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Abstract

The eccentricity e(u) of a vertex u is the maximum distance of u to any other vertex of G. A vertex v is an eccentric
vertex of vertex u if the distance from u to v is equal to e(u). An eccentric coloring of a graph G = (V, E) is a
function color: V → N such that
(i) for all u, v ∈ V , (color(u) = color(v))⇒ d(u, v) > color(u).
(ii) for all v ∈ V , color(v) ≤ e(v).
The eccentric chromatic number χe ∈ N for a graph G is the lowest number of colors for which it is possible to
eccentrically color G by colors: V → {1, 2, . . . , χe}. In this paper, we have considered eccentric colorability of a
graph in relation to other properties. Also, we have considered the eccentric colorability of lexicographic product
of some special class of graphs.
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1. Introduction

Unless mentioned otherwise for terminology and notation the reader may refer [Buckley and Harary, 1990] and
[Chartrand and Lesniak, 1996], new ones will be introduced as and when found necessary. In this paper we
consider simple undirected graphs without multiple edges and self loops. The order p is the number of vertices in
G and size q is the number of edges in G.

The distance d(u,v) between u and v is the length of a shortest path joining u and v. If there exists no path
between u and v then we define d(u, v) = ∞. The eccentricity e(u) of u is the distance to a vertex farthest from u. If
d(u, v) = e(u)(v , u), we say that v is an eccentric vertex of u. The radius rad(G) is the minimum eccentricity of the
vertices, whereas the diameter diam(G) is the maximum eccentricity. A vertex v is a central vertex if e(v) = rad(G),
and the center C(G) is the set of all central vertices. A graph G is self-centered if rad(G) = diam(G).

A chordal graph is a simple graph in which every cycle of length greater than three has a chord. Equivalently,
the graph contains no induced cycle of length four or more. The join of two graphs G1 and G2, defined by Zykov
[Zykov, 1949] is denoted G1 +G2 and consists of G1 ∪G2 and all edges joining V1 with V2. For p ≥ 4, the wheel
Wp is defined to be the graph K1 + Cp−1. A graph is bipartite if its vertex set can be partitioned into two subsets
X and Y so that every edge has one end in X and one end in Y; such a partition (X,Y) is called a bipartition of
the graph, and X and Y its parts. We denote a bipartite graph G with bipartition (X,Y) by G[X, Y]. If G[X,Y] is
simple and every vertex in X is joined to every vertex in Y , then G is called a complete bipartite graph, denoted
by Km,n. Clique in a graph is a set of pairwise adjacent vertices. The clique number of a graph G, written ω(G), is
the maximum size of a set of pairwise adjacent vertices (clique) in G. Many researchers have studied the relations
related to clique number [Dirac, 1961], [Fulkerson and Gross, 1965], [Matula, 1972], [Voloshin, 1982], [Voloshin
and Gorgos, 1982], etc.

In [Sloper, 2004], Sloper has introduced the concept of eccentric coloring of a graph and studied the eccentric
coloring of trees.
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Definition 1.1 (Sloper, 2004). An eccentric coloring of a graph G = (V, E) is a function color: V → N such that
(i) for all u, v ∈ V, (color(u) = color(v))⇒ d(u, v) > color(u).
(ii) for all v ∈ V, color(v) ≤ e(v).

Definition 1.2 (Sloper, 2004). The eccentric chromatic number χe ∈ N for a graph G is the lowest number of
colors for which it is possible to eccentrically color G by colors: V → {1, 2, . . . , χe}.

2. Bounds on the Radius and Diameter of an Eccentric Colorable Graph

In this section we determine some bounds on diameter, radius, size of center, clique number, etc. depending on the
eccentric colorability of the graph.

Proposition 2.1. In any eccentric colorable graph, there exists at most one vertex with color c = diam(G).

Proof. Let G be an eccentric colorable graph. Suppose on the contrary, there exist at least two vertices, say, u,
v, with color c = diam(G). But d(u, v) ≤ diam(G), which contradicts the definition of eccentric colorable graph.
Hence, G contains at most one vertex with color c = diam(G). �

In [Negami and XU, 1986], S. Negami et al. have proved that in any 2-self-centered graph, for every vertex v there
exists a cycle of length 4 or 5 that preserves the graph distance with a vertex u in that cycle.

Theorem 2.1. If G is a graph with diam(G) ≤ 2, then G is not eccentric colorable.

Proof. Let G be a graph with diam(G) ≤ 2. Here three cases arise.
Case(i): rad(G) = 1 and diam(G) = 1.

In this case the graph is a complete graph, which is not eccentric colorable.
Case(ii): rad(G) = 1 and diam(G) = 2.

Let u be a central vertex of G. Since e(u) = 1, u can be colored with color 1 only. Let v and w be any two diametral
vertices of G. The vertices v and w can not be colored with color 1. Suppose v is colored with color 2, then w can
not be colored with color 2, because d(v,w) = 2. Hence, G is not eccentric colorable.
Case(iii): rad(G) = 2 and diam(G) = 2.

In this case the graph G is a self centered graph of radius two. Referring to the paper [Negami and XU, 1986] as
cited above, every self centered graph of radius two contains at least four vertices and degree of every vertex is at
least two. Let u be any vertex of G and v, w are adjacent to u. Since e(u) = e(v) = e(w) = 2, we can use at most two
colors, color 1 and color 2 to color these three vertices. Suppose u is colored with color 1 then any of v and w can
not be colored with color 1 and both v and w can not be colored with color 2. Hence, G is not eccentric colorable.
Now suppose u is colored with color 2 then any of v and w can not be colored with color 2. Hence, v and w are
colored with color 1 if v and w are not adjacent(If v and w are adjacent then G is not eccentric colorable). Since
deg(v) ≥ 2, there exists a vertex say, x adjacent to v. The vertex x can not be colored with color 1 or color 2, since
d(u, x) ≤ 2 and d(v, x) ≤ 1. Hence, G is not eccentric colorable. �

Note: The converse of Theorem 2.1 need not be true.
For example, C7[K2] is of diameter 3, which is not eccentric colorable.

Remark 1. The following graphs are not eccentric colorable,
(i) Connected, self centered, chordal graph,
(ii) Petersen graph,
(iii) Graph with radius one,

For example, W1,p−1, p − 1 ≥ 1.
(iv) Complete bipartite graph Km,n, m, n ≥ 1.

Lemma 2.1. If a graph G containing the wheel W1,p−1 is eccentric colorable then χe(G) ≥ 2 + ⌈ p−1
2 ⌉.

Proof. Let a graph G containing the wheel W1,p−1 be eccentric colorable. The subgraph W1,p−1 requires at least
2 + ⌈ p−1

2 ⌉ colors as shown in Figure 1. Hence, χe(G) ≥ 2 + ⌈ p−1
2 ⌉. �
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Figure 1. Graph G containing a wheel

Proposition 2.2. If a graph G is eccentric colorable then |C(G)| ≤ rad(G).

Proof. Let a graph G be eccentric colorable. Suppose on the contrary |C(G)| > rad(G), then the vertices of C(G)
require at least rad(G) + 1 distinct colors but the eccentricity of every central vertex is rad(G). Hence, G is not
eccentric colorable, a contradiction. Hence, |C(G)| ≤ rad(G). �

Proposition 2.3. If a graph G is eccentric colorable then ω(G) ≤ diam(G), where ω(G) is the clique number of G.

Proof. Let a graph G be eccentric colorable. Suppose on the contrary ω(G) > diam(G) then the vertices of
maximum clique require at least diam(G) + 1 distinct colors, but eccentricity of every vertex of G is at most
diam(G). Hence, G is not eccentric colorable, a contradiction. Hence, ω(G) ≤ diam(G). �

Theorem 2.2. If a graph G is eccentric colorable then G contains no Km,n, m, n ≥ diam(G) as its subgraph.

Proof. Let a graph G be eccentric colorable. Suppose on the contrary G contains Km,n, where m, n ≥ diam(G)
as subgraph then the vertices of Km,n require at least diam(G) + 1 colors, but e(v) ≤ diam(G) for all v ∈ V(G),
a contradiction to the fact that G is eccentric colorable. Hence, G contains no Km,n, m, n ≥ diam(G) as its
subgraph. �

Theorem 2.3. There exists no connected graph G with χe(G) = 2.

Proof. For χe(G) = 2, G must contain at least two vertices. The only connected graph on two vertices is K2, which
is not eccentric colorable and every connected graph with at least three vertices contains a path P3 which requires
at least three colors. Hence, there exists no connected graph G with χe(G) = 2. �

Remark 2. Any disconnected graph is eccentric colorable, since the eccentricity of every vertex in G is infinite.

3. Eccentric Coloring of Cycle With Chord

In this section we obtain results on eccentric colorability of a cycle with a chord between two vertices at distance
two and eccentric colorability of a cycle with a chord between two vertices at distance three.

Theorem 3.1. For p ≥ 8,

χe(Cp) =

3, if p = 4(n + 1), n ≥ 1
4, otherwise.

Proof. If p = 4(n+ 1), n ≥ 1, color the vertices of Cp with the sequence 1 2 1 3, . . . till all the vertices are colored.
The resulting coloring is eccentric coloring with χe(Cp) = 3, since for any connected graph χe(G) ≥ 3.

If p , 4(n + 1), n ≥ 1, color the vertices of Cp with the sequence 1 2 1 3, . . . till p − 1 vertex and color the vertex
vp with color 4. The resulting coloring is eccentric coloring with χe(Cp) = 4, �

Lemma 3.1. A cycle Cp, p ≥ 9 with a chord between two vertices at distance two from each other is eccentric
colorable.
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Proof. Let a cycle Cp, p ≥ 9 be labeled as v1, v2, v3, . . ., vp. Let e be a chord between vp and v2. Eccentric coloring
is given as follows:
Case(i): p = 4m + 5, m ≥ 1.

In this case, the eccentric coloring is given by
The vertices in the sets
A = {v2n−1/1 ≤ n ≤ p−1

2 },
B = {v4n−2/1 ≤ n ≤ p−1

4 },
C = {v4n/1 ≤ n ≤ p−5

4 } ∪ {vp}, and
D = {vp−1} are colored with color 1, 3, 2, and 4, respectively.
Case(ii): p = 4m + 6, m ≥ 1.

In this case, the eccentric coloring is given by
The vertices in the sets
A = {v2n−1/1 ≤ n ≤ p

2 },
B = {v4n−2/1 ≤ n ≤ p−2

4 },
C = {v4n/1 ≤ n ≤ p−6

4 } ∪ {vp}, and
D = {vp−2} are colored with color 1, 3, 2, and 4, respectively.
Case(iii): p = 4m + 7, m ≥ 1.

In this case, the eccentric coloring is given by
The vertices in the sets
A = {v2n−1/1 ≤ n ≤ p−1

2 },
B = {v4n−2/1 ≤ n ≤ p−3

4 },
C = {v4n/1 ≤ n ≤ p−3

4 } ∪ {vp}, and
D = {vp−1} are colored with color 1, 3, 2, and 4, respectively.
Case(iv): p = 4m + 8, m ≥ 1.

In this case, the eccentric coloring is given by
The vertices in the sets
A = {v2n−1/1 ≤ n ≤ p

2 },
B = {v4n−2/1 ≤ n ≤ p−4

4 },
C = {v4n/1 ≤ n ≤ p−4

4 } ∪ {vp}, and
D = {vp−2} are colored with color 1, 3, 2, and 4, respectively. �

For example, let us consider the graphs as shown in Figure 2.

Figure 2. Cycle with chord between vertices at distance two

Throughout this example we consider m = 2.
For p = 4m + 5 = 13, the graph is shown in Figure 2(a) and its eccentric coloring is as follows:
The vertices in the sets
A = {v2n−1/1 ≤ n ≤ p−1

2 } = {v1, v3, v5, v7, v9, v11},
B = {v4n−2/1 ≤ n ≤ p−1

4 } = {v2, v6, v10},
C = {v4n/1 ≤ n ≤ p−5

4 } ∪ {vp} = {v4, v8} ∪ {v13}, and
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D = {vp−1} = {v12} are colored with colors 1, 3, 2, and 4, respectively.
Similar cases are shown with their respective colors, in Figure 2(b), 2(c), 2(d) respectively.

Lemma 3.2. A cycle Cp, p ≥ 9 with a chord between two vertices at distance three from each other is eccentric
colorable.

Proof. Let a cycle Cp, p ≥ 9 be labeled as v1, v2, v3, . . ., vp. Let e be a chord between vp−1 and v2. Eccentric
coloring is given as follows:
Case(i): p = 4m + 5, m ≥ 1.

In this case, the eccentric coloring is given by
The vertices in the sets
A = {v2n−1/1 ≤ n ≤ p−1

2 },
B = {v4n−2/1 ≤ n ≤ p−1

4 },
C = {v4n/1 ≤ n ≤ p−5

4 } ∪ {vp}, and
D = {vp−1} are colored with colors 1, 2, 3, and 4, respectively.
Case(ii): p = 4m + 6, m ≥ 1.

In this case, the eccentric coloring is given by
The vertices in the sets
A = {v2n−1/1 ≤ n ≤ p

2 },
B = {v4n−2/1 ≤ n ≤ p−2

4 },
C = {v4n/1 ≤ n ≤ p−2

4 }, and
D = {vp} are colored with colors 1, 2, 3, and 4, respectively.
Case(iii): p = 4m + 7, m ≥ 1.

In this case, the eccentric coloring is given by
The vertices in the sets
A = {v2n−1/1 ≤ n ≤ p−1

2 },
B = {v4n−2/1 ≤ n ≤ p−3

4 },
C = {v4n/1 ≤ n ≤ p−3

4 },
D = {vp−1}, and
E = {vp} are colored with colors 1, 2, 3, 4, and 5, respectively.
Case(iv): p = 4m + 8, m ≥ 1.

In this case, the eccentric coloring is given by
The vertices in the sets
A = {v2n−1/1 ≤ n ≤ p

2 },
B = {v4n−2/1 ≤ n ≤ p−4

4 },
C = {v4n/1 ≤ n ≤ p

4 },
D = {vp−2} are colored with colors 1, 2, 3, and 4, respectively. �

For example, let us consider the graphs as shown in Figure 3. In this example too we consider m = 2.

Figure 3. Cycle with chord between vertices at distance three
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For p = 4m + 5 = 13, the graph is shown in Figure 3(a) and its eccentric coloring is as follows:
The vertices in the sets
A = {v2n−1/1 ≤ n ≤ p−1

2 } = {v1, v3, v5, v7, v9, v11},
B = {v4n−2/1 ≤ n ≤ p−1

4 } = {v2, v6, v10},
C = {v4n/1 ≤ n ≤ p−5

4 } ∪ {vp} = {v4, v8} ∪ {v13}, and
D = {vp−1} = {v12} are colored with colors 1, 2, 3, and 4, respectively.
Similarly, the other cases are shown with their colorings in Figure 3(b), 3(c), 3(d) respectively.

4. Eccentric Coloring of Lexicographic Products

In this section we consider the eccentric coloring of lexicographic product of class of graphs. First, we define
lexicographic product as follows:

Given graphs G and H, the lexicographic product G[H] has vertex set {(g, h) : g ∈ V(G), h ∈ V(H)} and two
vertices (g, h), (g′, h′) are adjacent if and only if either [g, g′] is an edge of G or g = g′ and [h, h′] is an edge of H.

Theorem 4.1. For any even integer p ≥ 16, Cp[K2] is eccentric colorable.

Proof. Let a cycle Cp be labeled as v1, v2, v3, . . . , vp, where p(≥ 16) is an even integer and Cp[K2] be the
lexicographic product of Cp and K2. Let S i denote the set of vertices of K2 replaced in the place of vi.
Case(i): p = 8n + 8, n ≥ 1.

In this case, let V(Cp[K2]) = A ∪ B ∪C ∪ D be the partition of V(Cp[K2]), where
A = {∪S 2k−1/1 ≤ k ≤ p

2 },
B = {∪S 4k−2/1 ≤ k ≤ p

4 },
C = {∪S 8k−2/1 ≤ k ≤ p

8 },
D = {∪S 8k/1 ≤ k ≤ p

8 }.
The eccentric coloring of Cp[K2] is given as follows:
The pair of vertices in each S 2k−1, 1 ≤ k ≤ p

2 in A are colored with color 1. Among the pair of vertices in each
S 4k−2, 1 ≤ k ≤ p

4 in B, one vertex is colored with color 1 and the other vertex with color 2. Among the pair of
vertices in each S 4k−4, 1 ≤ k ≤ p

8 in C, one vertex is colored with color 4 and the other vertex with color 5. Among
the pair of vertices in each S 8k, 1 ≤ k ≤ p

8 in D, one vertex is colored with color 6 and the other vertex with color
7.
Case(ii): p = 8n + 10, n ≥ 1.

In this case, let V(Cp[K2]) = A ∪ B ∪C ∪ D ∪ E be the partition of V(Cp[K2]), where
A = {∪S 2k−1/1 ≤ k ≤ p

2 },
B = {∪S 4k−2/1 ≤ k ≤ p−2

4 },
C = {∪S 8k−4/1 ≤ k ≤ p−2

8 },
D = {∪S 8k/1 ≤ k ≤ p−2

8 }, and
E = {S p}.
The eccentric coloring of Cp[K2] is given as follows:
The pair of vertices in each S 2k−1, 1 ≤ k ≤ p

2 , are colored with color 1.
Among the pair of vertices in each S 4k−2, 1 ≤ k ≤ p−2

4 in B, one vertex is colored with color 2 and the other vertex
with color 3. Among the pair of vertices in each S 8k−4, 1 ≤ k ≤ p−2

8 in C, one vertex is colored with color 4 and
the other vertex with color 5. Among the pair of vertices in each S 8k, 1 ≤ k ≤ p−2

8 in D, one vertex is colored with
color 6 and the other vertex with color 7. Among the pair of vertices in S p in E, one vertex is colored with color 8
and the other vertex with color 9.
Case(iii): p = 8n + 12, n ≥ 1.

In this case, let V(Cp[K2]) = A ∪ B ∪C ∪ D ∪ E be the partition of V(Cp[K2]), where
A = {∪S 2k−1/1 ≤ k ≤ p

2 },
B = {∪S 4k−2/1 ≤ k ≤ p

4 },
C = {∪S 8k−4/1 ≤ k ≤ p−4

8 },
D = {∪S 8k/1 ≤ k ≤ p−4

8 },
E = {S p}.
The eccentric coloring of Cp[K2] is given as follows:

6



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 7, No. 1; 2015

The pair of vertices in each S 2k−1, 1 ≤ k ≤ p
2 , are colored with color 1.

Among the pair of vertices in each S 4k−2, 1 ≤ k ≤ p
4 in B, one vertex is colored with color 2 and the other vertex

with color 3. Among the pair of vertices in each S 8k−4, 1 ≤ k ≤ p−4
8 in C, one vertex is colored with color 4 and

the other vertex with color 5. Among the pair of vertices in each S 8k, 1 ≤ k ≤ p−4
8 in D, one vertex is colored with

color 6 and the other vertex with color 7. Among the pair of vertices in S p in E, one vertex is colored with color 8
and the other vertex with color 9.
Case(iv): p = 8n + 14, n ≥ 1.

In this case, let V(Cp[K2]) = A ∪ B ∪C ∪ D ∪ E be the partition of V(Cp[K2]), where
A = {∪S 2k−1/1 ≤ k ≤ p

2 },
B = {∪S 4k−2/1 ≤ k ≤ p−2

4 },
C = {∪S 8k−4/1 ≤ k ≤ p+2

8 },
D = {∪S 8k/1 ≤ k ≤ p−6

8 },
E = {S p}.
The eccentric coloring of Cp[K2] is given as follows:
The pair of vertices in each S 2k−1, 1 ≤ k ≤ p

2 , are colored with color 1.
Among the pair of vertices in each S 4k−2, 1 ≤ k ≤ p−2

4 in B, one vertex is colored with color 2 and the other vertex
with color 3. Among the pair of vertices in each S 8k−4, 1 ≤ k ≤ p+2

8 in C, one vertex is colored with color 4 and
the other vertex with color 5. Among the pair of vertices in each S 8k, 1 ≤ k ≤ p−6

8 in D, one vertex is colored with
color 6 and the other vertex with color 7. Among the pair of vertices in S p in E, one vertex is colored with color 8
and the other vertex with color 9. �

For example, let us consider C16[K2], C18[K2], C20[K2] and C22[K2] as shown in Figure 4 and Figure 5.

Figure 4. Lexicographic product C16[K2] and C18[K2]

For p = 8n + 8 = 16, V(C16[K2]) = A ∪ B ∪C ∪ D, where
A = {∪S 2k−1/1 ≤ k ≤ p

2 } = {S 1, S 3, S 5, S 7, S 9, S 11, S 13, S 15},
B = {∪S 4k−2/1 ≤ k ≤ p

4 } = {S 2, S 6, S 10, S 14},
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C = {∪S 8k−4/1 ≤ k ≤ p
8 } = {S 4, S 12},

D = {∪S 8k/1 ≤ k ≤ p
8 } = {S 8, S 16}.

Using Theorem 4.1, the eccentric coloring of C16[K2] is shown in Figure 4(a).

For p = 8n + 10 = 18, let V(C18[K2]) = A ∪ B ∪C ∪ D ∪ E, where
A = {∪S 2k−1/1 ≤ k ≤ p

2 } = {S 1, S 3, S 5, S 7, S 9, S 11, S 13, S 15, S 17},
B = {∪S 4k−2/1 ≤ k ≤ p−2

4 } = {S 2, S 6, S 10, S 14},
C = {∪S 8k−4/1 ≤ k ≤ p−2

8 } = {S 4, S 12},
D = {∪S 8k/1 ≤ k ≤ p−2

8 } = {S 8, S 16}, and
E = {S p} = {S 18}.
Using Theorem 4.1, the eccentric coloring of C18[K2] is shown in Figure 4(b).

Figure 5. Lexicographic product C20[K2] and C22[K2]

For p = 8n + 12 = 20, let V(Cp[K2]) = A ∪ B ∪C ∪ D ∪ E, where
A = {∪S 2k−1/1 ≤ k ≤ p

2 } = {S 1, S 3, S 5, S 7, S 9, S 11, S 13, S 15, S 17, S 19},
B = {∪S 4k−2/1 ≤ k ≤ p

4 } = {S 2, S 6, S 10, S 14, S 18},
C = {∪S 8k−4/1 ≤ k ≤ p−4

8 } = {S 4, S 12},
D = {∪S 8k/1 ≤ k ≤ p−4

8 } = {S 8, S 16},
E = {S p} = {S 20}.
Using Theorem 4.1, the eccentric coloring of C20[K2] is shown in Figure 5(a).
For p = 8n + 14 = 22, let V(Cp[K2]) = A ∪ B ∪C ∪ D ∪ E, where
A = {∪S 2k−1/1 ≤ k ≤ p

2 } = {S 1, S 3, S 5, S 7, S 9, S 11, S 13, S 15, S 17, S 19, S 21},
B = {∪S 4k−2/1 ≤ k ≤ p−2

4 } = {S 2, S 6, S 10, S 14, S 18},
C = {∪S 8k−4/1 ≤ k ≤ p+2

8 } = {S 4, S 12, S 20},
D = {∪S 8k/1 ≤ k ≤ p−6

8 } = {S 8, S 16},
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E = {S p} = {S 22}.
Using Theorem 4.1, the eccentric coloring of C22[K2] is shown in Figure 5(b).
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