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Abstract

Optimal classification rule and maximum likelihood rules have the largest possible posterior probability of
correct allocation with respect to the prior. They have a ‘nice’ optimal property and appropriate for the
development of linear classification models. In this paper we consider the problem of choosing between the two
methods and set some guidelines for proper choice. The comparison between the methods is based on several
measures of predictive accuracy. The performance of the methods is studied by simulations.

Keywords: optimal classification rule, maximum likelihood rule, Binary variables.
1. Introduction

Optimal classification rules and maximum likelihood rule are widely used multivariate statistical methods for
analysis of data with categorical outcome variables. Both of them are appropriate for the development of linear
classification models, i.e. models associated with linear boundaries between the groups. Binary classification is
the task of classifying the elements of a given set into two groups on the basis of a classification rule.

Classification is of broad interest in science because it permeates many scientific studies and also arises in the
contexts of many applications (Panel on Discriminant Analysis, Classification and Clustering, 1989). Examples
in the educational, social and behavioural sciences include identifying children in kindergarten at risk for future
reading difficulties (Catts, Fey, Zhang and Tomblin (2001), identifying individuals at risk for addiction
(Robinson, 2002) and predicting the crimes that male juvenile offenders may commit according to their
personality characteristics (Glaser, Calhoun and Petrocelli, 2002). In the biological and medical sciences,
application of classification procedures include identifying patients with chronic heart failure (Udris, 2010)
detecting lung cancer (Philips, 2003) and determining whether certain breast masses are malignant or being
(Sahiner, 2004). In the management sciences, methods for classification have been used for such purposes as
predicting bankruptcy (Jo, Han and Lee, 1997); Dichotomous classification of Foreign Assisted Project
implementation status (Nworuh and Anyiam, 2010).

In this paper, we shall be concerned with k=2 population classification problems. Our interest is in deriving a
rule that can be used to optimally assign an item to one of the populations. The optimality criterion is to
minimize the risk associated with the rule (Onyeagu & Osuji 2010). The goal of this paper is to set some
guidelines as to when the choice of either one of the methods is still appropriate. While optimal is much more
general and has a number of theoretical properties, maximum likelihood must be the better choice if we know the
population is normally distributed. However, in practice, the assumptions are nearly always violated and we have
therefore tried to check the performance of both methods with simulations. This kind of research demands a
careful control, so we have decided to study just a few chosen situations, trying to find a logic in the behaviour
and then think about the expansion onto more general cases. We have confined ourselves to compare only the
predictive power of the methods.

Section 2 and 3 briefly describes the algorithms; section 4 describes the process of the simulations. The results
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obtained are presented and discussed in section 5 and conclusions and recommendations are given in section 6.
2. The Optimal Classification Rule
Independent Random Variables:

Let 7; and 7, beanytwo multivariate Bernoulli populations. Let <(: / ;) be the cost of misclassifying an item
with measurement X from 7z, into 77; and let a; be the prior probability on 7z, , where =12 with
g, +q, =1 and probability mass Function f (x)in z; where i =1,2. Suppose that we assign an item with
measurement vector x to z, ifitisinsomeregion R — R" andto 7z, if x isinsomeregion R, —R" where
R"=R,UR, and R AR, =0. The expected cost of misclassification is given by:

ECM =c(2/1)q, Y f(x/m)+c(/2)q, Y. f(x/x,) (2.1)

R, Ry

where ;f(X/ﬂl) =p(classifying into z,/r,) =p(2/1), where p(2/1)=when 7, observation is incorrectly

classified as 7, .

The optimal rule is the one that partitions R such that

ECM = ; F(x/7,) = p(classifying into 7,/ ,) =p(1/2) is a minimum.

ECM =c(2/)q,[1-Y" f (x/z)]+c(1/2)q, Y. T (x/ 7,) (2.2)

R, R,
=c(2/1)q, + Y [c(/ 2)q, T (x/ z,) —c(2/D)q, f (x/ ;)] (2.3)

Ry
ECM is minimized if the second term is minimized. ECM is minimized if R, is chosen such that
c@d/2)q,f(x/z,)—c(2/D)q,f(x/ 7)) <0 (2.4)
c(2/Dq, f(x/ ) =c(2/1)q, T (x/x,) (2.5)
f(x/z,) c(2/1)q,

Therefore the optimal classification rule with respect to minimization of the expected cost of misclassification
(ECM) is given by classify object with measurement x, into z, if

R.um>qﬁma(mj R.fdﬂ<QﬁﬂmT£% 27)

CRK T ac@)p) T RO ac@ip,
Otherwise classify into 7, .

Without loss of generality, we assume that d, =d, =1/2 and c¢(1/2)=c(2/1). Then the minimization of the ECM
becomes the minimization of the probability of misclassification, p(mc) under these assumptions, the optimal rule
reduces to classifying an item with measurement X, into r, if

RACYED)
o f,(%/ ;)

Otherwise classify the item into 7, . Since x is multivariate Bernoulli with Pi>0, i=1,2, j=1,2...r the optimal rule is:
classify an item with response pattern X into 7z, if

>1 (2.8)
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IT [ptia-p,) ]
I1 [pa-p.)]

i=1

Otherwise, classify the item into 7,. This rule simplifies to:

>1 (2.9)

Classify an item with response pattern X into 7, if

3 x, In[ Pij  Y2j J Z'n 92 (2.10)

qij p2j j=1 Qlj
Otherwise, classify into 7.
For any rule, the average or expected cost of misclassification (ECM) is provided by the product of the off-entries

by their probabilities of occurrence. A good classification rule should have an ECM as small as possible. The
regions R; and R, that minimize the ECM are defined by the values x for which the inequalities are defined.

If the parameters are unknown, then they are estimated by their maximum likelihood estimators given by

A

pijzi_x”k:i ) =X 2.11)

e N h

where n,(x,) = ixijk is equal to the number of observation from 7, with jth variable. The rule for
=

unknown parameters is: classify an item with response pattern x into rz, if

i' pl; ,(321 X, >i|”(ji (2.12)
qu pzj = qu

otherwise classify the item into 7,
2.1 The Optimal Rule for a Case of Two Variables in Two Group Classifications

Suppose we have only two independent Bernoulli variables, x;,X,. Then the rule becomes: classify an item with
response pattern x into 7, if:

Re, ! |: p11q21i|X1 " "{ ple22:|X > InY q21 ﬂ (2.1.2)
011 P2 Q2 P2 q11 SIP;

Otherwise, classify the item into #,. Written in another form the rule simplifies to: classify an item with response
pattern x into z, if:

Rg, 1 WX, +W,X, >C (2.1.2)
Otherwise, classify the item into 7, where
w, = |n|: Py, 1- p21:| —inPu _jq_Pa (2.1.3)
l_ pll p21 1_ pll 1_ p21
W2: |n£_|n£ (214)
1- Py, 1- P22
= In[(l_ pz1)(1_ pzz)]_ Inl_(l_ p11)(1_ p1z)J (215)
To find the distribution of z we note that
p T (1-py)
X, =X
[ /ﬂ.] {O Jotherwisei=1,2, j=1,2 (2.1.6)
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Since
2
2= WX, = WX, + WX, (2.1.7)
j=1

The range of z is

R, ={0,w,,w,,w, +w,}

p[z=0/7]= p(x =0,%x, =0/7;) = q,0;, (2.1.8)
p(z=w, /)= p(x =Lx,=0/7)=p,0;, (2.1.9)
P(z=w+W,/7]=p(x =1x, =1/ 7) = pyP,,0.0, (2.1.10)
if =0 p(z/7)=p,q, if z,=wW, (2.1.11)
0P if z=w, (21.12)
P.P,if z=w, +w,,i=12 (2.1.13)
If w, <w, the distribution function of z is given by 0 if z =0
g0, If 0<z<w, (2.1.14)
p(Z/ﬂi) = ququz + p|1q|z if Wl <z< W2 :qilin + pi1q|2 + puqiz if W, <z< W, + W, (2115)
1if w+w, <z (2.1.16)

2.2 Optimal Rule for a Case of Three Variables in Two Group Classifications.

Suppose we have three independent variables according to Onyeagu (2003), the rule is: classify an item with
response pattern x into 7, if:

RB3 : |n( pllqzl}( + |n( Pi, . Q2 JX + "{ p13 U2 JX > |n( qzlqzzqzsj (2.2.1)
011 P21 Oz Pz Uiz Pos 011%h2%3
otherwise, classify the item into 7,. Written in another form the rule simplifies to: classify an item with response
pattern x into r, if:

Re, 1 WX + W, X, + WX, > C (2.2.2)

otherwise classify the item into 7~,.

W, = In(pll-qﬂ}wz = In(plz-q”] W, = In[ Paa q23j = In(—qﬂqzzq”J (2.2.3)
qll p21 q12 p22 q13 p23 qllq12q13
2.3 Optimal Rules for a Case of Four Variables in Two Group Classifications
Suppose we have four independent Bernoulli variables, the rule is classify an item with response pattern X into

m,if
RBA:ln[p“ qﬂ}w,n( plz,qzzjx +,n( Pis ng}(
Gii P Gz P2 Oz P2 (2.3.1)
+,n( Pus q24jx R P P )
Gia P2 G o Ois s

127



www.ccsenet.org/jmr Journal of Mathematics Research \ol. 6, No. 4; 2014

otherwise, classify the item into 7,. Written in another form, the rule simplifies to: classify an item with response
pattern x into7; if: Rg, =WX +W,X, +W,X; +W,X, >C +C, +C;+C,  otherwise, classify the item into 7,.
For the case of four variables, let

w, = |n[ﬂ.hj’wz = |n(h.h}w3 = |n(h%}
G P2 Gz P2 Oz P (2.3.2)

W4 = In(h . h}
Uiz P2
The distribution function is derived just the same way as the case of three variables. Using the same method the
probability mass function of z and the distribution function for the case of five variables could be derived.

2.4 Probability of Misclassification

In constructing a procedure of classification, it is desired to minimize on the average the bad effects of
misclassification (Onyeagu 2003, Richard and Dean, 1988, Oludare 2011). Suppose we have an item with
response pattern x from either 7, or ,. We think of an item as a point in a r-dimensional space. We partition the
space R into two regions R; and R, which are mutually exclusive. If the item falls in Ry, we classify it as coming
from 7z, and if it falls in R, we classify it as coming from 7,. In following a given classification procedure, the
researcher can make two kinds of errors in classification. If the item is actually from 7, the researcher can
classify it as coming from =,. Also the researcher can classify an item from 7, as coming from 7z;. We need to
know the relative undesirability of these two kinds of errors in classification. Let the prior probability that an
observation comes from 7; be ¢, and from 7, be d,. Let the probability mass function of 7, be f,(X) and
that of 7, be f,(X). Let the regions of classifying into 7; be R, and into 7, be R,. Then the probability of
correctly classifying an observation that is actually from 7z, into 7 is

P/ => f,(x) p(2/1)=> f,(x)

and the probability of misclassifying such an observation into 7, is (2.4.1)

Similarly, the probability of correctly classifying an observation from 7, into 7, is p(2/2)= ; () and the
probability of misclassifying an item from 7, into 7, is
pA/2) =Y f,(x) (24.2)
Ry
The total probability of misclassification using the rule is
TPMC(R) =0, £,00+0,3 ,(x) (24.3)
R, R,

In order to determine the performance of a classification rule R in the classification of future items, we compute the
total probability of misclassification known as the error rate. Lachenbruch (1975) defined the following types of
error rates.

(). Error rate for the optimum classification rule, Ry, When the parameters of the distributions are known,

the error rate is TPMC(R) = ql% fl(x)+q2§ F (%) which is optimum for these distribution.

(i) Actual error rate: The error rate for the classification rule as it will perform in future samples.

(iii) Expected actual error rate: The expected error rates for classification rules based on samples of size n,
from 7, and n, from 7,

(iv) The plug-in estimate of error rate obtained by using the estimated parameters for 7, and7,.

(v) The apparent error rate: This is defined as the fraction of items in the initial sample which is misclassified
by the classification rule.
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Ty T,
T n, N, n,
Ty Ny, n,
Ny,
n

The table above is called the confusion matrix and the apparent error rate is given by

Ny, + Ny, (2.4.4)

P(mc) =
Hills (1967) called the second error rate the actual error rate and the third the expected actual error rate. Hills
showed that the actual error rate is greater than the optimum error rate and it in turn, is greater than the expectation
of the plug-in estimate of the error rate. Fukunaga and Kessel (1972) proved a similar inequality. An algebraic
expression for the exact bias of the apparent error rate of the sample multinomial discriminant rule was obtained by
Goldstein and Wolf (1977), who tabulated it under various combinations of the sample sizes n; and n,, the number
of multinomial cells and the cell probabilities. Their results demonstrated that the bound described above is
generally loose.

2.5 Evaluating the Probability of Misclassification for the Optimal Rule Ry

The optimal classification rule Ry for X = (X, X,...X,) which is distributed multivariate Bernoulli is: classify
an item with response pattern x into 7, if

Ropt :ijln{p”~qz"]>2quj (251)
= Gij Py R

Otherwise classify into 7,
We can obtain the probability of misclassification for two cases

Case | Known parameters

@) General case where p, = (p;;, Pis--- P;;)

(o) Special case where p, = (p;, p;...p;) With the assumption p, < p,
(c) Special case (b) with additional assumption that p, = ¢p,,0< @9 <1

For case (1a) the optimal classification rule Ropt for X = (X, X,...X,) which is distributed multivariate Bernoulli
is: Classify an item with response pattern x if

Rope 1 2. %;IN Py G >Z:Inh (252)
i Paj =1 Os;
Otherwise classify into ,

Case 1b: Special case where P; = P(P;,---P;) with the assumption that p, < p,, the optimal classification
rule Ry for the r-variate Bernoulli models becomes: classify an item with response pattern X into 7 if
otherwise classify into 7, . The probability of misclassification using the special case of Ry is

r rln(q—z)
Ropt :in < ey qi (2.5.3)
j=1 . P2

r rin % rin
p(2/1) =p| > x. > “ . |r|=1-B, % (25.4)
257 (e g = B (e )

B, ,(X) = Zr:(;)py(l— p) Y where Bi.p) have binomial distribution with parameters r and p (2.5.5)

y=0

w/2) r ring - rin (256)
= X < (7T, = y -9
A T
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1 rin 3= rin 3= 257

p(mc) =<1+ B(r,pz) 1p1 qlqz ’ - B(r,pz) qlq ( A )

Case 1c: Special case (1b) with additional assumptionthat p, =ép, and g, =1-p,=1-6p, andg, =1—p,. The
optimal classification rule Ry for X = (X, X,...X, ) distributed multivariate Bernoulli is: classify the item with

response pattern x into 7, if
r rin(-pz
Rope - D X, { (“"’2)} (2.5.8)
1

opt 1—
P |nail_;,;2 )

j=

and to 7, otherwise.
The probability of misclassification using the special case of Ro,; when p, = ép, is

(2/1)=1-B rln(ll:;’z) (2.5.9)
p = (r.60,) |n9(11_—g;;22) e

rln(lljg”pz )
PA/2)B p,) mﬁ)

1-op,
1 rin(:2: ) rin;-2:)
me)==/1+B G -B %2 (2.5.10)

For the fixed values of r and different values of p, and p,
Case 2:  Unknown parameters
(a) General case P = (Piss Piz---Pik)

In order to estimate P, and p, we take training samples of size n, and n, from 7; and 7, respectively. In
7, we have the sample

X1 = (Xlll' X121 X131""X1kl""xlr1)
X, = (X1121 X122, X132""X1k27"'X1r2)

(2.5.11)
X1n1 = (X:Llnl’ X12n1’ XlSnl""Xlknl""Xlrnl)
The maximum likelihood estimate of P, is
A mOX,
Py = Zﬂ (2.5.12)
LY
Similarly the maximum likelihood of estimate of p, is
P = Zﬁ (25.13)

FE
We plug in this estimate into the rule for the general case in 1(a) to have the following classification rule: classify
an item with response pattern x into 7, if

Rer 2 > x;In| 2920 |5 g J2i (2.5.14)
= Qij Pz d;j
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otherwise classify into 7,
(b) Special case of 1b where p, = (p;, p;...p;) With the assumption that p. < p,,
In this special case

S SRR L U Sk I ok (25.15)
j=1 n j=1 n j=1 n, j=1 n,
3" x, is distributed B(r, p,)
=1
Zn;: ,lx“k is distributed B(rn,, p,)

The maximum likelihood estimate of p, is

r

Xl'
5 :;; " (2.5.16)
1
n,

Likewise, the maximum likelihood estimate of p, is

ron,
§ X2 ik
A n
=1 j=1

P
P, =
n,

(2.5.17)

We plug in these two estimates into the equation for the special case (1b) to have the following classification rule:
classify the item with response pattern x into 7, if

-

rln(jzj
X, < \Nu/_ (2.5.18)

j Ao
=1 In Py 92
a P2

The probability of misclassification is given by

Otherwise classify into 7,

W rln[‘izj
e | g \u) (2.5.19)

(r.,p2) AA o A
| oo || O |n(pl.qu
Bz al P2 01

n(me) :1{“ B(r, p,, )~ B(r, p /1)}, p(mc) = Estimate of Binomial in terms of difference. ~ (2.5.20)
2 21 y Moy

f)(mc) =% 1+B

rln(i?)
Where , _ a

|n(;1.32j

b2 @

k . : : .
Bk, &, x) =D (o’ - )" where B(k, «, x) is Binomial function (2.5.21)

y=0

(c) Special case of 2b with p =ep,, p, < p,,0 <@ <1 We take training samples of size n, from 7z, and
estimate p, by
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P =y Jex (2.5.22)

3. Maximum Likelihood Rule (ML-Rule)

The maximum likelihood discriminant rule for allocating an observation x to one of the populations 7;,.. 7% isto
allocate x to the population which gives the largest likelihood to x. That is the maximum likelihood rule says one
should allocate x to 7z, when

L, =max L, (x) (Anderson, 1984) (3.1)
if 77 is the Np(z4,2) population, i=1..9 and > >0, then the maximum likelihood discriminant rule
allocate x to 7z; where je{i.n} is that value of I which minimized the Mahalanobis distance
(X— ) X (x— ) Where g=2 the rule allocate x to z,. If a'(x—.)>0 and a'{x—1(x+x2)}>0, where
a=> (1, —p,) and p=(u, +u,) andto z, otherwise. Alternatively classify in ~, if p(w,/x)> p(w,/x)

orto z, if p(w,/x)< p(w,/x) (3.2)

where p(w, /x) is the posterior probability which can be found by the Bayes Rule. But this is the same as:

classify to 7, if POX/W)p(w;)  p(x/w,)p(w,) (3.3)
p(x) p(x)

4. Simulation Experiments and Results

The two classification procedures are evaluated at each of the 118 configurations of n, r and d. The 118
configurations of n, r and d are all possible combinations of n =20, 40, 60, 80, 100, 200, 300, 400, 600, 700, 800,
900, 1000, r=3,4,5and d =0.1, 0.2, 0.3, and 0.4 where r =number of variables, d = effect size, n = sample size.
A simulation experiment which generates the data and evaluates the procedures is now described.

0] A training data set of size n is generated via R-program where N, =%  observations are sampled from
7., which has multivariate Bernoulli distribution with input parameter p, and N, =% observations
sampled from ,, which is multivariate Bernoulli with input parameter p,.j=1..r. These samples are
used to construct the rule for each procedure and estimate the probability of misclassification for each
procedure is obtained by the plug-in rule or the confusion matrix in the sense of the full multinomial.

(i) The likelihood ratios are used to define classification rules. The plug-in estimates of error rates are
determined for each of the classification rules.

(iii) Step (i) and (ii) are repeated 1000 times and the mean plug-in error and variances for the 1000 trials are
recorded. The method of estimation used here is called the resubstitution method.

The following table contains a display of some of the results obtained

Table 4.1(a) Effect of input parameters P; and P, on classification rules at various values of sample size and
Replications (mean apparent error rates)

P,=(4,.4, .4 P,=(7,.7,.7)
Sample sizes Optimal ML

40 0.277450 0.277400

60 0.281258 0.281041
100 0.282180 0.282255
140 0.284160 0.284328
200 0.283407 0.283390
300 0.284403 0.284405
400 0.283510 0.283498
600 0.284085 0.284099
700 0.284371 0.284371
800 0.283587 0.283587
900 0.283666 0.283666
1000 0.283992 0.283992

p(mc) = 0.284
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Table 4.1(b) Effect of input parameters P, and P, on classification rules at various values of sample size and

Replications (actual error rates)

P.=(4, 4,4 P,=(7,.7,.7) ‘p(mc) — p(mc)
Sample sizes Optimal ML

40 0.047562 0.046876

60 0.038324 0.038201
100 0.032243 0.032223
140 0.026643 0.026636
200 0.022393 0.022361
300 0.018255 0.018272
400 0.016095 0.016082
600 0.013370 0.013380
700 0.011884 0.0118846
800 0.010636 0.010636
900 0.010394 0.010394
1000 0.009664 0.009664

Tables 4.1(a) and (b) present the mean apparent error rate and standard deviation (actual error rates) of two
classification rules. The apparent error rates increases with the sample size. From the table 4.1(b) the error rates
decreases with the sample size. With n =1000, two classification rules have the same error rate. On the average,
maximum likelihood ranks first, followed by optimal.

Classification Rule
Maximum Likelihood (ML)
Optimal (OP)

Performance

1
2

Table 4.2(a) Apparent error rates for classification rules under different parameter values, sample sizes and

Replications
P;=(3,.3,.3,.3) P,=(.6, .6, .6, .6)
Sample sizes Optimal ML

40 0.246987 0.244475

60 0.254608 0.252350

100 0.257285 0.256100

140 0.260228 0.259317

200 0.261217 0.260507
300 0.262273 0.262145
400 0.264232 0.264286
600 0.263918 0.263860
700 0.263235 0.263257
800 0.263443 0.263575
900 0.263276 0.263302
1000 0.264275 0.264263

p(mc) = 0.2637
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Table 4.2(b) Actual Error rate for the classification rules under different parameter values, sample sizes and
replications.

P,=(3,.3,3,3) P,=(6,6 6 6) ‘p(mc)—ﬁ(mc)

Sample size Optimal ML
40 0.045504 0.044464
60 0.038768 0.038508

100 0.030567 0.030057
140 0.026331 0.026123
200 0.021757 0.021927
300 0.018459 0.018234
400 0.015636 0.015766
600 0.012377 0.012332
700 0.011465 0.011620
800 0.010715 0.010750
900 0.010140 0.010172
1000 0.009687 0.009657

Tables 4.2(a) and (b) present the mean apparent error rates and standard deviation for the classification rules
under different parameter values. The apparent error rates increases with the increase in the sample sizes.

Classification Rule Performance
Maximum Likelihood (ML) 1
Optimal (OP) 2

Table 4.3(a) Apparent error rates for classification rules under different parameter values, sample sizes and

Replications
P, =(5,.5,.5 .5 .5) P,=(.6, .6, .6, .6, .6)
Sample sizes Optimal ML
40 0.365212 0.362220
60 0.376908 0.375385
100 0.389975 0.384240
140 0.393925 0.396101
200 0.4007250 0.398143
300 0.402866 0.402204
400 0.404201 0.402156
600 0.405495 0.403902
700 0.406001 0.403770
800 0.406843 0.405535
900 0.406832 0.404521
1000 0.407625 0.405044

p(mc) = 0.40872
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Table 4.3(b) Actual error rate for the classification rules under different parameter values, sample sizes and
replications.

P,=(5,5.5.5.5) P,=(6,6 66 6) ‘p(mc)—a(mc)

Sample size Optimal ML
40 0.047146 0.074752
60 0.040174 0.060813
100 0.031479 0.047585
140 0.026298 0.040519

200 0.023616 0.035990
300 0.019186 0.028217
400 0.016343 0.023954
600 0.013147 0.019303
700 0.012653 0.019036
800 0.012157 0.017060
900 0.010951 0.016578
1000 0.010528 0.015555

Table 4.3(a) and (b) show the mean apparent error rates and standard deviation (actual error rates) for the
classification rules under different parameter values. It is clear to see that the mean apparent error rate increases
with the increase in the sample sizes. The standard deviation decreases with the increase in sample sizes. As the
number of variables increases, the performance of the maximum likelihood decreases. From the analysis optimal
rule is ranked first, followed by maximum likelihood.

Classification Rule Performance
Optimal (OP) 1
Maximum Likelihood (ML) 2

5. Conclusion

Maximum likelihood procedure performed well for small and moderate number of variables irrespective of the
sample size while optimal classification rule appears to be more consistent for small, moderate and large number
of variables. Therefore, optimal is more effective classifier than maximum likelihood.
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