L, c∗, ĉ), where we used (39).

Step 3: Proof of the second comparison estimate. Next, we want to conclude a comparison estimate between Dv
and Dw. To compare the solution of (34) and (35), we have to consider the difference of their weak formulation
(see Definition 1 with f , F = 0 and u replaced by v respectively w), i.e.∫

Q(λ)
ϱ (z0)

(v − w) · φt dz −
∫

Q(λ)
ϱ (z0)

(a(z,Dv) − a(z0,Dw)) · Dφ dz = 0

for any φ ∈ C∞0 (Q(λ)
ϱ (z0),Rn). Next, we have to define for h > 0 and τ := t0 + λ

2−p0
p0 (2ϱ)2

χh(t) :=


1 on (−∞, τ − h],
− 1

h (t − τ) on (τ − h, τ),
0 on [τ,∞).

By (42) we know that Dv ∈ Lp0 (Q(λ)
ϱ (z0)) with ϱ ≤ ϱ3. Thus, we have Dv − Dw ∈ Lp0 (Q(λ)

2ϱ (z0)) and v = w on

∂PQ(λ)
ϱ (z0), we are (formally) allowed to choose φ = (v − w)χh in the preceding identity. Then, it follows∫

Q(λ)
ϱ (z0)

(v − w) · ∂t[(v − w)χh] dz
h↓0→ −1

2

∫
Q(λ)
ϱ (z0)
|v − w|2(·, τ) dx ≤ 0.

This implies ∫
Q(λ)
ϱ (z0)

(a(z,Dv) − a(z0,Dw)) · D(v − w) dz ≤ 0.

Moreover, we gain that∫
Q(λ)
ϱ (z0)

(a(z0,Dv) − a(z0,Dw)) · D(v − w) dz ≤
∫

Q(λ)
ϱ (z0)

(a(z0,Dv) − a(z,Dv)) · D(v − w) dz.

Using the monotonicity property of the vector-field a(z0, ·), i.e. (3) with p0 = p(z0), we have

µ

∫
Q(λ)
ϱ (z0)

(
s2 + |Dv|2 + |Dw|2

) p0−2
2 |D(v − w)|2 dz ≤

∫
Q(λ)
ϱ (z0)

(a(z0,Dv) − a(z,Dv)) · D(v − w) dz. (44)

Next, we apply the continuity condition (9) and Hölder’s inequality with exponents p0 and p′0 to the right-hand
side of the previous estimate. This yields

µ

∫
Q(λ)
ϱ (z0)

(
s2 + |Dv|2 + |Dw|2

) p0−2
2 |D(v − w)|2 dz ≤ c

∫
Q(λ)
ϱ (z0)

(
ω(λ

2−p0
2p0 ϱ)

[
(1 + |Dv|)p0−1 + (1 + |Dv|)p(·)−1

]
× [

1 + log(1 + |Dv|)] ) p0
p0−1

dz


p0−1
p0

∫
Q(λ)
ϱ (z0)
|D(v − w)|p0 dz

 1
p0

≤ cω(Γϱα)
∫

Q(λ)
ϱ (z0)

[
(1 + |Dv|)p0 + (1 + |Dv|)p′0(p(·)−1)

]
× [

1 + log(1 + |Dv|)] p0
p0−1 dz

) p0−1
p0

∫
Q(λ)
ϱ (z0)
|D(v − w)|p0 dz

 1
p0

with a constant c = c(γ1, γ2, p0, L), where we used that we have for all z1, z2 ∈ Q(λ)
ϱ (z0)

ω(dP(z1, z2)) ≤ω(|x1 − x2| +
√
|t1 − t2|) ≤ ω(2ϱ +

√
2λ

2−p0
p0 ϱ2) ≤ ω(4λ

2−γ1
2p0 ϱ).

Lemma 7 yields ω(4ϱ) ≤ ω(Γϱ) for γ1 ≥ 2, since Γ ≥ 4, see (18). Moreover in the case γ1 < 2 we have

ω(4λ
2−γ1
2p0 ϱ) ≤ω

4
(
Γ

4

) 2−γ1
4

ϱ1− (2−γ1)(n+2)
4

 ≤ ω (
Γϱγ1

n+2
4 −

n
2

)
.
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Note that the restriction γ1 >
2n

n+2 ensures that γ1
n+2

4 −
n
2 > 0. Summarized, we have ω(dP(z1, z2)) ≤ ω(Γϱα) for all

z1, z2 ∈ Q(λ)
ϱ (z0). Notice, that the dependence upon p(·) is continuously. Therefore, we can also replace dependence

upon p0 by a dependence on γ1 and γ2. Now, we divide the last estimate by |Q(λ)
ϱ (z0)| and use Hölder’s inequality

with exponents 1
1+ε1

and ε1
1+ε1

, thus we gain the following

µ−
∫

Q(λ)
ϱ (z0)

(
s2 + |Dv|2 + |Dw|2

) p0−2
2 |D(v − w)|2 dz ≤

−∫
Q(λ)
ϱ (z0)
|D(v − w)|p0 dz

 1
p0

×cω(Γϱα)

−∫
Q(λ)

wϱ(z0)

[
1 + |Dv|p′0(p(·)−1)

]
dz +

−∫
Q(λ)
ϱ (z0)
|Dv|p0(1+ε1) dz

 1
1+ε1

+−
∫

Q(λ)
ϱ (z0)

(1 + |Dv|)p′0(p(·)−1) logp′0 (1 + |Dv|) dz + −
∫

Q(λ)
ϱ (z0)

(1 + |Dv|)p0 logp′0 (1 + |Dv|) dz
 p0−1

p0

.

Next, we note that the monotonicity of the logarithm implies log(e + ab) ≤ log(e + a) + log(e + b) for all a, b ≥ 0.
Since the logarithm is monotone increasing and by the last inequality, we can conclude that

log(1 + |Dv|) ≤ log(e + (1 + |Dv|)p′0(p2−1)) = log

e + (1 + |Dv|)p′0(p2−1)
([1 + |Dv|]p′0(p2−1))Q(λ)

ϱ (z0)

([1 + |Dv|]p′0(p2−1))Q(λ)
ϱ (z0)


≤ log

e + (1 + |Dv|)p′0(p2−1)

([1 + |Dv|]p′0(p2−1))Q(λ)
ϱ (z0)

 + log
(
e + ([1 + |Dv|]p′0(p2−1))Q(λ)

ϱ (z0)

)
and also that

log(1 + |Dv|) ≤ log(e + (1 + |Dv|)p0 ) ≤ log

e + (1 + |Dv|)p0

([1 + |Dv|]p0 )Q(λ)
ϱ (z0)

 + log
(
e + ([1 + |Dv|]p0 )Q(λ)

ϱ (z0)

)
is in force. Combining the last three estimate, we derive at

µ−
∫

Q(λ)
ϱ (z0)

(
s2 + |Dv|2 + |Dw|2

) p0−2
2 |D(v − w)|2 dz ≤

−∫
Q(λ)
ϱ (z0)
|D(v − w)|p0 dz

 1
p0

× cω(Γϱα)

−∫
Q(λ)
ϱ (z0)

[
1 + |Dv|p′0(p2−1)

]
dz +

−∫
Q(λ)
ϱ (z0)
|Dv|p0(1+ε1) dz

 1
1+ε1

+ −
∫

Q(λ)
ϱ (z0)

(1 + |Dv|)p′0(p2−1) logp′0

e + (1 + |Dv|)p′0(p2−1)

([1 + |Dv|]p′0(p2−1))Q(λ)
ϱ (z0)

 dz

+ −
∫

Q(λ)
ϱ (z0)

(1 + |Dv|)p′0(p2−1) logp′0
(
e + ([1 + |Dv|]p′0(p2−1))Q(λ)

ϱ (z0)

)
dz

+ −
∫

Q(λ)
ϱ (z0)

(1 + |Dv|)p0 logp′0

e + (1 + |Dv|)p0

([1 + |Dv|]p0 )Q(λ)
ϱ (z0)

 dz

+ −
∫

Q(λ)
ϱ (z0)

(1 + |Dv|)p0 logp′0
(
e + ([1 + |Dv|]p0 )Q(λ)

ϱ (z0)

)
dz

 p0−1
p0

= cω(Γϱα)
−∫

Q(λ)
ϱ (z0)
|D(v − w)|p0 dz

 1
p0

(I + II + III + IV + V + VI)
p0−1

p0

with the obvious labeling of I − VI. Here, we want to estimate III and V by the inequality (16). Therefore, we
have to choose on the one hand g1 := (1 + |Dv|)p′0(p2−1) and

ς1 :=
1 + ε1

1 + ε
γ1

= c(n, γ1, γ1, µ, L, σ) > 1
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and on the other hand g2 := (1 + |Dv|)p0 and ς2 := (1 + ε1) = c(n, γ1, γ1, µ, L, σ) > 1 with respect to (40) and (42).
Moreover, we choose Q = Q(λ)

ϱ (z0). Thus, we get

III ≤ c(ς1, γ1, γ2)
(
−
∫

Q
|g1|ς1 dz

) 1
ς1

and

IV ≤ c(ς2, γ1, γ2)
(
−
∫

Q
|g2|ς2 dz

) 1
ς2

.

Now, we want to use (42) to bound III and IV . The term IV , we can immediately bound by (42), i.e

IV ≤ c
−∫

Q(λ)
ϱ (z0)

1 + |Dv|p0(1+ε1) dz
 1

1+ε1

≤ c(1 + λ1+ε1 )
1

1+ε1 ≤ cλ

with a constant c = c(n, γ1, γ1, µ, L, σ), since λ ≥ 1. The term III, we can bound by (42) as follows. First, we use
the Hölder’s inequality. This yields

III ≤c
−∫

Q(λ)
ϱ (z0)

(1 + |Dv|)p0(1+ ε1γ1 )ς1 dz
 1
ς1
· p2−1

(p0−1)(1+ε1/γ1)

= c
−∫

Q(λ)
ϱ (z0)

(1 + |Dv|)p0(1+ε1) dz
 1
ς1
· p2−1

(p0−1)(1+ε1/γ1)

≤c(1 + λ
p2−1
p0−1 ) ≤ cλ

p2−1
p0−1 = cλ1+ p2−p0

p0−1 ≤ cλ

with a constant c = c(n, γ1, γ1, µ, L, c∗, ĉ), where we used (42), λ ≥ 1 and (39). Next, we estimate I by (43). Thus,
we have

I ≤ c(1 + λ) ≤ cλ

with a constant c = c(n, γ1, γ1, µ, L, c∗, ĉ), where we again used λ ≥ 1. The expression II can be also bounded by
(42). This yields

II ≤ c(1 + λ) ≤ cλ.

Furthermore, we consider the following

([1 + |Dv|]p′0(p2−1))Q(λ)
ϱ (z0) =−

∫
Q(λ)
ϱ (z0)

(1 + |Dv|)p′0(p2−1) dz ≤ 1 + cλ ≤ cλ ≤ c
(

KH
ϱn+2

) p0
2

with a constant c = c(n, γ1, γ1, µ, L), where we utilized (43) and Lemma 7. This and (43) we apply to IV to
conclude that

IV ≤ logp′0

e + c
(

KH
ϱn+2

) p0
2
−∫

Q(λ)
ϱ (z0)

(1 + |Dv|)p′0(p2−1) dz ≤ logp′0

e + c
(

KH
ϱn+2

) p0
2
 λ

with a constant c = c(n, γ1, γ1, µ, L). Note we can always assume c
(

KH
ϱn+2

) p0
2 ≥ e by possibly reducing the value of

ϱ3. This allows to deduce that

logp′0

e + c
(

KH
ϱn+2

) p0
2
 ≤ logp′0

c (
KH
ϱn+2

) p0
2
 = p0

2
logp′0

(
c

KH
ϱn+2

)
≤ cHp′0 logp′0

(
K
ϱn+2

)
≤ cHp′0 logp′0

(
K
ϱ

)
,

where we also used the fact that log(cx) ≤ c log(x) for c ≥ 1. Combining the last two estimate, we get

IV ≤ cHp′0 logp′0

(
K
ϱ

)
λ
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with a constant c = c(n, γ1, γ1, µ, L). By the same arguments and (42), we can also conclude that

VI ≤ cHp′0 logp′0

(
K
ϱ

)
λ

with a constant c = c(n, γ1, γ1, µ, L). Finally, we had shown that

µ−
∫

Q(λ)
ϱ (z0)

(
s2 + |Dv|2 + |Dw|2

) p0−2
2 |D(v − w)|2 dz ≤

−∫
Q(λ)
ϱ (z0)
|D(v − w)|p0 dz

 1
p0

cω(Γϱα)H log
(

K
ϱ

)
λ

p0−1
p0 (45)

with a constant c = c(n, γ1, γ1, µ, L, c∗, ĉ, σ). In the case p0 ≥ 2, we get by the Young’s inequality the following
comparison estimate

−
∫

Q(λ)
ϱ (z0)
|D(v − w)|p0 dz ≤ cω(Γϱα)p′0 Hp′0 logp′0

(
K
ϱ

)
λ

with a constant c = c(n, γ1, γ1, µ, L, c∗, ĉ, σ), while in the case p0 < 2 we have to estimate the left-hand side from
below as in the proof of Lemma (10). This yields

−
∫

Q(λ)
ϱ (z0)
|D(v − w)|p0 dz ≤ κ̃−

∫
Q(λ)
ϱ (z0)
|Dv|p0 dz + cκ̃ω(Γϱα)p′0 Hp′0 logp′0

(
K
ϱ

)
λ

for any κ̃ ∈ (0, 1] and with a constant cκ̃ = c(κ̃, n, γ1, γ1, µ, L, c∗, ĉ, σ). Using Hölder’s inequality with exponents
1

1+ε1
, ε1

1+ε1
and (42), then we derive the third comparison estimate

−
∫

Q(λ)
ϱ (z0)
|D(v − w)|p0 dz ≤

[
cκ̃ + cκ̃ω(Γϱα)Hp′0 logp′0

(
K
ϱ

)]
λ (46)

for any number κ̃ ∈ (0, 1) and with constants cκ̃ = c(κ̃, n, γ1, γ1, µ, L, c∗, ĉ, σ) ≥ 1 and c = c(n, γ1, γ1, µ, L) ≥ 1.
Finally, we apply the fact |Dw|p0 ≤ 2p0−1 (|Dv|p0 + |Dv − Dw|p0 ) and again Hölder’s inequality, (42) and (46) . This
yields the energy estimate for Dw, i.e.

−
∫

Q(λ)
ϱ (z0)
|Dw|p0 dz ≤ c

(
κ̃ + cκ̃ω(Γϱα)p′0 Hp′0 logp′0

(
K
ϱ

))
λ (47)

with a constant c = c(n, γ1, γ1, µ, L).

Step 4: Proof of the Lipschitz bound. Next, we want to derive a Lipschitz bound to Dw. Therefore, we choose
c∗ = c ·max {1, δ(κ̃,H, ϱ)}, where

δ(κ̃,H, ϱ) :=
(
κ̃ +

cκ̃
H
+ cκ̃ω(Γϱα)p′0 Hp′0 logp′0

(
K
ϱ

))
. (48)

Here, we have to mention that we need the dependency of δ on the term cκ̃
H later for the comparison estimate

between Du and Dw, which we derive in the next and final step. The next arguments are also true without cκ̃
H .

Therefore, this implies the desired energy estimate

−
∫

Q(λ)
ϱ (z0)
|Dw|p0 dz ≤ c∗λ.

Hence, we can apply Theorem 9 which implies the following Lipschitz bound

sup
Q(λ)

1
2 ϱ

(z0)
|Dw| ≤ cLipλ

1
p0 (49)

with a constant cLip = c(n, µ, L, p0, c∗). Since, the dependence upon p0 is continuous it can be replaced by a lager
constant depending on γ1 and γ2 instead of p0, i.e. cLip = c(n, γ1, γ2, µ, L, c∗).
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Step 5: Proof of the final comparison estimate. The last step is to derive a comparison estimate between Du and
Dw. Therefore, we consider the following

−
∫

Q(λ)
1
2 ϱ

(z0)
|Dv − Dw|p(·) dz =−

∫
Q(λ)

1
2 ϱ

(z0)
|Dv − Dw|

p0
2 |Dv − Dw|p(·)− p0

2 dz

≤

−
∫

Q(λ)
1
2 ϱ

(z0)
|Dv − Dw|p0 dz


1
2
−
∫

Q(λ)
1
2 ϱ

(z0)
|Dv − Dw|2p(·)−p0 dz


1
2

≤cδ(κ̃,H, ϱ)
1
2 λ

1
2

−
∫

Q(λ)
1
2 ϱ

(z0)
|Dv|2p(·)−p0 + |Dw|2p(·)−p0 dz


1
2

,

where we used the Hölder’s inequality and (46) with (48). Next, we observe the exponent 2p(·)− p0. This exponent
can be estimated from above as follows

2p(·) − p0 ≤ p(·)(1 + ω(Γ̃(2ϱ)α)) ≤ p(·)(1 + ω(Γ̃(2ϱ3)α)) ≤ p(·)(1 + ε0),

where we used (41). Using the preceding result, the Hölder’s inequality, (39), (40) and λ ≥ 1, we can conclude that

−
∫

Q(λ)
1
2 ϱ

(z0)
|Dv|2p(·)−p0 dz ≤ 2n+2−

∫
Q(λ)
ϱ (z0)
|Dv|p(·)(1+ω(Γ̃(2ϱ)α)) dz + 1 ≤ 2n+2

−∫
Q(λ)
ϱ (z0)
|Dv|p(·)(1+ε0) dz

 1+ω(Γ̃(2ϱ)α)
1+ε0

+ 1

≤ cλ1+ω(Γ̃(2ϱ)α) + 1 ≤ cλ,

with a constant c = (n, γ1, γ2, µ, L), where we used (39). Thus we have the following estimate

−
∫

Q(λ)
1
2 ϱ

(z0)
|Dv − Dw|p(·) dz ≤ cδ(κ̃,H, ϱ)

1
2 λ

1
2

cλ + −
∫

Q(λ)
1
2 ϱ

(z0)
|Dw|2p(·)−p0 dz


1
2

≤ cδ(κ̃,H, ϱ)
1
2 λ

with a constant c = c(n, γ1, γ2, µ, L, p0, ĉ), where we used (49), (39) and λ ≥ 1 for the last estimate. Finally, we use
the fact that |Du − Dw|p(·) ≤ 2p(·)−1

(
|Du − Dv|p(·) + |Dv − Dw|p(·)

)
and we can combine the preceding estimate with

the first comparison estimate (36), then derive the final comparison estimate

−
∫

Q(λ)
1
2 ϱ

(z0)
|Du − Dw|p(·) dz ≤ cδ(κ̃,H, ϱ)

1
2 λ (50)

for every radius ϱ ∈ (0, ϱ3) with a constant c, which depends on n, γ1, γ1, µ, L, L1, σ, κ and ĉ where ϱ3 depends on
n, γ1, γ2, µ, L, κ,K,H, ω(·) and Q(λ)

2ϱ (z0) b ΩT , satisfies the intrinsic relation (33).

3. Proof of the Main Result

Proof. The proof is divided into several steps.

Step 1: Choice of the intrinsic cylinders. Here, we will use the stopping time argument. Therefore, let K ≥ 1 and
suppose that (12) is valid. Then, we observe a standard parabolic cylinder Qr ≡ Qr(z0), such that Q2r b ΩT . First,
we define

λ0 :=
(
−
∫

Q2r

|Du|p(·) + H(|F|p(·) + | f |γ′1 + 1) dz
)d

≥ 1, where d := sup
Q2r

d(p(·)) (51)

and d(·) is defined in (14). Moreover, we consider the concentric parabolic cylinders Qr ⊆ Qr1 ⊂ Qr2 ⊆ Q2r for
fixed radii r ≤ r1 < r2 ≤ 2r, all the cylinders sharing the same center z0. Next, we shall consider λ, which satisfies

λ > Bλ0 (52)
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with

B :=
(

8χr
r2 − r1

)(n+2)d

, (53)

where χ = χ(n, L1, γ1) ≥ 5 denotes the corresponding constant from Lemma 5. In addition, we observe radii s,
which are conform to

1
2χ

R0 =

min
{
λ

p0−2
2p0

}
(r2 − r1)

3χ
≤ s ≤

min
{
λ

p0−2
2p0

}
(r2 − r1)

2
= R0, (54)

where p0 = p(z0). Notice that the maximal radius R0 is chosen, such that for all points z0 ∈ Qr1 and radii s ≤ R0

the inclusion Q(λ)
s (z0) ⊂ Qr2 is fulfilled. Next, we want to prove that for any z0 ∈ Qr1 , there holds

−
∫

Q(λ)
s (z0)
|Du|p(·) + H(|F|p(·) + | f |γ′1 + 1) dz < λ. (55)

From this fact and the definition of λ0 we can conclude that

−
∫

Q(λ)
s (z0)
|Du|p(·) + H(|F|p(·) + | f |γ′1 + 1) dz ≤ |Q2r |

|Q(λ)
s (z0)|

(
−
∫

Q2r

|Du|p(·) + H(|F|p(·) + | f |γ′1 + 1) dz
)

≤
(

2r
s

)n+2

λ
p0−2

p0 λ
1
d
0

(56)

holds, where we used (51) for the last estimate. Next, we have to treat the two cases 2 ≤ p0 ≤ γ2 and γ1 ≤ p0 < 2

separated. In the case p0 ≥ 2, we have d(p0) = p0
2 and min

{
λ

p0−2
2p0 , 1

}
= 1. Hence, this yields by (56), (54), (52)

and (53) the following

−
∫

Q(λ)
s (z0)
|Du|p(·) + H(|F|p(·) + | f |γ′1 + 1) dz ≤

(
2r
s

)n+2

λ
p0−2

p0 λ
1
d
0 ≤

(
8χr

r2 − r1

)n+2

λ
p0−2

p0 λ
1
d
0 <

(
8χr

r2 − r1

)n+2

λ
p0−2

p0

(
λ

B

) 1
d

= λ.

In the case that γ1 ≤ p0 < 2, there is d(p0) = 2p0
p0(n+2)−n respectively 1

d(p0) =
n+2

2 −
n
p0

and min
{
λ

p0−2
2p0 , 1

}
= λ

p0−2
2p0 , we

can conclude, in the same way as in the preceding case, that

−
∫

Q(λ)
s (z0)
|Du|p(·) + H(|F|p(·) + | f |γ′1 + 1) dz

(54)
≤

 8χr

λ
p0−2
2p0 (r2 − r1)

n+2

λ
p0−2

p0 λ
1
d
0 <

(
8χr

r2 − r1

)n+2
λ

B
1
d

= λ,

where we finally used (53). This addict the same estimate as in the case 2 ≤ p0 ≤ γ2. The availability can be
shown easily. For the purpose, we consider the following calculation 1

λ
p0−2
2p0

n+2

λ
p0−2

p0 λ
1
d
0 = λ

n+2
p0
− n+2

2 λ
p0−2

p0 λ
1
d
0 < λ

2
p0
− 1

d λ
p0−2

p0 λ
1
d
0 = λ

(
λ0

λ

) 1
d

<
λ

B
1
d

.

Thus, we proved (55).

In the following, we show that also a converse inequality holds true for small radii. Therefore, we consider
parabolic cylinders of the type

Q(λ)
s (z0) with 0 < s ≤ min

{
λ

p0−2
2p0 , 1

} ( r2 − r1

2

)
= R0

are contained in Qr2 , where λ ≥ λ0 and z0 ∈ Qr1 . By the Lebesgue’s differentiation theorem, we can conclude that
for a.e. points z0 ∈ Qr1 , which satisfy the condition |Du(z0)|p0 > λ, we have the following estimate

lim
s↓0

(
−
∫

Q(λ)
s (z0)
|Du|p(·) + H(|F|p(·) + | f |γ′1 + 1) dz

)
≥ |Du(z0)|p0 > λ. (57)
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This can shown by the following fact: We know that in the Lebesgue points z0 of Du we have

lim
s↓0
−
∫

Qs(z0)
|Du|p(·) dz = |Du(z0)|p0 ,

see e.g. (Harjulehto & Hästö, 2004). At this stage, it is worth to mention that the averages are taken with respect
to the usual cylinders while in (57) we need to have the averages on cylinders Q(λ)

s (z0). Since,

Q(λ)
s (z0) ⊆ Qµs(z0) for µ := max

{
λ

2−p0
2p0 , 1

}
,

we get

lim
s↓0
−
∫

Q(λ)
s (z0)

∣∣∣|Du|p(·) − |Du(z0)|p0
∣∣∣ dz ≤ µ

n+2

λ
2−p0
2p0

lim
s↓0
−
∫

Qµs(z0)

∣∣∣|Du|p(·) − |Du(z0)|p0
∣∣∣ dz = 0.

Hence (57) is valid.

Now, we have on the one hand a cylinder Q(λ)
s (z0), on which the integral is smaller than λ and on the other hand we

have shown that the integral over this cylinder is bigger than λ, see (57). More precisely, by the absolute continuity
of the integral, we can conclude from (57) and (55) that, there exists a maximal radius

0 < ϱz0 < min
{
λ

p0−2
2p0 , 1

} (r2 − r1)
3χ

, (58)

such that

−
∫

Q(λ)
ϱz0

(z0)
|Du|p(·) + H(|F|p(·) + | f |γ′1 + 1) dz = λ, (59)

while for any

s ∈
(
ϱz0 ,min

{
λ

p0−2
2p0 , 1

} (r2 − r1)
2

)
we have the following estimate

−
∫

Q(λ)
s (z0)
|Du|p(·) + H(|F|p(·) + | f |γ′1 + 1) dz < λ. (60)

With the choice of ϱz0 , we define concentric parabolic cylinders centered in z0 ∈ E(λ, r1), where

E(r1, λ) :=
{
z ∈ Qr1 : z is a Lebesgue point of |Du| and |Du(z)|p(z) ≥ λ

}
,

as follows:

Q0
z0

:= Q(λ)
ϱz0
, Q1

z0
:= Q(λ)

χϱz0
, Q2

z0
:= Q(λ)

2χϱz0
, Q3

z0
:= Q(λ)

4χϱz0
. (61)

Then, we have Q0
z0
⊂ Q1

z0
⊂ Q2

z0
⊂ Q3

z0
⊂ Qr2 and for j ∈ {0, ..., 3}, there holds

λ

(4χ)n+2−
∫

Q j
z0

|Du|p(·) + H(|F|p(·) + | f |γ′1 + 1) dz + 1 ≤ λ. (62)

The upper bound follows from (59) and the maximal choice of the stopping radius ϱz0 , while the lower bound

follows from (59) by enlarging the domain of the integration from Q0
z0

to Q j
z0 and taking into account that

|Q j
z0 |
|Q0

z0 |
≤

(4χ)n+2.

Step 2: Estimates on intrinsic cylinders. Here, we want to apply the comparison estimates from the previous
section. Therefore, we fix one particular cylinder Q0

z0
and the comparison functions v and w as the unique solutions
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to the initial-boundary value problems (34) and (35) with Q3
z0

and Q2
z0

instead of Q(λ)
2ϱ (z0) and Q(λ)

ϱ (z0). Due to (62)
we know that (33) is valid with the choice κ = κ(n, γ1) = (4χ)n+2. Further, we suppose that

r ≤ r0 ≤ ϱ3,

where ϱ3 = ϱ3(n, γ1, γ2, µ, L,K,H, ω(·)) ∈ (0, 1) denotes the radius introduced in (38) for the choice κ = κ(n, γ1) =
(4χ)n+2. Hence, we are allowed to apply (36), (49) and (50) with κ = κ(n, γ1) = (4χ)n+2 for any radius smaller than
ϱ3. Thus, from (49) used with κ = κ(n, γ1) = (4χ)n+2, we can conclude that

sup
Q1

z0

|Dw| ≤ cLipλ
1

p0 , (63)

where cLip = c(n, γ1, γ2, µ, L, δ(·)) ≥ 1, where δ(·) is defined in (48). Next, we use the fact that

|Du|p(·) ≤ 2p(·)−1
(
|Dw|p(·) + |Du − Dw|p(·)

)
≤ cp(·)

Lipλ
p(·)
p0 + c(γ2)|Du − Dw|p(·) on Q1

z0
. (64)

Then, we integrate the previous estimate by z over Q1
z0
∩ E(r1,Aλ), where we had chosen

A ≥ cγ2
Lipe

3n
α ≥ cp(·)

Lipλ
p(·)
p0 ≥ 1, (65)

where cLip = c(n, γ1, γ2, µ, L, c∗) ≥ 1. Then, (63), (64), (65), 2Aλ < |Du|p(·) on E(r1, 2Aλ) and the fact that

|Dw|p(·) ≤ cp(·)
Lipλ

p(·)
p0 ≤ cp(·)

Lip

(
|Du|p(·)

2A

)
λ

p(·)−p0
p0 ≤

cγ2
Lip

2A e
3n
α |Du|p(·) ≤ 1

2
|Du|p(·)

[cf. (18) and (65)] yields∫
Q1

z0∩E(r1,2Aλ)
|Du|p(·) dz ≤1

2

∫
Q1

z0∩E(r1,2Aλ)
|Du|p(·) dz + c(γ2)

∫
Q1

z0∩E(r1,2Aλ)
|Du − Dw|p(·) dz.

Moreover, we apply the third comparison estimate from the preceding section, i.e. (50) with κ = κ(n, γ1) = (4χ)n+2,
where we replace the cylinder Q(λ)

1
2 ϱ

(z0) by Q1
z0

and (63) to derive the following energy estimate∫
Q1

z0∩E(r1,2Aλ)
|Du|p(·) dz ≤ cδ(κ̃,H, ϱ)

1
2 λ|Q1

z0
| (66)

with a constant c = c(n, γ1, γ2, µ, L, ĉ, c∗). Moreover, we recall that this estimate holds for any λ > Bλ0 and
z0 ∈ E(r1, λ). Next, we will infer a bound for the measure of the cylinders Q0

z0
. Note that, (59) implies

|Q0
z0
| = 1
λ

∫
Q0

z0

|Du|p(·) dz +
1
λ

∫
Q0

z0

H(|F|p(·) + | f |γ′1 + 1) dz. (67)

Then, we split the first integral of the preceding estimate as follows∫
Q0

z0

|Du|p(·) dz =
∫

Q0
z0∩{|Du|p(·)≤λ/4}

|Du|p(·) dz +
∫

Q0
z0∩E(r2,λ/4)

|Du|p(·) dz ≤ λ
4
|Q0

z0
| +

∫
Q0

z0∩E(r2,λ/4)
|Du|p(·) dz,

and similarly the second one∫
Q0

z0

H(|F|p(·) + | f |γ′1 + 1) dz ≤ λ
4
|Q0

z0
| +

∫
Q0

z0∩
{
H(|F|p(·)+| f |γ

′
1+1)>λ/4

} H(|F|p(·) + | f |γ′1 + 1) dz.

Finally, we combine the last three estimate. This implies

|Q0
z0
| ≤2
λ

∫
Q0

z0∩E(r2,λ/4)
|Du|p(·) dz +

2
λ

∫
Q0

z0∩
{
H(|F|p(·)+| f |γ

′
1+1)>λ/4

} H(|F|p(·) + | f |γ′1 + 1) dz.
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Therefore, we have from (66) the following estimate∫
Q1

z0∩E(r1,2Aλ)
|Du|p(·) dz ≤ cδ(κ̃,H, ϱ)

1
2
|Q1

z0
|

|Q0
z0 |

∫
Q0

z0∩E(r2,λ/4)
|Du|p(·) dz

+

∫
Q0

z0∩
{
H(|F |p(·)+| f |γ

′
1+1)>λ/4

} H(|F|p(·) + | f |γ′1 + 1) dz

 ,
(68)

with a constant c = c(n, γ1, γ2, µ, L, ĉ, c∗).

Step 3: Estimates on the level sets. In the following, we will use the notation

E(ϱ, λ) :=
{
z ∈ Qϱ : |Du|p(z) > λ

}
and G(ϱ, λ) :=

{
z ∈ Qϱ : H(|F|p(·) + | f |γ′1 + 1) > λ

}
for the upper level sets of |Du|p(·) and (|F|p(·) + | f |γ′1 + 1) on cylinders Qϱ with ϱ ∈ [r, 2r]. For η ∈ (0, 1), which
we have to fix later, we consider the level sets E(ϱ, ηλ) and G(ϱ, ηλ). Our next aim, is to extend the last estimate.
Therefore, we have to apply a covering argument. First, we construct a suitable covering of E(r1, λ) by intrinsic
cylinders of the type as in (61). Note that, we have shown in the previous steps, that there exists a radius ϱz0 , which
satisfies (58), such that on the cylinders Q j

z0 , j ∈ {0, ..., 3} the estimates (62) and (68) hold. Next, we want to apply
the Vitali-type covering argument from Lemma 5. For this aim, we note that (59) and (18) with κ = 1 imply, that

λ ≤
(
βnHK
ϱn+2

z0

) p0
2

.

Therefore, (15) is valid for the family F :=
{
Q0

z0

}
of parabolic cylinders with center z0 ∈ E(r1, λ) (note that by

possibly reducing the value of r0, we can ensure that ϱz0 ≤ r ≤ r0 ≤ ϱ0). From the Vitali-type covering Lemma,
we can conclude the existence of a countable subfamily

{
Q0

zi

}∞
i=1
⊂ F of pairwise disjoint parabolic cylinders, such

that the χ-times enlarged cylinders Q1
zi

cover the set E(r1,Aλ), i.e. E(r1, 2Aλ) ⊂ E(r1, λ) ⊂
∪∞

i=1 Q1
zi
. In addition,

there holds Q3
zi
⊂ Qr2 . Moreover, we can conclude∫

E(r1,2Aλ)
|Du|p(·) dz ≤

∞∑
i=1

∫
Q1

zi

|Du|p(·) dz =
∞∑

i=1

∫
Q1

zi∩E(r1,2Aλ)
|Du|p(·) dz +

∞∑
i=1

∫
Q1

zi \E(r1,2Aλ)
|Du|p(·) dz

≤ cδ(κ̃,H, ϱ)
1
2

∞∑
i=1

∫
Q0

zi∩E(r2,λ\4)
|Du|p(·) dz +

∫
Q0

zi∩{H(|F |p(·)+| f |γ
′
1+1)>λ\4}

H(|F|p(·) + | f |γ′1 + 1) dz


+

∫
∪∞

i=1 Q1
zi \E(r1,2Aλ)

|Du|p(·) dz

≤ cδ(κ̃,H, ϱ)
1
2

(∫
E(r2,λ/4)

|Du|p(·) dz +
∫

G(r2,λ/4)
H(|F|p(·) + | f |γ′1 + 1) dz

)
(69)

with a constant c = c(n, γ1, γ2, µ, L, ĉ, c∗), where we used
∪∞

i=1 Q1
zi
\E(r1, 2Aλ) , ∅ and (68). Notice that, the

estimate (69) holds for every Lebesgue point z0 ∈ Qr1 of Du with |Du(z0)| > λ > Bλ0.

Step 4: The final estimate. We begin by defining truncations

Tk : [0,∞)→ [0, k], Tk(σ) := min {σ, k}

and

Ek(r1, 2Aλ) :=
{
z ∈ Qr1 : Tk(|Du(z)|p(z)) > 2Aλ

}
.

In order to derive integrability estimates for Du from the above estimate (69) on the super-level sets, we will
employ Fubini’s Theorem. Starting point is (69) with respect to the truncations, i.e. for k ≥ Bλ0∫

Ek(r1,2Aλ)
|Du|p(·) dz ≤ cδ(κ̃,H, ρ)

1
2

(∫
Ek(r2,λ/4)

|Du|p(·) dz +
∫

G(r2,λ/4)
H(|F|p(·) + | f |γ′1 + 1) dz

)
. (70)
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Here, we distinguish the cases k ≤ 2Aλ and k > 2Aλ. The case k ≤ 2Aλ implies Ek(r1, 2Aλ) = ∅ and therefore,
the estimate (70) holds, since

0 ≤cδ(κ̃,H, ρ)
1
2

(∫
Ek(r2,λ/8)

|Du|p(·) dz +
∫

G(r2,λ/4)
H(|F|p(·) + | f |γ′1 + 1) dz

)
.

In the case k > 2Aλ the estimate (70) holds, since Ek(r1, 2Aλ) = E(r1, 2Aλ) and Ek(r2,
λ
4 ) = E(r2,

λ
4 ), cf. (69).

Now, we multiply both side of (70) by λq−2. Then, we integrate with respect to λ over (Bλ0,∞). This yields∫ ∞

Bλ0

λq−2
∫

Ek(r1,2Aλ)
|Du|p(·) dz dλ ≤ cδ(κ̃,H, ρ)

1
2

[∫ ∞

Bλ0

λq−2
∫

Ek(r2,λ/4)
|Du|p(·) dz dλ

+ c
∫ ∞

Bλ0

λq−2
∫

G(r2,λ/8)
H(|F|p(·) + | f |γ′1 + 1) dz dλ

]
.

(71)

Next, we use Fubini’s Theorem as follows∫ ∞

Bλ0

λq−2
∫

Ek(r1,2Aλ)
|Du|p(·) dz dλ =

∫
Ek(r1,2ABλ0)

|Du|p(·)
∫ Tk(|Du|p(·))/2A

Bλ0

λq−2 dλ dz

=
(2A)1−q

(q − 1)

∫
Ek(r1,2ABλ0)

|Du|p(·)Tk(|Du|p(·))q−1 dz

− (Bλ0)q−1

q − 1

∫
Ek(r1,2ABλ0)

|Du|p(·) dz

≥ (2A)1−q

(q − 1)

∫
Qr1

|Du|p(·)Tk(|Du|p(·))q−1 dz − (Bλ0)q−1

q − 1

∫
Qr1

|Du|p(·) dz,

where we used the facts Qr1 = Ek(r1, 2ABλ0) ∪ (Qr1\Ek(r1, 2ABλ0)) and

Tk(|Du|p(·)) ≤ 2ABλ0 on (Qr1\Ek(r1, 2ABλ0)).

Again by Fubini’s Theorem, we gain∫ ∞

Bλ0

λq−2
∫

Ek(r2,λ/8)
|Du|p(·) dz dλ =

∫
Ek(r2,Bλ0/4)

|Du|p(·)
∫ Tk(|Du|p(·))

Bλ0

λq−2 dλ dz

≤ 4q−1

q − 1

∫
Qr2

|Du|p(·)Tk(|Du|p(·))q−1 dz

and∫ ∞

Bλ0

λq−2
∫

G(r2,λ/8)
H(|F|p(·) + | f |γ′1 + 1) dz dλ =

∫
G(r2,Bλ0/8)

H(|F|p(·) + | f |γ′1 + 1)
∫ 4H(|F|p(·)+| f |γ

′
1+1)

Bλ0

λq−2 dλ dz

≤4q−1Hq

q − 1

∫
Qr2

(|F|p(·) + | f |γ′1 + 1)q dz.

Plugging the last three estimate into (71). This yields∫
Qr1

|Du|p(·)Tk(|Du|p(·))q−1 dz ≤ (2ABλ0)q−1
∫

Qr1

|Du|p(·) dz + cAq−1δ(κ̃,H, ϱ)
1
2

∫
Qr2

|Du|p(·)Tk(|Du|p(·))q−1 dz

+ cAq−1Hqδ(κ̃,H, ϱ)
1
2

∫
Qr2

(|F|p(·) + | f |γ′1 + 1)q dz
(72)

with a constant c = c(n, γ1, γ2, µ, L, ĉ, c∗, q). Notice that the estimate stays stable as q ↓ 0.

Step 5: Choice of parameters and adjusting the exponents. Here, we will mainly choose the parameter H and
finally the maximal radius r0. The aim is to choose the parameter such that

cqAq−1δ(κ̃,H, ϱ)
1
2 ≤ ϑ ∈ (0, 1),
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where A ≥ cγ2
Lipe

3n
α and δ are introduced in (65) and (48), respectively, with constants cκ̃ = c(κ̃, n, γ1, γ2, µ, L) and

c = c(n, γ1, γ2, µ, L, σ, κ). This we can achieve by first choosing κ̃ ∈ (0, 1) sufficiently small, e.g. cqAq−1κ̃
1
2 ≤ ϑ4 .

Then, we have to choose H = H(n, γ1, γ2, q, µ, L, σ, κ) ≥ 1 large enough, depending on the fixed value of κ̃, e.g.

cqAq−1
(

cκ̃
H

) 1
2 ≤ ϑ4 . Finally, we have to reduce the value ϱ0, now depending on n, γ1, γ2, q, µ, L, σ, κ,K, ω(·) small,

such that for all ϱ ∈ (0, r0)

cqAq−1
[
cκ̃ω(Γ(2ϱ)α)Hp′0 logp′0

(
K
ϱ

)] 1
2

≤ ϑ
2
,

where we used (8). Then, we gain from (72) the following∫
Qr1

|Du|p(·)Tk(|Du|p(·))q−1 dz ≤ ϑ
∫

Qr2

|Du|p(·)Tk(|Du|p(·))q−1 dz + c
(

r
r2 − r1

)β
λ

q−1
0

∫
Q2r

|Du|p(·) dz

+ c
∫

Q2r

(|F|p(·) + | f |γ′1 + 1)q dz.

(73)

Now, we are in the situation to use the iteration Lemma 4, with the choices t = r1, s = r2, ϱ = 2r

ϕ(R) ≡
∫

QR

|Du|p(·)Tk(|Du|p(·))q−1 dz, A ≡ crβλq−1
0

∫
Q2r

|Du|p(·) dz and C ≡ c
∫

Q2r

(|F|p(·) + | f |γ′1 + 1)q dz.

This yields

ϕ(r) ≤ c(β, ϑ)
[ A
rβ
+C

]
.

Finally, passing to the limit k → ∞, which is possible by Fatou’s Lemma and taking average, we find that

−
∫

Qr

|Du|p(·)q dz ≤ c
[
λ

q−1
0 −

∫
Q2r

|Du|p(·) dz + −
∫

Q2r

(|F|p(·) + | f |γ′1 + 1)q dz
]
. (74)

Note that c = c(n, γ1, γ2, q, µ, L, σ, κ,K, ω(·)), since β depends continuously on p(·), i.e. the dependence upon p(·)
via the parameter d can be replaced by a dependence on γ1 and γ2. Since, Q2r b ΩT was arbitrary, we proved

|Du|p(·) ∈ Lq
loc(ΩT ).

Step 6: Adjusting the exponent. In the final step, it remains to show the estimate (13). First, we remember the
choice of λ0 in (51). Next, we plug λ0 into (74). This yields

−
∫

Qr

|Du|p(·)q dz ≤ c

(−∫
Q2r

|Du|p(·) + H(|F|p(·) + | f |γ′1 + 1) dz
)d(q−1)

−
∫

Q2r

|Du|p(·) dz + −
∫

Q2r

(|F|p(·) + | f |γ′1 + 1)q dz


with a constant c depending on n, γ1, γ2, q, µ, L, σ, κ, ω(·). Next, we use Hölder’s inequality as follows

−
∫

Q2r

H(|F|p(·) + | f |γ′1 + 1) dz ≤ 1
|Q2r |

(∫
Q2r

Hq′ dz
) 1

q′
(∫

Q2r

(|F|p(·) + | f |γ′1 + 1)q dz
) 1

q

= H
(
−
∫

Q2r

(|F|p(·) + | f |γ′1 + 1)q dz
) 1

q

.

Combining the last two estimates, this yields

−
∫

Qr

|Du|p(·)q dz ≤ cH

−∫
Q2r

|Du|p(·) +

(
−
∫

Q2r

(|F|p(·) + | f |γ′1 + 1)q dz
) 1

q


1+d(q−1)

+ c−
∫

Q2r

(|F|p(·) + | f |γ′1 + 1)q dz

≤ cH

−∫
Q2r

|Du|p(·) +

(
−
∫

Q2r

(|F|p(·) + | f |γ′1 + 1)q dz
) 1

q


1+d(q−1)

+ c
(
−
∫

Q2r

(|F|p(·) + | f |γ′1 + 1)q dz
) 1

q (1+d(q−1))

≤ cH

−∫
Q2r

|Du|p(·) +

(
−
∫

Q2r

(|F|p(·) + | f |γ′1 + 1)q dz
) 1

q


1+d(q−1)

,
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i.e. a version of the Calderón-Zygmund estimate (13) only for d := supQ2r
d(p(·)). But our aim is to show

(13) with d(p0) instead of d, where d(p0) is defined in (14) with p0 = p(z0) and z0 is the center of the cylinder
Q2r ≡ Q2r(z0) b ΩT . Therefore, we consider again the choice of λ0 from (51) as follows

λ0 =

(
−
∫

Q2r

|Du|p(·) + H(|F|p(·) + | f |γ′1 + 1) dz
)d

=

(
−
∫

Q2r

|Du|p(·) + H(|F|p(·) + | f |γ′1 + 1) dz
)d−d(p0)

×
(
−
∫

Q2r

|Du|p(·) + H(|F|p(·) + | f |γ′1 + 1) dz
)d(p0)

,

where p0 = p(z0). Here, it is obvious that we derive to (13) if we can show that(
−
∫

Q2r

|Du|p(·) + H(|F|p(·) + | f |γ′1 + 1) dz
)d−d(p0)

≤ (K (H + 1))d−d(p0) ≤ c,

where we used (12) and therefore, we gain

λ0 ≤ c
(
−
∫

Q2r

|Du|p(·) + H(|F|p(·) + | f |γ′1 + 1) dz
)d(p0)

.

To this aim, we first deduce an upper bound for d−d(p0) by a localization argument in terms of ω(r). Since, d(p(·))
is continuous, there exists z̄ ∈ Q̄r, such that d = d(p(z̄)). From the definition of d(·) in (14), we observe that

d(p0) ≥ max
{

p0

2
,

2p0

p0(n + 2) − 2n

}
.

In the case p(z̄) ≥ 2, we can conclude that

d − d(p0) =
p(z̄)
2
− d(p0) ≤ p(z̄)

2
− p0

2
=

1
2

(p(z̄) − p0) ≤ 1
2
ω(r),

where we used (6). While in the case p(z̄) < 2, we can conclude that

d − d(p0) ≤ 2p(z̄)
p(z̄)(n + 2) − 2n

− 2p0

p0(n + 2) − 2n
≤ 4n

[γ1(n + 2) − 2n]2ω(r),

where we used p(z̄) ≤ p0 and again (6). Thus, from the last two estimate, we gain an upper bound for d − d(p0),
i.e. d − d(p0) ≤ c(n, γ1)ω(r). This bound we apply to(

−
∫

Q2r

|Du|p(·) + H(|F|p(·) + | f |γ′1 + 1) dz
)d−d(p0)

≤
(
−
∫

Q2r

|Du|p(·) + H(|F|p(·) + | f |γ′1 + 1) dz
)c(n,γ1)ω(r)

≤
(
r−(n+2)K(H + 1)

)c(n,γ1)ω(r)
.

From (8), we have r−ω(r) ≤ e. This implies(
−
∫

Q2r

|Du|p(·) + H(|F|p(·) + | f |γ′1 + 1) dz
)d−d(p0)

≤e(n+2)c(n,γ1) (K(H + 1))c(n,γ1)ω(r) = ec(n,γ1) (K(H + 1))c(n,γ1)ω(r) ,

where we used the fact that Kc(n,γ1)ω(r) = ec(n,γ1)ω(r) log K ≤ ec(n,γ1)ω(r) log 1
r ≤ ec(n,γ1), cf. (8). Notice, that we deter-

mined H = H(n, γ1, γ2, q, µ, L, σ, κ) ≥ 1 in Step 5 of this proof. Therefore, we have(
−
∫

Q2r

|Du|p(·) + H(|F|p(·) + | f |γ′1 + 1) dz
)d−d(p0)

≤ c (KH)ω(r) .

with a constant c = c(n, γ1, γ2, µ, L, q). Finally, we use again (8) to estimate the last factor on the right-hand side,
i.e.

(KH)ω(r) ≤ exp[ω(r) log(KH)] ≤ exp
[
ω(r) log

(
1
r

)]
≤ e,

provided r ≤ r0 ≤ min {ρ, 1/(KH)}, where ρ ∈ (0, 1] is the radius from (8). This yields (13). Thus, we have
completed the proof of Theorem 3. Using these argument, we can infer from (74) the Calderón-Zygmund estimate
(13) from Theorem 3. �
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The author would like to thank Verena Bögelein for many interesting discussions during his PhD study about
regularity theory for parabolic problems. Moreover, the author is very thankful to Christoph Scheven for many
fruitful discussions about parabolic obstacle problem.

References

Acerbi, E., & Mingione, G. (2001). Regularity Results for a Class of Functionals with Non-Standard Growth.
Arch. Rational Mech. Anal., 156, 121-140. http://dx.doi.org/10.1007/s002050100117

Acerbi, E., & Mingione, G. (2002a). Regularity Results for Stationary Electro-Rheological Fluids. Arch. Rational
Mech. Anal., 164, 213-259. http://dx.doi.org/10.1007/s00205-002-0208-7

Acerbi, E., & Mingione, G. (2002b). Regularity results for electrorheological fluids: the stationary case. C. R.
Acad. Sci. Paris, Ser. I, 334(1), 817-822. http://dx.doi.org/10.1016/S1631-073X(02)02337-3

Acerbi, E., & Mingione, G. (2005). Gradient estimates for the p(x)-Laplacean system. J. Reine Angew. Math.,
584, 117-148. http://dx.doi.org/10.1515/crll.2005.2005.584.117

Acerbi, E., & Mingione, G. (2007). Gradient estimates for a class of parabolic systems. Duke Math., 136(2),
285-320. http://dx.doi.org/10.1215/S0012-7094-07-13623-8

Acerbi, E., Mingione, G., & Seregin G.A. (2004). Regularity results for parabolic systems related to a class of
non-Newtonian fluids. Annales de l’Institut Henri Poincare (C) Non Linear Analysis, 21(1), 25-60.
http://dx.doi.org/10.1016/j.anihpc.2002.11.002

Antontsev, S.N., & Shmarev, S.I. (2005). A model porous medium equation with variable exponent of non-
linearity: existence, uniqueness and localization properties of solutions. Nonlinear Anal., 60(3), 515-545.
http://dx.doi.org/10.1016/j.na.2004.09.026

Baroni, P., & Habermann, J. (2012). Calderón-Zygmund estimates for parabolic measure data equations. J. Differ.
Equ., 252(1), 412-447. http://dx.doi.org/10.1016/j.jde.2011.08.016

Baroni, P. (2013). New contributions to nonlinear Calderón-Zygmund theory. PhD Thesis, Scuola Normale Supe-
riore. http://cvgmt.sns.it/paper/2508/
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