On the D-Stability Criterion of Matrices

Özlem Esen

School for the Handicapped, Anadolu University, 26470 Eskisehir, Turkey
Correspondence: Özlem Esen, School for the Handicapped, Anadolu University, Eskisehir, Turkey. E-mail: oavul@anadolu.edu.tr

Received: November 28, 2014 Accepted: December 17, 2014 Online Published: February 17, 2015
doi:10.5539/jmr.v7n1p82 URL: http://dx.doi.org/10.5539/jmr.v7n1p82

Abstract
Root clustering problems of matrices are considered. Here the conditions are given for eigenvalues of matrices to lie in a prescribed subregion D of the complex plane. The region D (stability region) is defined by rational functions. A simple necessary and sufficient condition for stability of a single matrix is obtained. For the commuting polynomial family, a necessary and sufficient condition in terms of a common solution to a set of Lyapunov inequalities is derived. A simple sufficient condition for the Hurwitz stability of a commuting quadratic polynomial family is given.

Keywords: Stability region, Lyapunov inequality, root clustering

1. Introduction
Matrix root clustering, also known as D-stability, is an important problem in control theory. The problem of root clustering has attracted a great deal of consideration in the past. Previous work on matrix root clustering has employed different approaches. First, many authors have presented matrix root clustering problem via the Generalized Lyapunov Theorem (GLT) approach (see, e.g., Gutman and Jury, 1981; Gutman, 1990; Yedevalli, 1993; Yedevalli, 1993; Yedevalli, 1985; Juang, Hong, Wang, 1989; Juang, 1991; Jabbari, 1991; Horng, Horng, Chou, 1993). Extensive works on the subject have led to a study by (Gutman and Jury, 1981), and continuously do so (Gutman, 1990; Yedevalli, 1993; Yedevalli, 1993; Yedevalli, 1985; Juang, Hong, Wang, 1989; Juang, 1991; Jabbari, 1991; Horng, Horng, Chou, 1993). The authors considered in (Gutman and Jury, 1981) the root clustering of a matrix called Γ into the unit circle. There are also issues on Ω transformable region which is defined by mapping from two points in Ω into the left half plane. (Yedevalli, 1985, 1993) presented some explicit bounds on uncertainty for root clustering of linear state space models in terms of GLT approach and the Kronecker approach. Following this, (Wang, 1994, 2000, 2003) analysed robust root clustering in a specific region in which the GLT is not valid. This clustering region is an intersection of a ring and horizontal strip, located in the left half plane which is the non Ω transformable region providing good ride quality for aircraft.

A further approach was discussed by Chilali and Gahinet in (Chilali, Gahinet, 1996, 1999). In particular, sufficient conditions were derived for a class of convex regions of complex plane via linear matrix inequalities (LMI). Recently Bosche (Bosche, Bachelier, Mehdi, 2005; Rejichi, Bachelier, Chaabane, Mehdi, 2007) addressed the problem of matrix root clustering analysis in EEMI (Extended Ellipsoidal Matrix Inequality) regions which express the set of some non-connected regions.

This paper is organized as follows. In section 2, we present a necessary and sufficient condition for D-stability of a matrix. In section 3, we give the necessary and sufficient conditions for D-stability of the commuting family. Finally, our conclusions are presented in section 4.

Now, we present a number of notations and results that will be needed in the following sections.

Let \mathbb{R}^n be the set of real n vectors, $\mathbb{R}^{m\times n}$ (or $\mathbb{C}^{m\times n}$) be the set of $n \times n$ real (complex) matrices. For $P \in \mathbb{R}^{m\times n}$ (or $\mathbb{C}^{m\times n}$) the symbol $P > 0$ means that P is symmetric (Hermitian) and positive definite. Let the subregion \mathbb{D} of the complex plane \mathbb{C} be defined as

$$\mathbb{D} = \{ z \in \mathbb{C} : \text{Re} f_j(z)g_j(z) < 0, j = 1, 2, \ldots, m \}, \quad (1)$$
where \(f_j(z) \) and \(g_j(z) \) are polynomials with real coefficients, \(\bar{g} \) is the complex conjugate of \(g \). The inequality \(Re f_j(z) \bar{g}_j(z) < 0 \) is equivalent from the inequality \(Re f_j(z) < 0 \), where \(r_j(z) = \frac{f_j(z)}{\bar{g}_j(z)} \).

By Lemma 2.1, the following is true

Proof.

Lemma 2.3 Carrying out suitable multiplications in (6), the commutativity of the matrices \(r_j \) Let \(f \) Lemma 2.2 Let \(f_j(z), g_j(z) \) are polynomials and \(g_j(A) \) are invertible for all \(j = 1, 2, \ldots, m \). Then the matrices \(r_j(A) = f_j(A), g_j^{-1}(A) \) (\(j = 1, 2, \ldots, m \)) are commutative.

Proof. By Lemma 2.1, the following is true

\[
\left[g_j(A)g_j^{-1}(A) \right]^{-1} f_j(A) f_j(A) = f_j(A) f_j(A) \left[g_j(A)g_j^{-1}(A) \right]^{-1}.
\]

Carrying out suitable multiplications in (6), the commutativity of \(r_j(A) \) follows.

Lemma 2.3 If \(f(z) \) and \(g(z) \) are polynomials, \(A \in \mathbb{R}^{n \times n} \) is an eigenvalue of \(A \), \(g(A) \) is invertible then \(g(\lambda) \neq 0 \) and \(\frac{f(\lambda)}{g(\lambda)} \) is an eigenvalue of \(f(A)g^{-1}(A) \).

Proof. \(g(\lambda) \) is an eigenvalue of \(g(A) \). Since \(g(A) \) is invertible then \(g(\lambda) \neq 0 \). There exists \(x \in \mathbb{C}^{n \times 1}, x \neq 0 \) such that
the following can be written:

\[
\begin{align*}
Ax &= \lambda x \\
 f(A)x &= f(\lambda)x \\
 g(A)x &= g(\lambda)x \\
 g^{-1}(A)x &= \frac{1}{g(\lambda)}x \\
 f(A)g^{-1}(A)x &= f(\lambda)\frac{1}{g(\lambda)}x
\end{align*}
\]

Lemma 2.4 Let \(f(z)\) and \(g(z)\) be polynomials and, \(g(A)\) is invertible. If \(\mu\) is an eigenvalue of \(f(A)g^{-1}(A)\) then there exists an eigenvalue \(\lambda\) of \(A\) such that \(g(\lambda) \neq 0\) and \(\mu = \frac{f(\lambda)}{g(\lambda)}\).

Proof. Let \(\lambda_1, \lambda_2, \ldots, \lambda_n\) be eigenvalues of \(A\). Then \(g(\lambda_i) \neq 0\) \((i = 1, 2, \ldots, n)\) and by Lemma 2.3 \(\frac{f(\lambda)}{g(\lambda)}\) are eigenvalues of \(f(A)g^{-1}(A)\). Therefore, there exists \(i\) such that \(\mu = \frac{f(\lambda)}{g(\lambda)}\).

Theorem 2.1 Let \(A \in \mathbb{R}^{n\times n}\) and the stability region \(\mathbb{D}\) (1) be given. Then the following assertions are equivalent:

i) \(A\) is \(\mathbb{D}\)-stable.

ii) \(g_j(A)\) are invertible and \(r_j(A) = f_j(A)g_j^{-1}(A)\) are Hurwitz stable \((j = 1, 2, \ldots, m)\).

iii) \(g_j(A)\) are invertible and there exists \(P \in \mathbb{R}^{n\times n}, P > 0\) such that

\[
[r_j(A)]^T P + P[r_j(A)] < 0 \quad (j = 1, 2, \ldots, m).
\]

Proof. The implication iii) \(\Rightarrow\) ii) follows from the Lyapunov theorem.

ii) \(\Rightarrow\) i) : Let \(\lambda\) be an arbitrary eigenvalue of \(A\). Then \(g_j(\lambda) \neq 0\) and \(f_j(\lambda)\) are eigenvalues of \(r_j(A)\) \((j = 1, 2, \ldots, m)\).

Since \(r_j(A)\) is Hurwitz stable, then \(\text{Re} \frac{f_j(\lambda)}{g_j(\lambda)} < 0\) or \(\text{Re} f_j(\lambda)g_j^{-1}(\lambda) < 0\) \((j = 1, 2, \ldots, m)\). Thus \(\lambda \in \mathbb{D}\).

i) \(\Rightarrow\) iii) : Fix arbitrary \(j\). Let \(\mu\) be an arbitrary eigenvalue of \(g_j(A)\). Let \(\lambda_1, \lambda_2, \ldots, \lambda_n\) be eigenvalues of \(A\). Then \(g(\lambda_1), \ldots, g(\lambda_n)\) are eigenvalues of \(g_j(A)\). Therefore there exists \(i\) such that \(\mu = g_j(\lambda_i)\). Since \(A\) is \(\mathbb{D}\)-stable then \(g_j(\lambda_i) = \mu \neq 0\). On the other hand \(\mu\) is an arbitrary eigenvalue of \(g_j(A)\). Consequently \(g_j(A)\) is invertible.

By Lemmas 2.2 and 2.4 the matrices \(r_j(A)\) are Hurwitz and commute \((j = 1, 2, \ldots, m)\). Then by Theorem (1.2), there exists \(P > 0\) such that (7) is true.

Example 2.1 (Mori, Mori, Kokame 2001) Let \(A\) be given as

\[
A = \begin{bmatrix}
-94.7 & -47.1 & -41.1 & -2.3 \\
15.2 & -46.9 & 3.0 & -7.6 \\
121.0 & 77.9 & 46.3 & 9.1 \\
-116.9 & 65.2 & -54.6 & -4.7
\end{bmatrix}
\]

and the region \(\Omega\) is as shown in Figure 1.
This region can be expressed as $\Omega = \{ z \in \mathbb{C} : \text{Re} f_j(z) < 0, j = 1, 2, 3 \}$, where $f_1(z) = z$, $f_2(z) = -z^2$, $f_3(z) = -z^3$.

The matrices

$$
A = \begin{bmatrix} -94.7 & -47.1 & -41.1 & -2.3 \\ 15.2 & -46.9 & 3.0 & -7.6 \\ 121.0 & 77.9 & 46.3 & 9.1 \\ -116.9 & 65.2 & -54.6 & -4.7 \end{bmatrix},
$$

$$
A^2 = \begin{bmatrix} -3547.9 & -3317.7 & -1973.5 & -212.57 \\ 900.88 & -1221.9 & 211.56 & -384.5 \\ 5736.1 & 5152.5 & 3092.6 & 491.78 \\ -6004.3 & 2111.7 & -2728.8 & 701.42 \end{bmatrix},
$$

$$
-A^3 = \begin{bmatrix} 71614. & 1.5511 \times 10^5 & 56100.0 & 16415. \\ -33339. & 6285.4 & -9902.9 & 10947. \\ -1.4818 \times 10^5 & -2.3885 \times 10^5 & -1.0396 \times 10^5 & -26521. \\ 1.8852 \times 10^5 & 16922. & 88469. & -30368. \end{bmatrix},
$$

are Hurwitz stable. Therefore by Theorem 2.1 the matrix A is Ω-stable. In (Mori, Mori, Kokame 2001) this stability is established by finding a common solution $P > 0$ for (4).

Example 2.2 Let A be given as

$$
A = \begin{bmatrix} 0 & -0.01 & 0.5 \\ 1 & 0 & -1.5 \\ -0.01 & 1 & 1.9 \end{bmatrix}
$$

and $\mathbb{D} = \{ z \in \mathbb{C} : \text{Re} f_j(z), \bar{g}_j(z) < 0, j = 1, 2 \}$, where $f_1(z) = z + 1$, $g_1(z) = z - 1$, $f_2(z) = -z - \frac{1}{2}$, $g_2(z) = z - \frac{1}{2}$.

The region \mathbb{D} is the ring \(\left\{(x, y) : \frac{1}{4} < x^2 + y^2 < 1 \right\} \). Here

$$
r_1(A) = \begin{bmatrix} -11.48 & -10.48 & -10.712 \\ 18.409 & 19.616 & 20.8 \\ -20.592 & -20.802 & -20.008 \end{bmatrix},
$$

$$
r_2(A) = \begin{bmatrix} -8.1846 & -4.6161 & -2.3799 \\ 12.438 & 5.2416 & 2.2451 \\ -8.9358 & -4.4912 & -3.3351 \end{bmatrix},
$$

are Hurwitz stable. Therefore A is \mathbb{D}-stable.
3. Stability of a Commuting Family

In this section, for a commuting family, we give \mathbb{D}-stability criterion in terms of the existence of a common positive definite solution to a set of Lyapunov inequalities.

The following lemma is taken from (Cohen, Lewcowicz, Rodman, 1997; Cohen, Lewcowicz, 1997).

Lemma 3.1 (Cohen, Lewcowicz, Rodman, 1997; Cohen, Lewcowicz, 1997) Let $\mathcal{B} \subset \mathbb{C}^{n \times n}$ be a compact set of Hurwitz upper triangular matrices. Then there exist $\alpha > 0$ and positive diagonal matrix D such that

$$A^T D + DA \leq -\alpha I$$

for all $A \in \mathcal{A}$ where I is the identity matrix.

Theorem 3.1 Let $\mathcal{F} \subset \mathbb{R}^{n \times n}$ be a compact commuting family. Then \mathcal{F} is Hurwitz stable if and only if there exists $P \in \mathbb{R}^{n \times n}, P > 0$ such that for all $F \in \mathcal{F}$

$$F^T P + PF < 0$$

(7)

Proof. \Rightarrow : By the corollary of the Schur’s triangularization theorem (Horn, Johnson, 1985) there exists an unitary matrix U such that the family $B = \{U^T FU : F \in \mathcal{F}\}$ is upper triangular (and is Hurwitz stable). Applying to \mathcal{A} Lemma 3.1 and setting $Q = UDU^*$, we obtain

$$F^T Q + QF < 0$$

(8)

for all $F \in \mathcal{F}$. Since $Q \in \mathbb{C}^{n \times n}, Q > 0$. Then $Q = P + jL$, where $P, L \in \mathbb{R}^{n \times n}$ and $P > 0$. Then from (9) follows (8).

Implication \Leftarrow follows from the Lyapunov theorem.

As follows from above for matrix $A \in \mathbb{R}^{n \times n}$, \mathbb{D}-stability is equivalent to invertibility of all $g_j(A)$ and Hurwitz stability of all $f_j(A)g_j^{-1}(A)$ ($i = 1, 2, \ldots, m$) (Theorem 2.1). Then from Theorem 3.1 and (9), we obtain the following Corollary.

Corollary Let $\mathcal{F} \subset \mathbb{R}^{n \times n}$ be a compact commuting family. Then \mathcal{F} is \mathbb{D}-stable if and only if there exists $P \in \mathbb{R}^{n \times n}, P > 0$ such that for all $F \in \mathcal{F}$ ($j = 1, 2, \ldots, m$)

$$\left[f_j(F) g_j^{-1}(A) \right]^T P + P \left[f_j(F) g_j^{-1}(A) \right] < 0.$$

4. Conclusion

In this article, we aimed at analyzing the stability of matrices in the region \mathbb{D} described by rational functions. We determined the necessary and sufficient conditions for a commuting family to be \mathbb{D}-stable.

References

http://dx.doi.org/10.1017/CBO9780511810817

http://dx.doi.org/10.1017/CBO9780511840371

http://dx.doi.org/10.1080/00207729308949532

http://dx.doi.org/10.1016/S0167-6911(01)00128-1

http://dx.doi.org/10.1109/9.362846

http://dx.doi.org/10.1002/acs.719

http://dx.doi.org/10.1049/iet-cta:20070277

http://dx.doi.org/10.1016/0005-1098(93)90188-Y

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).