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Abstract

Let X be a Stein space. We prove that for any family F ⊂ O(X) every normality domain of it in a weak sence is a
meromorphically O(X) - convex domain of X.
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1. Introduction

Let X be a Stein space (for its definition, see for example Nishino (2001, p. 280) or Gunning and Rossi (2009, p.
209)). For any family F ⊂ O(X), we consider the normality domain in a weak sense D of X, that is, it is the largest
domain in which F|D is a normal family in a weak sense (see Definition 2.1) and we shall prove in Theorem 4.1
that the domain D is meromorphically O(X) - convex (for its definition, see Definition 3.1) and Stein in Theorem
4.4. We use the meaning that a domain D is the largest one if any domain D′ % D does not satisfy the property of
D no longer. In the previous paper Adachi (2013) we proved that normality domain in a strong sense D of a Stein
space X is O(X) - convex (as for a normal family in a strong sense and O(X) - convex domain, see Definition 2.1
and 3.1 respectively).

Julia (1926, p. 68) proved that the normality domains in a weak sense in Cn are pseudoconvex and studied on the
inverse problem that such domains are ones of holomorphy or not. And Cartan and Thullen (1932, Satz 12, p.
639) proved that the normality domains in a strong sense are domains of holomorphy and ones in a weak sense are
domains of meromorphy for the (Stein) unramified Riemann domain by introducing the concept of holomorphical
convexity which is one of the key concepts of the complex analysis of several complex variables.

For the case that X is a Stein manifold, Abe and Furushima (2000, 2005) proved that normality open sets in a
weak sense are meromorphically O(X) - convex and proved that the inverse is true, that is, meromorphically O(X)
- convex open sets are normality open sets in a weak sense of some family of F ⊂ O(X). But the normality domain
in a weak sense of a family of holomorphic functions on a Stein manifold is not necessary O(X) - convex even for
the domain in X = C (See for example Abe, Furushima and Tsuji (1999, p. 23)). The problem that the normality
domain in a weak sense when X is a Stein space which has singular points is meromorphically O(X) - convex has
not solved.

In Appendix, we remark that when X = Cn, the domain is meromorphically O(X) - convex if and only if it is
rationally convex in Oka’s sense (1984, p.36) and the normality domain in Cn is if and only if rationally convex. It
may be a well known fact for the specialists. When n = 1 every domain is some normality domain by the classical
Runge theorem.

2. Preliminary (1)

Following sections, let X be a connected Stein space of dimension n such as n = 1 and F = { f j} j=1,2,··· where
f j ∈ O(X). Let p be an arbitrary point of X and U(p) be a neighborhood of X such that ψp : U(p) → V is
a coordinate homeomorphism of U(p) to V which is an analytic covering, that is, a ramified Riemann domain
without relative boundary over a domain W in Cn such as π : V → W where π is a natural projection. We
denote Uε(p) such as Uε(p) ⊂ U(p) that Uε(p) := ψ−1

p (Vε) where Vε is an analytic covering over a domain
Wε(π ◦ ψp(p)) = {(z) = (z1, · · · , zn); ||(z) − π ◦ ψp(p)|| < ε}.
Definition 2.1 We call a family F ⊂ O(X) is normal in a weak sense at p ∈ X when there is a coordinate U(p)
and for every sequence F = { f j} j=1,2,··· ⊂ F we have one of the following:
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(a) There is a subsequence { f jλ } which converges uniformly to f ∈ O(U(p)) on U(p);

(b) { f j} diverges compactly on U(p), that is, for every compact set K ⊂ U(p) and every compact set L in C, there
is a positive integer N such that f j(K) ∩ L = ∅ for j = N.

We call a family F ⊂ O(X) is normal in a strong sense at p ∈ X when there is a coordinate U(p) such that only the
case (a) occurs.

Following, we use the term of ”normal” as normal in a weak sense unless otherwise mentioned.

Definition 2.2 We call F ⊂ O(X) is normal on a domain D ⊂ X when for every sequence F = { f j} j=1,2,··· ⊂ F we
have one of the following:

(a) { f j} has a subsequence which converges uniformly to f ∈ O(D) on every compact set in D;

(b) { f j} diverges compactly on D.

Following proposition is well known.

Proposition 2.3 A family F ⊂ O(X) is normal on a domain D in X if and only if F is normal at every point p ∈ D.

Definition 2.4 For a point p ∈ X and a sequence F = { f j} j=1,2,··· ⊂ O(X), we denote the cluster set of F at p such
as

F(p : P1) =
∩
ε>0
∩∞

N=1
∪

j=N f j(Uε(p)),

where
∪

j=N f j(Uε(p)) is the closure of
∪

j=N f j(Uε(p)) in P1.

It is easy to see that F(p : P1) is a closed set.

Proposition 2.5 If a sequence F = { f j} j=1,2,··· ⊂ O(X) satisfies F(p : P1) ⊂ C − {α, β} with α , β or F(p : P1) =
{∞}, then F is normal at p. When only a former case occurs, F is normal in a strong sense at p.

Proof. Since P1 − {α, β,∞} is tautly imbedded in P1, F is normal at p by Kobayashi (1998, Theorem 5.1.11). The
last statement is easy to see.

Since F(p : P1) is a closed set, following corollary is trivial.

Corollary 2.6 If a sequence F = { f j} j=1,2,··· ⊂ O(X) is not normal at p, then F(p : P1) = P1.

3. Preliminary (2)

Definition 3.1 Let X be a Stein space and D be a domain in X. We denote a closed set K̃ such as K̃ := {p ∈
X; f (p) ∈ f (K) for every f ∈ O(X)} where K is a compact set in X. We call that D is a meromorphically O(X) -
convex domain if for every compact set K in D, K̃ ∩ D is compact in D.

We denote a closed set K̂ such as K̂ := {p ∈ X; | f (p)| 5 maxq∈K | f (q)| = max | f (K)| for every f ∈ O(X)} where K
is a compact set in X. We call D a O(X) - convex domain if for every compact set K in D, K̂ ∩ D is compact in D.

The Definition 2.1 in Adachi (2013) is false but every result in it is correct by a little modifications.

By the definition it is trivial that K̃ ⊂ K̂ and D is a meromorphically O(X) - convex domain if D is a O(X) - convex
domain. And it is easy to see the following proposition.

Proposition 3.2 In the above definition we may take K as every compact domain in D, that is, a closure of
relatively compact domain in D, in place of compact set K in D.

Following, we take a compact set K in Definition 3.1 such as a compact domain always.

Definition 3.3 We call ∆ a O(X) - meromorphic polyhedron when ∆ is a compact domain in a Stein space X
such as a connected component of O(X) - meromorphic polyhedra ∆0 := {p ∈ X;φ−1

j (A j) ∋ p, φ j ∈ O(X), A j is a
compact domain in C and φ j(X) c A j where j = 1, · · · , k} which satisfies ∆0 b X.

It is easy to see that ∆◦ (the interior domain of ∆ above) is meromorphically O(X) - convex.

Proposition 3.4 Let D be a meromorphically O(X) - convex domain in a Stein space X and K be a compact
domain in D. Then there is a O(X) - meromorphic polyhedron ∆ such that the maximal distance of (p, ∂K̃1) for
every p ∈ ∂∆ is arbitrarily small with ∆ c K̃1 where K̃1 is a connected component of K̃.

Proof. As K̃ ∩ D is a compact set in D, we can take a domain D0 b D such that D0 c K̃1 and D0 is near to K̃1.
Let Σ is the boundary of D0 and the distance of (Σ, K̃1) = δ

2 where δ > 0 is a sufficiently small and smaller than the
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minimal distance of (D0,D).

We may assume that for every point of q ∈ Σ there is a function fq ∈ O(X) such that fq(V(q)) ∩ fq(K) = ∅ where
V(q) is a sufficiently small neighborhood of q. As Σ is a compact set, there are finite points {q1, . . . , qν} such as
D c V(q1) ∪ · · · ∪ V(qν) ⊃ Σ by Borel-Lebesgue lemma.

Now we set ∆0 = {p ∈ X; A j = fq j (K) ∋ fq j (p), j = 1, . . . , ν} and ∆ is a connected component of ∆0 such as
∆ c K̃1.

Proposition 3.5 If ∆ is a O(X) - meromorphic polyhedron, then there is a O(∆) - analytic polyhedron ∆′ (for its
definition, see Nishino (2001, p.270) or Gunning an Rossi (2009, p.216)) such that the maximal distance of (p, ∂∆)
for every p ∈ ∂∆′ is sufficiently small with ∆′ c ∆.

Proof. Let ∆ be the same as in Definition 3.3. If a point p ∈ X with p < ∆ and near ∂∆, there is a φ j ∈ O(X) such
that φ j(p) < A j = φ j(∆). Then there is a neighborhood V(φ j(p)) of φ j(p) such as V(φ j(p))∩ A j = ∅. We can take a
rational function R(z) such as |R(φ j(p))| > max |R(φ j(∆))| where R ◦ φ j ∈ O(∆). Then by the standard method such
as Proposition 3.4, we can take ∆′ as above.

Proposition 3.6 Let D be a limit domain of meromorphically O(X) - convex domain such that Di b Di+1 and
limi→∞ Di = D ⊂ X where X is a Stein space. Then D is a meromorphically O(X) - convex domain.

Proof. Let K be a compact domain in D. Then there is a Di such that K b Di. By the definition of K̃, K̃ does not
depend on D j( j = i) by the definition. And K̃ is compact in X, K̃ ∩ Di = K̃ ∩ D j+1 = K̃ ∩ D j+2 = · · · b D for
sufficiently large j.

Theorem 3.7 Let D be a meromorphically O(X) - convex domain of a Stein space X. Then D is a limit domain of
some incresing Stein domains.

Proof. Since the interior domain of O(X) - meromorphic polyhedron is meromorphically O(X) - convex and the
interior domain of analytic polyhedron is Stein, statements is easy obtained by Proposition 3.4, 3.5 and 3.6.

Lemma 3.8 Let K1 and K2 be compact domains of a Stein space X such that K1 b K2. Then K̃1 b K̃2 b X.

Proof. Since K̂2 b X and K̃2 ⊂ K̂2, K̃2 b X. Let p be an arbitrary point of ∂K̃2. Since K̃2 is a compact set,
p ∈ K̃2 and p ∈ K̃2

′ which is a connected component of K̃2. From Proposition 3.4 there is a O(X) - meromorphic
polyhedron ∆ such that ∆ c K̃2

′ where ∆ is near to K̃2
′ such that other points of connected components of K̃2 are

outside of ∆. Let {pi}i=1,2,... b ∆ − K̃2
′ such that pi → p(i → ∞). For a point pi, there is a function fi ∈ O(X)

such that fi(pi) < fi(K2). Since ∆ is a compact domain, max | fi(∆)| 5 Mi with Mi > 0. Then max | fi
Mi

(∆)| 5 1

and fi
Mi

(pi) <
fi

Mi
(K2). Since { fi

Mi
}i=1,2,... ⊂ O(X) is a normal family on ∆ and by Vitali’s theorem, fi

Mi
converges to

f ∈ O(∆) and f (p) < f (K◦2 ).

We consider the normality domain D of { fi
Mi
}i=1,2,...in a strong sense with D ⊃ ∆. Then D is O(X) - convex and

(D, X) is a Runge pair by Theorem 4.4 in Adachi(2013). Then there is a function g ∈ O(X) with g(p) < g(K1).
Since p is an arbitrary point of ∂K̃2, K̃1 b K̃2.

Problem 3.9 Let X be a Stein space and D be a meromorphically O(X) - convex domain. Then is D Stein? The
examples of Abe, Furushima and Tsuji (1999, p. 23) are Stein but one dimensional.

4. Conclusion

Theorem 4.1 Let D be the normality domain in a Stein space X of a family F ⊂ O(X). Then D is meromorphically
O(X) - convex.

Proof. Let K be a compact domain in D. We assume that D is not meromorphically O(X) - convex. Since K̃ is a
closed set, a point of p ∈ ∂K̃ ∩ ∂D is a point of K̃. (We consider the point of ∂D such as points of X).

From the assumption, there is a sequence F = { f j} ⊂ F such that F is not normal at p and F(p : P1) = P1 by
Corollary 2.6. We take a compact domain K′ c K and K′ b D. Then f j(p) is an interior point of f j(K′) because
p ∈ K̃ and f j(p) ∈ f j(K).

At the first { f j} does not compactly diverge on D. Then there is a subsequence { f jλ } and {p jλ } such that p jλ → p
and f jλ(p jλ ) → ∞(λ → ∞) by Proposition 2.5. By Lemma 3.8 we may assume that f jλ (p jλ ) ∈ f jλ (K

′). Since there
is a subsequence { f jλµ } converges uniformly to f ∈ O(D) on every compact set in D, | f jλµ (p jλµ )| < M < ∞. It is a
contradiction.
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At the second { f j} compactly diverges on D. By Proposition 2.5 it is a contradiction because there is a subsequence
{ f jλ } and {p jλ } ∈ K′ with f jλ(p jλ)→ α , ∞.

Therefore K̃ ∩ D b D and D is meromorphically O(X) - convex. Because a connected component K̃1 of K̃ is
contained in the interior of D or in the interior of D̄c.

Problem 4.2 Let X be a meromorphically O(X) - convex space and D be the normality domain of X. Then is D
meromorphically O(X) - convex ?.

Theorem 4.3 (Abe (2005, Theorem 14)) Let X be a Stein space and D be a domain of X. Then the following two
conditions are equivalent:

(1) D is meromorphically O(X) - convex;

(2) There exists a family F ⊂ O(X) such that D is the normality domain of F .

Theorem 4.4 Let D be the normality domain in a Stein space X of a family F ⊂ O(X). Then D is Stein.

Proof. If for every sequence F = { f j} j=1,2,... ⊂ F only the case (a) in Definition 2.2 occurs, D is O(X) - convex
and then Stein by Theorem 4.1 in Adachi (2013). When for some sequence F = { f j} j=1,2,... ⊂ F the case (b)
in Definition 2.2 occurs, for every compact domain K in D, we consider K̂D = {p ∈ D; | f (p)| 5 max | f (K)|
for every f ∈ O(D)}. Since { f j|D} ⊂ O(D) diverges compactly on D and we take a compact domain in D with
K′ c K and Σ = ∂K′ such that | f j(∂K′)| > M′ > 0 for sufficiently large j and max | f j(K)| < M′ by the maximam
principle. By the standard method there is an analytic polyhedron ∆ of D such that K̄D b ∆ b K′ where K̄D is a
connected component of K̂D which contains K. Let ∆◦ is the interior domain of ∆. Then (∆◦,D) is a Runge pair
and K̄D = K̂∆◦ = K̂D. Then D is Stein.

From Theorem 4.1, 4.3 and 4.4 it is easy to see the following theorem.

Theorem 4.5 Let X be a Stein space and D be a meromorphically O(X) - convex domain in X. Then D is Stein.

5. Appendix

Oka (1941, p.36) introduced the concept of the rationally convex domain D in Cn such as D is R(Cn) ∩ O(D) -
convex or D can be approximated from the interior by domains of the above class. There is a domain D such that
D is not R(Cn) ∩ O(D) - convex and rationally convex. For a well known example, let A = C2(x, y) − {y − ex = 0}
and Am = ∆(m) × ∆(m) − { 1

|y−ex | = m} where ∆(m) is a disk in C with the radius m where m is a sufficiently large
integer.

It is easy to see that Am → A(m→ ∞), Am is R(C2) ∩ O(D) - convex and A is not R(C2) ∩ O(D) - convex because
R(C2) ∩ O(D) = ∅.
Proposition 5.1 (Abe (2005), p.265). The domain D in Cn is rationally convex if and only if D is meromorphically
O(Cn) - convex.

Proof. By Storzenberg (1962, p.262) every R(Cn) ∩ O(D) - convex domain is meromorphically O(Cn) - convex.
From Proposition 3.6 rationally convex domain is meromorphically O(Cn) - convex.

Inversely from Proposition 3.4 every meromorphically O(Cn) - convex domain can be approximated from the inte-
rior by domains of O(Cn) - meromorphically polyhedron ∆ and it can be approximated from the interior by some
domain of the O(∆) - convex domain by Proposition 3.5. Since every holomorphic function of ∆ is approximated
uniformly on ∆ on a function of R(Cn) ∩ O(D), ∆◦ is rationally convex. Then O(Cn) - convex domain is rationally
convex.

From Theorem 4.3 following proposition is trivial.

Proposition 5.2 The domain D in Cn is rationally convex if and only if D is the normality domain of some family
F ⊂ O(D).

From the classical Runge theorem it is easy to see the following corollary.

Corollary 5.3 Every domain D in C is the normality domain of some family F ⊂ O(D).
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