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Abstract 

Optimal classification rule and maximum likelihood rules have the largest possible posterior probability of 

correct allocation with respect to the prior. They have a ‘nice’ optimal property and appropriate for the 

development of linear classification models. In this paper we consider the problem of choosing between the two 

methods and set some guidelines for proper choice. The comparison between the methods is based on several 

measures of predictive accuracy. The performance of the methods is studied by simulations. 

Keywords: optimal classification rule, maximum likelihood rule, Binary variables. 

1. Introduction 

Optimal classification rules and maximum likelihood rule are widely used multivariate statistical methods for 

analysis of data with categorical outcome variables. Both of them are appropriate for the development of linear 

classification models, i.e. models associated with linear boundaries between the groups. Binary classification is 

the task of classifying the elements of a given set into two groups on the basis of a classification rule.  

Classification is of broad interest in science because it permeates many scientific studies and also arises in the 

contexts of many applications (Panel on Discriminant Analysis, Classification and Clustering, 1989). Examples 

in the educational, social and behavioural sciences include identifying children in kindergarten at risk for future 

reading difficulties (Catts, Fey, Zhang and Tomblin (2001), identifying individuals at risk for addiction 

(Robinson, 2002) and predicting the crimes that male juvenile offenders may commit according to their 

personality characteristics (Glaser, Calhoun and Petrocelli, 2002). In the biological and medical sciences, 

application of classification procedures include identifying patients with chronic heart failure (Udris, 2010) 

detecting lung cancer (Philips, 2003) and determining whether certain breast masses are malignant or being 

(Sahiner, 2004). In the management sciences, methods for classification have been used for such purposes as 

predicting bankruptcy (Jo, Han and Lee, 1997); Dichotomous classification of Foreign Assisted Project 

implementation status (Nworuh and Anyiam, 2010). 

In this paper, we shall be concerned with k=2 population classification problems. Our interest is in deriving a 

rule that can be used to optimally assign an item to one of the populations. The optimality criterion is to 

minimize the risk associated with the rule (Onyeagu & Osuji 2010). The goal of this paper is to set some 

guidelines as to when the choice of either one of the methods is still appropriate. While optimal is much more 

general and has a number of theoretical properties, maximum likelihood must be the better choice if we know the 

population is normally distributed. However, in practice, the assumptions are nearly always violated and we have 

therefore tried to check the performance of both methods with simulations. This kind of research demands a 

careful control, so we have decided to study just a few chosen situations, trying to find a logic in the behaviour 

and then think about the expansion onto more general cases. We have confined ourselves to compare only the 

predictive power of the methods. 

Section 2 and 3 briefly describes the algorithms; section 4 describes the process of the simulations. The results 
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obtained are presented and discussed in section 5 and conclusions and recommendations are given in section 6. 

2. The Optimal Classification Rule  

Independent Random Variables: 

Let 1  and 2  be any two multivariate Bernoulli populations. Let )/( jic  be the cost of misclassifying an item 

with measurement x  from j  into i  and let 
jq be the prior probability on

i , where 2,1i  with 

1
21
 qq  and probability mass Function )(xfi

in 
i  where 2,1i . Suppose that we assign an item with 

measurement vector x to 
1  if it is in some region rRR 1

 and to 
2  if x  is in some region rRR 2

 where 

21 RRRr   and 021  RR . The expected cost of misclassification is given by: 

 
12

)/()2/1()/()1/2( 2211

RR

xfqcxfqcECM                       (2.1) 

where )/(
2

1
R

xf  =p(classifying into 
2 /

1 ) =p(2/1), where )1/2(p when 
1  observation is incorrectly 

classified as 2 . 

The optimal rule is the one that partitions rR  such that  


1

)/( 2

R

xfECM  = p(classifying into 
1 /

2 ) =p(1/2) is a minimum.  
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xfqcxfqcECM                         (2.2) 

   
1

)/()1/2()/()2/1()1/2( 11221

R

xfqcxfqcqc                           (2.3) 

ECM is minimized if the second term is minimized. ECM is minimized if 
1R  is chosen such that 

0)/()1/2()/()2/1( 1122   xfqcxfqc                             (2.4) 

)/()1/2()/()1/2( 2211  xfqcxfqc                       (2.5) 
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Therefore the optimal classification rule with respect to minimization of the expected cost of misclassification 

(ECM) is given by classify object with measurement 
0x  into 

1  if 
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Otherwise classify into
2 . 

Without loss of generality, we assume that 2/121  qq  and c(1/2)=c(2/1). Then the minimization of the ECM 

becomes the minimization of the probability of misclassification, p(mc) under these assumptions, the optimal rule 

reduces to classifying an item with measurement 0x  into 
1  if 

1
)/(

)/(
:

202

101 




xf

xf
Ropt

                    (2.8) 

Otherwise classify the item into 2 . Since x is multivariate Bernoulli with Pij>0, i=1,2, j=1,2…r the optimal rule is: 

classify an item with response pattern x  into 
1  if  
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Otherwise, classify the item into 
2 . This rule simplifies to: 

Classify an item with response pattern x  into 
1  if  

j
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Otherwise, classify into 
2 . 

For any rule, the average or expected cost of misclassification (ECM) is provided by the product of the off-entries 

by their probabilities of occurrence. A good classification rule should have an ECM as small as possible. The 

regions R1 and R2 that minimize the ECM are defined by the values x for which the inequalities are defined. 

If the parameters are unknown, then they are estimated by their maximum likelihood estimators given by 
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where 



1

1

)(
n

k

ijkji xxn  is equal to the number of observation from 
i  with jth variable. The rule for 

unknown parameters is: classify an item with response pattern x  into 
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otherwise classify the item into 
2  

2.1 The Optimal Rule for a Case of Two Variables in Two Group Classifications 

Suppose we have only two independent Bernoulli variables, x1,x2. Then the rule becomes: classify an item with 

response pattern x  into 
1  if: 
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Otherwise, classify the item into 2 . Written in another form the rule simplifies to: classify an item with response 

pattern x  into 
1  if: 
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To find the distribution of z we note that  
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Since 
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The range of z is 
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21 ww   the distribution function of z is given by 0 if z =0 
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2.2 Optimal Rule for a Case of Three Variables in Two Group Classifications. 

Suppose we have three independent variables according to Onyeagu (2003), the rule is: classify an item with 

response pattern x  into 1  if: 
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otherwise, classify the item into 2 . Written in another form the rule simplifies to: classify an item with response 

pattern x  into 
1  if:   
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2.3 Optimal Rules for a Case of Four Variables in Two Group Classifications 

Suppose we have four independent Bernoulli variables, the rule is classify an item with response pattern x  into
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otherwise, classify the item into 2 . Written in another form, the rule simplifies to: classify an item with response 

pattern x  into 1  if: 4321443322114
ccccxwxwxwxwRB     otherwise, classify the item into 2 . 

For the case of four variables, let  
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The distribution function is derived just the same way as the case of three variables. Using the same method the 

probability mass function of z and the distribution function for the case of five variables could be derived. 

2.4 Probability of Misclassification 

In constructing a procedure of classification, it is desired to minimize on the average the bad effects of 

misclassification (Onyeagu 2003, Richard and Dean, 1988, Oludare 2011). Suppose we have an item with 

response pattern x from either 1  or 2 . We think of an item as a point in a r-dimensional space. We partition the 

space R into two regions R1 and R2 which are mutually exclusive. If the item falls in R1, we classify it as coming 

from 1  and if it falls in R2 we classify it as coming from 2 . In following a given classification procedure, the 

researcher can make two kinds of errors in classification. If the item is actually from 1 , the researcher can 

classify it as coming from 2 . Also the researcher can classify an item from 2  as coming from 1 . We need to 

know the relative undesirability of these two kinds of errors in classification. Let the prior probability that an 

observation comes from 1  be 1q , and from 2  be 2q . Let the probability mass function of 1  be )(1 xf  and 

that of 2  be )(2 xf . Let the regions of classifying into 1  be R1 and into 2  be R2. Then the probability of 

correctly classifying an observation that is actually from 1  into 1  is 

)()1/1(
1

1 xfp
R

  and the probability of misclassifying such an observation into 2  is 
)()1/2(

2

1 xfp
R


  (2.4.1) 

Similarly, the probability of correctly classifying an observation from 2  into 2  is   )()2/2(
2

2 xfp
R

  and the 

probability of misclassifying an item from 1  into 2  is 

)()2/1(
1

2 xfp
R

                 (2.4.2) 

The total probability of misclassification using the rule is 

)()()(
1

2

2

1 21 xfqxfqRTPMC
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                      (2.4.3) 

In order to determine the performance of a classification rule R in the classification of future items, we compute the 

total probability of misclassification known as the error rate. Lachenbruch (1975) defined the following types of 

error rates. 

(i). Error rate for the optimum classification rule, Ropt. When the parameters of the distributions are known, 

the error rate is 
)()()(

1

2

2

1 21 xfqxfqRTPMC
RR

 
 which is optimum for these distribution. 

(ii) Actual error rate: The error rate for the classification rule as it will perform in future samples. 

(iii) Expected actual error rate: The expected error rates for classification rules based on samples of size 1n  

from 1  and 2n  from 2  

(iv) The plug-in estimate of error rate obtained by using the estimated parameters for 1  and 2 . 

(v) The apparent error rate: This is defined as the fraction of items in the initial sample which is misclassified 

by the classification rule. 
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 1  2   

1  11n  
12n  1n  

2  21n  

22n  
2n  

n  

The table above is called the confusion matrix and the apparent error rate is given by 

    
n
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mcP 2112)(






         (2.4.4) 

Hills (1967) called the second error rate the actual error rate and the third the expected actual error rate. Hills 

showed that the actual error rate is greater than the optimum error rate and it in turn, is greater than the expectation 

of the plug-in estimate of the error rate. Fukunaga and Kessel (1972) proved a similar inequality. An algebraic 

expression for the exact bias of the apparent error rate of the sample multinomial discriminant rule was obtained by 

Goldstein and Wolf (1977), who tabulated it under various combinations of the sample sizes n1 and n2, the number 

of multinomial cells and the cell probabilities. Their results demonstrated that the bound described above is 

generally loose.  

2.5 Evaluating the Probability of Misclassification for the Optimal Rule Ropt 

The optimal classification rule Ropt for )...,( 21 rxxxx   which is distributed multivariate Bernoulli is: classify 
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Otherwise classify into 
2  

We can obtain the probability of misclassification for two cases 

Case I  Known parameters 

(a)  General case where )...,( 211 irii pppp   

(b)  Special case where )...,( iiii pppp  with the assumption 
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(c)  Special case (b) with additional assumption that 10,21  pp  

For case (1a) the optimal classification rule optR  for )...,( 21 rxxxx   which is distributed multivariate Bernoulli 
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Otherwise classify into 
2  

Case 1b: Special case where ),...( iii pppp   with the assumption that 21 pp  , the optimal classification 

rule Ropt for the r-variate Bernoulli models becomes: classify an item with response pattern x  into 1  if 

otherwise classify into 2 . The probability of misclassification using the special case of Ropt is  
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Case 1c: Special case (1b) with additional assumption that 21 pp   and 211
11 ppq   and 22

1 pq  . The 

optimal classification rule Ropt for )...,( 21 rxxxx   distributed multivariate Bernoulli is: classify the item with 

response pattern x into 1  if 
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and to 2 otherwise. 

The probability of misclassification using the special case of Ropt when 21 pp   is 
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For the fixed values of r and different values of 1p  and 2p  

Case 2:  Unknown parameters 

(a) General case )...,( 21 ikiii pppp   

In order to estimate 1p  and 2p  we take training samples of size 1n  and 2n  from 1  and 2 respectively. In 

1  we have the sample 
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The maximum likelihood estimate of 1p  is  
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Similarly the maximum likelihood of estimate of 2p  is  







2

1 2

2

2

n

j

kj

k
n

x
p                   (2.5.13) 

We plug in this estimate into the rule for the general case in 1(a) to have the following classification rule: classify 

an item with response pattern x into 1  if  
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otherwise classify into 2   

(b) Special case of 1b where )...,( iiii pppp  with the assumption that 
ii pp 21   

In this special case 
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Likewise, the maximum likelihood estimate of 2p  is 
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We plug in these two estimates into the equation for the special case (1b) to have the following classification rule: 

classify the item with response pattern x into 1  if 
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Otherwise classify into 2  

The probability of misclassification is given by 
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(c) Special case of 2b with 10,,
2121

  pppp  we take training samples of size 
2n from 

2  and 

estimate 
2p by  
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3. Maximum Likelihood Rule (ML-Rule)  

The maximum likelihood discriminant rule for allocating an observation x to one of the populations 1 ,.. n  is to 

allocate x to the population which gives the largest likelihood to x. That is the maximum likelihood rule says one 

should allocate x to 
ij  when  

)(max xLL ii   (Anderson, 1984)                                    (3.1) 

if i  is the ),( iNp   population, gi ,...1  and 0 , then the maximum likelihood discriminant rule 

allocate x to 
ij  where },...1{ nj  is that value of i  which minimized the Mahalanobis distance 
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or to 
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where )/( 1 xwp  is the posterior probability which can be found by the Bayes Rule. But this is the same as: 

classify to 
1  if 
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4. Simulation Experiments and Results 

The two classification procedures are evaluated at each of the 118 configurations of n, r and d. The 118 

configurations of n, r and d are all possible combinations of n =20, 40, 60, 80, 100, 200, 300, 400, 600, 700, 800, 

900, 1000, r =3, 4, 5 and d = 0.1, 0.2, 0.3, and 0.4 where  r = number of variables, d = effect size, n = sample size. 

A simulation experiment which generates the data and evaluates the procedures is now described. 

(i)  A training data set of size n is generated via R-program where 21
nn     observations are sampled from 

1 , which has multivariate Bernoulli distribution with input parameter 1p  and 22
nn   observations 

sampled from 
2  which is multivariate Bernoulli with input parameter rjp ...1,2  . These samples are 

used to construct the rule for each procedure and estimate the probability of misclassification for each 

procedure is obtained by the plug-in rule or the confusion matrix in the sense of the full multinomial. 

(ii)  The likelihood ratios are used to define classification rules. The plug-in estimates of error rates are 

determined for each of the classification rules. 

(iii)  Step (i) and (ii) are repeated 1000 times and the mean plug-in error and variances for the 1000 trials are 

recorded. The method of estimation used here is called the resubstitution method. 

The following table contains a display of some of the results obtained 

Table 4.1(a) Effect of input parameters P1 and P2 on classification rules at various values of sample size and 

Replications (mean apparent error rates) 

P1 = (.4, .4, .4)                  P2 = (.7, .7, .7) 

Sample sizes Optimal ML 

40 

60 

100 

140 

200 

300 

400 

600 

700 

800 

900 

1000 

0.277450 

0.281258 

0.282180 

0.284160 

0.283407 

0.284403 

0.283510 

0.284085 

0.284371 

0.283587 

0.283666 

0.283992 

0.277400 

0.281041 

0.282255 

0.284328 

0.283390 

0.284405 

0.283498 

0.284099 

0.284371 

0.283587 

0.283666 

0.283992 

p(mc) = 0.284 
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Table 4.1(b) Effect of input parameters P1 and P2 on classification rules at various values of sample size and 

Replications (actual error rates) 

P1 = (.4, .4, .4)    P2 = (.7, .7, .7)    )()( mcpmcp


  

Sample sizes Optimal ML 

40 

60 

100 

140 

200 

300 

400 

600 

700 

800 

900 

1000 

0.047562 

0.038324 

0.032243 

0.026643 

0.022393 

0.018255 

0.016095 

0.013370 

0.011884 

0.010636 

0.010394 

0.009664 

0.046876 

0.038201 

0.032223 

0.026636 

0.022361 

0.018272 

0.016082 

0.013380 

0.0118846 

0.010636 

0.010394 

0.009664 

Tables 4.1(a) and (b) present the mean apparent error rate and standard deviation (actual error rates) of two 

classification rules. The apparent error rates increases with the sample size. From the table 4.1(b) the error rates 

decreases with the sample size. With n =1000, two classification rules have the same error rate. On the average, 

maximum likelihood ranks first, followed by optimal.  

 

Classification Rule     Performance 

Maximum Likelihood (ML)    1 

Optimal (OP)       2 

 

Table 4.2(a) Apparent error rates for classification rules under different parameter values, sample sizes and 

Replications  

P1 = (.3, .3, .3, .3)     P2 = (.6, .6, .6, .6) 

Sample sizes Optimal ML 

40 

60 

100 

140 

200 

300 

400 

600 

700 

800 

900 

1000 

0.246987 

0.254608 

0.257285 

0.260228 

0.261217 

0.262273 

0.264232 

0.263918 

0.263235 

0.263443 

0.263276 

0.264275 

0.244475 

0.252350 

0.256100 

0.259317 

0.260507 

0.262145 

0.264286 

0.263860 

0.263257 

0.263575 

0.263302 

0.264263 

p(mc) = 0.2637 
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Table 4.2(b) Actual Error rate for the classification rules under different parameter values, sample sizes and 

replications. 

P1 = (.3, .3, .3, .3)   P2 = (.6, .6, .6, .6)   )()( mcpmcp


  

Sample size Optimal ML 

40 

60 

100 

140 

200 

300 

400 

600 

700 

800 

900 

1000 

0.045504 

0.038768 

0.030567 

0.026331 

0.021757 

0.018459 

0.015636 

0.012377 

0.011465 

0.010715 

0.010140 

0.009687 

0.044464 

0.038508 

0.030057 

0.026123 

0.021927 

0.018234 

0.015766 

0.012332 

0.011620 

0.010750 

0.010172 

0.009657 

Tables 4.2(a) and (b) present the mean apparent error rates and standard deviation for the classification rules 

under different parameter values. The apparent error rates increases with the increase in the sample sizes. 

 

Classification Rule     Performance 

Maximum Likelihood (ML)    1 

Optimal (OP)       2 

 

Table 4.3(a) Apparent error rates for classification rules under different parameter values, sample sizes and 

Replications  

P1 = (.5, .5, .5, .5, .5)               P2 = (.6, .6, .6, .6, .6) 

Sample sizes Optimal ML 

40 

60 

100 

140 

200 

300 

400 

600 

700 

800 

900 

1000 

0.365212 

0.376908 

0.389975 

0.393925 

0.4007250 

0.402866 

0.404201 

0.405495 

0.406001 

0.406843 

0.406832 

0.407625 

0.362220 

0.375385 

0.384240 

0.396101 

0.398143 

0.402204 

0.402156 

0.403902 

0.403770 

0.405535 

0.404521 

0.405044 

p(mc) = 0.40872 
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Table 4.3(b) Actual error rate for the classification rules under different parameter values, sample sizes and 

replications. 

P1 = (.5, .5, .5, .5, .5)  P2 = (.6, .6, .6, .6, .6)  )()( mcpmcp


  

Sample size Optimal ML 

40 

60 

100 

140 

200 

300 

400 

600 

700 

800 

900 

1000 

0.047146 

0.040174 

0.031479 

0.026298 

0.023616 

0.019186 

0.016343 

0.013147 

0.012653 

0.012157 

0.010951 

0.010528 

0.074752 

0.060813 

0.047585 

0.040519 

0.035990 

0.028217 

0.023954 

0.019303 

0.019036 

0.017060 

0.016578 

0.015555 

Table 4.3(a) and (b) show the mean apparent error rates and standard deviation (actual error rates) for the 

classification rules under different parameter values. It is clear to see that the mean apparent error rate increases 

with the increase in the sample sizes. The standard deviation decreases with the increase in sample sizes. As the 

number of variables increases, the performance of the maximum likelihood decreases. From the analysis optimal 

rule is ranked first, followed by maximum likelihood. 

 

Classification Rule     Performance 

Optimal (OP)       1 

Maximum Likelihood (ML)    2 

 

5. Conclusion  

Maximum likelihood procedure performed well for small and moderate number of variables irrespective of the 

sample size while optimal classification rule appears to be more consistent for small, moderate and large number 

of variables. Therefore, optimal is more effective classifier than maximum likelihood. 
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