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Abstract
In this paper we show a regularity theorem for local minima of scalar integral functionals of the Calculus of

Variations with nonstandard general growth conditions. Let us consider functionals in the following form

F lu,Q] = ff(x,u(x),Vu(x)),dx
Q

where f: Q x R x R¥ — R is a Carathéodory function satisfying the inequalities
O (2) = c1 < £ (x,5,2) < e [1+ (@ (12D + (@ ()]

for each z € RY, s € R and for £V-a. e. x € Q, where ¢; and ¢, are two positive real constants, with ¢; < ¢, Q is
an open subset of RV N>2 @€ A% N V] [Definition 6 and Definition 8], 1 < r < m < N and the function @~
is the Sobolev conjugate of ® [Definition 12], 8 is a positive real number that we will opportunely fix [Hypothesis
Hy gl
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1. Introduction

In this paper we show a regularity theorem for local minima of scalar integral functionals of the Calculus of
Variations with nonstandard general growth conditions.

Let us consider functionals in the following form

F u, Q] = ff(x,u(x),Vu(x)) dx
Q

where f: Q x R x RN — R is a Carathéodory function satisfying the inequalities
O (J2) — e < £ (x,5,2) < e [1+ (@ ()Y + (@ ()Y

for each z € RY, s € R and for £V-a. e. x € Q, where ¢; and ¢, are two positive real constants, with ¢; < ¢,
Q is an open subset of RV N>2,de ANV [Definition 6 and Definition 8], 1 < r < m < N and the function ®* is
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the Sobolev conjugate of @ [Definition 12], 8 is a positive real number that we will opportunely fix [Hypothesis
H ¢]. The research of regularity results for weak solutions of elliptic and parabolic PDEs starts from the basic
results of De Giorgi (1957) and Nash (1958). In 1990s a remarkable production of regularity results for functionals
with general growths has been developed.

In 1996, Mascolo and Papi have determined an Harnack inequality for the minimizer of the functional (1.1) under
the following conditions: f(z) = @ (|z]) where @ is a N-function and ® € A, N V,. We observe that ® € A, NV,
implies

c3t? —cy < O(1) < est™ +ce forr>0 (1.1)
with real positive constants c¢3, ¢4, ¢5, ¢ and 1 < p < m. A classical regularity theorem for functionals with
standard growth conditions (p = m) has been proved in (De Giorgi, 1957) (we refer also to Giaquinta & Giusti,
1984; Giusti, 1994). In 1991, Moscariello and Nania have obtained a results of Holder continuity for the local-
minima of functional of the type (1.1) under the following hypothesis, f(z) = @ (|z]) where @ is a convex and

P

increasing function, ® € A, and (1.2) holds with 1 < p < m < NN—_p In 1991, Lieberman proved an Harnack

inequality for the minimizer of the functional (1.1) with ® € C? suth that
< t(.D © <
D (1)

Cc7 Ccg fort>0

with 0 < ¢7 < c¢g. In (Granucci, 2006, 2014a, 2014b), the author has extended, partially, the precedents results.
Moreover in 1994, Klimov studies this problem when ® satisfies V, but not a A, condition.

In this paper we proof a theorem on the regulaity of quasi-minima of the functional 7 [u, Q] with the following
hypotheses.

[Hos] Let® € AT NV, beaN-functionand 1 <r <m <N.
[Hi/l f: QxRxRY - Risa Carathéodory function satisfying the inequalities

D (ld) — 1 < f (x,5.2) < e [1+ (@ ()Y + (@ ()Y (1.2)

for each z € RV, s € R and for £V-a. e. x € Q, where ¢; and c; are two positive real constants, with ¢; < ¢, Q is
an open subset of RV, N > 2, @ € A% N V7 and the function @ is the Sobolev conjugate of ®. Let us define

Iy (N,m,r,B) =aN +[a/N+(N-m"B) (1 +ay)]da; —m"B+ (N —m"B)ay

N—(1+ -N. . .. . .
where o = W, a = ﬁ'_’%r -1, m" = IC”TIYn and ¥ is the positive solution of ¢ (¢ + 1) = ay, i.e.
9 = o ‘2”4‘”. Let us consider the system
1<r<m<N
r(N—m) . r(N-m) N-m
mN <ﬁ < mln(m(N—r)’ m )

(1.3)
AN+ (N =m'B) (1 +a2) <N

N+ [N+ (N-=m"B) (1 + an)]|da; —m*B+ (N -—m*Bas >0

then for every r and m, with 1 < r < m < N, there exists 3 ..., implicitly defined by I'; (N, m, r,8) = 0, such that
if %}V’”) < B < B1.rmn- then B is a solution of the system (1.4). Our hypoteses on 5 will be

r(N —m)

< N - 1.4
N B <Birmn (1.4)

H,; Foreveryt> 0 we have
1 <o(1). (1.5)
Remark 1 For the whole paper we will suppose that the system (1.4) has some solutions, in Appendix we will

study in detail such system and we will find some conditions of existence, the relationship (1.5).

Remark 2 If r = m then @ (r) ~ " [Definition 4] and ®* (f) ~ ¢ [Definition 12 and Lemma 3], this case has
been studied by the author in (Granucci, submitted) and with more restrictive hypotheses in (Moscariello & Nania,
1991).
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Remark 3 The hypothesis H; ; is purely tecnical, it can be removed [Corollary 1].
Moreover we will assume that f satisfies on of the following hypotheses.
Hj, s Foralmostevery x € Q f (x,-,) is a convex function.

H;3,; Foralmostevery x € Qand forevery s € R, f (x, s, -) is a convex function; moreover there exists a constant
c3 > 0 such that

fxs1,8) < e3f (x,52,8) (1.6)
for almost every x € Q, for every pair sy, s, € R, with |s1| < |s,], and for every & € RV,

Definition 1 If u € V = (v € WH1(Q): F [u, Q] < +co} then u is a local minimizer of F [u, Q] if

F [u, supp ()] < F [u+ ¢, supp (p)] (1.7)

for every ¢ € Wi (Q) with supp(p) cC Q.
Our principal result is the following theorem.

Theorem 1 (Main Theorem) Let u € V be a local minimizer of F [u, Q], with f satisfying conditions Hy s, Hi y,
Hyy, H3 1 por Hoy, Hy g, Ho g, H3p g; then uis locally Holder continuous in Q.

The precedent Theorem 1 extends the results gotten in (Dall’ Aglio, Mascolo and Papi, 1997, 1998).

Corollary 1 Let u € V be a local minimizer of ¥ [u,Ql, with f satisfying conditions Hy s, Hi s, H3 1 or Hoy,
Hy s, H3 y; then uis locally Holder continuous in Q.

Proof. Using Lemma 2 (iii) there exists a N-function ®; ~ @ such that @, satisfys H, ;. Moreover, since ®; ~ @,
there exist some positive constants s, >, and £y such that

D (511) < O (1) < D (o) (1.8)
forall t > #5. If 0 < 1 < 1, since @ and P are increasing and continuous functions, we have
D (5211) — 10 < D) (1) < O (t) + €11 (1.9)
where cjg and ¢y, are positive constants. Using (1-9) and (1.10) it follows
D (et) —c1p D (1) <D (nrt) + 13 (1.10)

for all # > 0. Let us consider @, (1) = ® (s¢1), since ® fulfils the hypotesis Hy s and H3_r, then @, fulfils the
hypothesis Ho ; and H3; r; using (1.2) and Lemma 1 (i) we get

D)~ < flx,820) )
<as|(2)f" @ @P+(2)" @ (s +1] (L11)
<ers(2)" [@ @) + (@ (s +1].
Corollary 1 follows using (1.12) and Theorem 1. ]

Particulary Theorem1 and Corollary 1 can be applied in the following cases

O()=1 with p > 1,
O ="In"(1+1) with p > 1T and a > 0,
tP ifO0<r<i .
@) = { (B s ) iy > g0 where sin(In(In(%))) = -land 1 < p < g < N.

2. Definitions

Definition 2 A continuous and convex function ®: [0, +o0) — [0, +00) is called N-function if it satisfies

O0)=0and @ (1) >0ifr > 0;

i 20 _ .
Jim == =0; @.1)
lim 22 = 4o,
t—+00

3
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For exemple the function ®,4 (1) = #* I¥(1+0forp>1landB>0orp=1andf > 0isaN-function. Actually,
only the growth at infinity really matters in the definition of N-function. Indeed, given a continuous and convex
function A:[0, +00) — [0, +00) satisfying

A
fim A9~ 4o

t—+o0  f

there exist a N-function @ and #, > O such that for every ¢ > 1, there holds

A)=D().
The function A is called principal part of the N-function ®. For exemple there exists a N-function @ such that
@ () = M9 near infinity or there exists a N-function @ such that @ (¢) = 7 In(¢) near infinity.

Definition 3 If @, and @, are two N-functions we say that @, dominates @, near infinity if there exist two positive
constants 2« and ¢, such that
D, (1) < Oy (1)

for all 7 > 1.

Definition 4 If ®; and @, are two N-functions we say that ®; and @, are equivalent near infinity (®; ~ @,) if and
only if there exist some positive constants sz, >z, and fy such that

D (301) < DOy (1) < Dy (3521)

for all 1 > t,.

Remark 4 1If 0 < lim % < +oo then @; and @, are equivalent near infinity. Let us introduce two important
t—+00

classes of N-functions.

Definition 5 A N-function © is of class A, globally in (0, +c0) if exists k > 1 such that

D (21) < kD (1) Yt e (0, +00). 2.2)
Definition 6 A convex function @ is of class Ay globally in (0, +o0), with m > 1, if for every 4 > 1

D () < A"D(2) Yt € (0, +00). (2.3)
Remark 5 The class A; contains only linear functions.

Definition 7 A N-function @ is of class V, globally in (0, +c0) if exists [ > 1 such that

O(r) <

® (ft ) e (0. +00). (2.4)

2
Definition 8 A convex function @ is of class V} globally in (0, +00), with r > 1, if for every 4 > 1
AD(@@) <D () Yt € (0, +00). 2.5)

Remark 6 Every N-functions belongs toVé .
Remark 7 We observe that

AzZUA’Zn

m>1

V, = Uvg.

r>1

and

The N-functions @ € AY' are characterized by the following result.

Lemma 1 Let ® be a N-function and let &_ be its left derivative. For m > 1 the following properties are equivalent:
(i) © (Ar) < A" D (¥), for every t > 0, for every A > 1;
(i) td_ (1) < m®D (1), foreveryt > 0;
(iii) the function 20 g nonincreasing on (0, +00).

I
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The N-functions ® € V/, are characterized by the following result.
Lemma 2 Let ® be a N-function and let ®_ be its left derivative. For r > 1 the following properties are equivalent:
(i’) © (Af) = XD (2), for every t > 0, for every A > 1

(ii’) td_ (1) > r® (1), for every t > 0;

(1)

(iii’) the function =;

is nondecreasing on (0, +co).

Remark 8 If ® € A% using Lemma 1 (iii) it follows
D (1) < c1et™

for every ¢ > 1.

Remark 9 If ® € V), using Lemma 2 (iii) it follows
() (t) > C]7tr

forevery ¢t > 1.

Remark 10 Moreover, if ® € A% N V] then
ci7t" S DO(@) < ™"

forevery ¢ > 1.

Remark 11 1If @ is a N-function of class A globally in (0, +c0), then we have @ (Af) < A" ® (¢) for every ¢ € (0, +0o0)

and A > 1. Letus put ¢ = /51 then we have % < (D(f) and @! (qjl#?)) < 2 forevery s € (0,+c0) and A > 1. Let us
1

put s = ®~! (w) then we have ®~! (l) < m for every w € (0, +00) and A4 > 1. Let us put =4 then we have

) <
O (aw) < an®! (w) for every w € (0, +o0) and a € (0, 1).

Definition 9 We say that the N-function ® satisfies the A'- condition if there exist positive constants cg and fy such
that
D(ts) < co®@ (1) D () (2.6)

for every t, s > ty. If tp = 0 we say that ® satisfies globally the A’- condition (® € A in (0, +00)).

Let us consider the N-functions

O (1) =1 with p > 1;
O, () =t"(In(@®)| + 1) with p > 1;
O;())=0+0)In(d+1)—1t; 2.7

_ .
Q4 (1) = T+In(1+7)°
Os () =€ —1—1.

We observe that @, and @, satisfy the A’ -condition globally in [0, +c0); moreover ®; and @, belong to the class
A» NV, globally in [0, +00). The function @5 satisfy A'-condition for all 7 > f, but ®3 ¢ V,. The function @5 € V,
but @5 ¢ A;. Finally @4 € A, NV, but Oy ¢ A’. For further details refer to (Adams, 1975; Dall’ Aglio, Mascolo,
& Papi, 1997, 1998; Klimov, 2000; Krasnosel’skij, 1961; Mascolo & Papi, 1996; Moscariello & Nania, 1991; Rao
& Ren, 1991). Now we can introduce Orlicz spaces and Orlicz Sobolev Spaces, L? and W'L®. Let Q C R be a
bounded and open set, the Orlicz class K (Q) is the set of all measurable functions u: Q — R (equivalence classes

modulo equality £V a.e. in Q) satisfying f ® (lu) dLN < +oo. The Orlicz space L (Q) is defined to be the linear
Q
hull of K (Q), thus it consists of all measurable functions « such that Au € K® (Q) for some A > 0. Moreover, the

equality K® (Q) = L® (Q) holds if and only if ® € A,.
Definition 10 If Q c R" is a bounded open set and ® € A, then we define

W'L? (Q) = {u e L (Q) : du € L (Q) fori=1,..., N}

where d;u are the weak derivatives of u fori =1, ..., N.
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Theorem 2 Let ® € Ay, then L® (Q) and W' L® (Q) are Banach spaces with the following norms

[lullp.o = inf[k >0: fq)(%) ary <1

Q

and

N
il o = ldlog + ) 0o -
i=1

For greater details we refer to (Adams, 1975; Dall’ Aglio, Mascolo, & Papi, 1997, 1998; Klimov, 2000; Kras-
nosel’skij, 1961; Mascolo & Papi, 1996; Moscariello & Nania, 1991; Rao & Ren, 1991).

Let ® be a N-function then there exists a real valued function p defined on [0, +c0) and having the following
properties: p(0) =0, p(r) > 0ift > 0, p is increasing and right continuous on (0, +o0) such that

t

®@) = fp (s) ds for every t € (0, +00)
0

and

O, H=p@ a.e. on (0, +00).
Definition 11 Let p be a real valued function defined on [0, +oc0) and having the following properties: p (0) = 0,
p () > 0if ¢t > 0, p is increasing and right continuous on (0, +c0). We define

B(s) = sup (1)
p(H<s

and

(1) = f P (s) ds.
0

The N-functions ® and ® are complementary N-functions.
Particularly from the relationship (2.1) of the Definition 2 we get the following Young inequality

ab < ®(a)+ D). (2.8)
We now recall the notion of Sobolev conjugate of a N-function. For a sake of simplicity, we will only consider the
case of a function in A7

Definition 12 Assume that ® € AY', with 1 < m < N. We define the Sobolev conjugate of @ as the function ®*

whose inverse is defined by
t

-1
@) (1) = f RO (2.9)

st
0

Remark 12 Using condition (i) of Lemma 1 we have ®~! (s) < csm for0 < s < 1, then the integral in (2.9) is
finite and it is easy to check that ®* is a N-function. If ® () = ", with | < m < N, then ®* (¢) = (%)m where

m
* m.

m* = NTAII/I’I is the Sobolev conjugate exponent of m. Moreover, if @ (¢) is equivalent near infinity to " In (1 + 7),
with 1 <m < N and a > 0, then ®* (¢) is equivalent near infinity to M (In(1 + t))%.

Lemma 3 Let @ be a N-function in Ay N V5 with 1 <r < m < N, then ®* € A NV},

3. Local Boundedness

Let E be a £V-measurable subset of R", then with |E| we denote the £V-measure of E. If u € WIIUCL"D (Q), kis a
real number and Qg (x) is a cube strictly contained in Q we set

A(k,R)={x€ Qp : u(x) >k} ={u>k}n O,
B(k,R)={xe€ Qr:u(x) <k}={u<k}n Q.
6
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Remark 13 We have |A (k,R)| = |Qg| — |B (k, R)| for almost every k € R, so that when necessary we can assume
without loss of generality that all the vcalues k under consideration will satisfy this relation.

Our proof is based on the following Caccioppoli inequalities.

Theorem 3 Let u € V be a local minimizer of F [u, Q), with f satisfying conditions H, y, H r or Hyy, Hy» f;
then there exist two real positive constants Ci cae, Ca.cac depending only on cy, ¢, N, p and 8 such that for every
Xo € Q, for every cube Q, (x9) CC Qg (x9) CC Q and for every k € R we have

| @avuaz < (RC‘W f (@ (4= ) dL + Cacue (@ (0P 1A (k. R) G.D)
A(k,0) A(k.R)
and
f ® (Vul) d.LY < (RC_I# f @ (k- )Y dLY + Cree @ WP BKR). (3.2)
B(k,0) B(k,R)
Proof. 1t follows by Theorem 4.1 of Dall’ Aglio, Mascolo, and Papi (1997). O

For more details see Dall’ Aglio, Mascolo, and Papi (1997, 1998).
Remark 14 Letus take v =u+ 1 and h = k + 1, then using (3.1) and (3.2) we get

[oammarys 2 [ @ w-nf s @ Y AR
A(h,0) (R-o A(h.R)
and
[ommar s —Fr [ @ o-0f ar i@ 0 BGR).
B(h,0) —e B(h,R)

Using an abuse of notation we will always identify u with v and & with k.
We can now introduce the adequate De Giorgi classes related to the functional (1.1).

Definition 13 Let u € W' ! - (Q); we say that u € DG ©.0 (Q, Hy, Hy, Ry, ko) if for all couple of concentric cubes
0, C Or C Qg, € Q, WlthQ <R < Ry, and for all k > ko > 0 we have

f O (V) dLY < —— . )ﬂp f (@ (u—- k)Y dLY + Hy (@ (b)) 1A (kR)|. 3.3)

Ak,0) A(k,R)

Definition 14 Let u € W' (Q); we say that u € DG‘ o (Q, Hy, Hy, Ry, ko) if for all couple of concentric cubes

loc

Q, C Or C Qg, €Q, w1thQ<R<R0,andforallk< k0<0wehave

f o (Vu) dr < — T f (@ (k=) dLY + Hy (@ (K 1B (K, R)]. 3.4
(R - 0)”

B(k.0) B(k.R)
Definition 15 Let u € Wlln’c1 (Q); we say that u € DGg o (2, Hy, H, Ry, ko) if u € DG:; o (Q, Hy, H>, Ry, kp), that
is ’
DGo g# (Q, Hy, Ha, Ro, ko) = DGy o5 (Q, Hi, Ha, Ro, ko) N DGy, 4,5 (Q, Hi, Ha, Ro, ko) -

Lemma 4 Let 6 > 0 and let {x;};cn be a sequence of real positive numbers such that
Xie1 < CBIx ™ (3.5)

with C > 0and B> 1. If xo < C~1B™# then we get

x; < C i xg (3.6)
and

lim x; = 0. (3.7)

1—+00

7
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Theorem 4 Let u € V be a local minimizer of ¥ [u,Q], with f satisfying conditions Hoy, Hyy, Hyy, H3 )z or
Hoy, Hyp, Hy g, H3p gy then u is locally bounded in Q and there exists a Ry > 0 such that for every xo € Q and
0 < R < min (Ry, dist (xg, 0Q)) we have

)‘* —m
m(1—p)

ess — sup (Iul)] <1+C® f O (|u)? dLV (3.8)

@*

R
where C (R) is a real positive constant depending on R, N, m, r and 3.
Proof. Tt follows by Theorem 3.1 of Dall’ Aglio, Mascolo, and Papi (1997). ]
For more details see Dall’ Aglio, Mascolo, and Papi (1997, 1998).

Now we introduce our first result that improves the precedent theorem shown in general in (Dall’ Aglio, Mascolo,
& Papi, 1997, 1998).

Theorem 5 Let u € V be a local minimizer of F [u, Q), with f satisfying conditions Hy y, Hy g, Hy s, H3 1 or Hyy,
Hy g, Hyy, H3, 5 then if |ko| + sup (u) < M we have

B
Ca A (ko, R)|” .
[cb* ess — sup (u)]] < %ﬂz)' f (@ (u - ko)Y’ dLY + ) (R"P) (3.9)
24 R Alko.R)
where @y = W a = (16’11}11;,)1’ -1, y = N —m'B, ¥ is the positive solution of (9 + 1) = a, ie.

P = Vit '214“4(", and Cy; is a real positive number depending on N, B, a1, a and .

Proof. For § < o <1 < Rletn(x) be a function of class C° (Q%) withn = 1 on O, and V| < <. Setting
k>h> ko, { =n(u-k), we have

f (@ (u—-k)Y dL¥ < f (@ )Y dLN (3.10)

Ak,o) E;

where E; =Supp({) C A (k, ”T(’) Since

f (@ Q)Y dLV < f (@ ¢ +10)) dLN <c f (€ +10)" P dLV
E; E; E;

using the Sobolev Inequality we get

[@+wyPdLy = [ & +1)"FdLV
E¢

Qg
- N=(1-B)m
N-m
BmN
< CNmgp , [ vy Ly 3.11)
= N-(1-p)m
N N-m
= cnmp | [ 19075 dLY
E;
Since B < ;f?,’v__"g using the Holder Inequality it follows
NmB
N=(T=pym)r
. ___Nmp
f Vg7 dLN < |E| T f Vel dL (3.12)
E; E;
and
_pmN_
(N-m)r
f & O dLN < cnpp|Ee]™ f Vel dLy (3.13)
E; E;

8
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where a| = W Since 8 > (N "’)’ then ﬂmN - > 1 and
@
f & QY dLY < cxps|E]" f Vet dc f Vet dL (3.14)
E; E;
where a, = (16 i — 1. Since t" < @ (¢) [Refer H, y] we have
[iveracy < [ oqvah e [ (7(£2)) ary+|a @;egﬂ}
£ A(k.57) A(k.557)

Using the Caccioppoli inequality we obtain

j}va’dLNsCT@o (3.15)

where

_ B
Tw=Cew [ (@* (”—k)) 4L + Cocae (@ (P + 1) AT

T—0
A(k,T)
From (3.14) and (3.15) it follows

Ef @ QF dLY < enpplE™ [T @I @] (3.16)

Let M > d > (®*)! (R’"*) be a constant that we shall fix later, and define

ko=d
ki = ki + 75 (ZA2)  fori> 1
» (3.17)
r=%(1+27)
ui = U (ki, ri);
where @, g (1) = (O (1))°, then, using (3.16), we get
f(CD* (= ki)Y dLY < cnpplAil™ [U (ki ri)] - [U (ki r)]™ . (3.18)
A[+I
where
A; = Ak, ry)
Utkior) = Creae [ (®(Z2)) dLY + Cocae (@ ()P + 1) 1A (ki 1)
Alkiri)
Now we give two alternative estimates of
of U— ki ¢ N *
U (ki i) = Ci cac f O (|| LY + Cocue (@ ()Y + 1)IA i)
Alor) i i+1
Since u is bounded we get
C aczm*ﬁzm*ﬁi
U (kivry) < == ez=——R" (@ (M) + Cocue (@ (MY + 1) R
then '
U (ki,r;) < Gy2™ PIRY (3.19)

9
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where Gy = 2" (Cy cac + Cacac) (@ (M) + 1), Ceae = (Cr.cac + Cacac) and y = N = m*B, since 2= >  then

y > 0.

Moreover, since

1
Al ) € ———— f (@ (u - k) dL
"= o CRETOS !

io1)
we get
Cicac Ca.cac ((8* (k)Y + 1)

O (u—k; N.
(ri = riy)"” " (@* (k; — k) (@ =k’ d.L;

U (ki,r;) <

Aki,ri)

0. 4(d)
om*Bj

sinceki =d+ 3 (D;'}g( ) <d+ Y zm‘fm < 2"Bd and (®* (d))’ > R™P, it follows
= =1

a\mtB k.
Cleac2 P Bi Cocac2(2"F 2mhi
Ulhr) < [ 22 Ca) [ @ - k)P dL®
Alk;,r;)
2m*/fi
< CeaComnzm [ (@ (u—k)Y dL.

Alkiri)

Using (3.18), (3.19) and (3.20) it follows

[ @ =k dLY < enpplAl - [Gu2" PRY| -
A

~[Cc¢,ccz,m,N§7”,—$ [ (@ - k)Y dLN].
A(k;,r;)

Since |A (k;, ;)| < +k»ﬁ f (@ (u— k)Y dLN we have

(D (ki1 AGr)
1+a
% C2, N.M, 2m*ﬂ(l+al+az)i .
f((D (= ki)Y dLV < m ﬁa _ . f (@ (u — k)P dLy
(@ @y)" R By
Ain (ki,ri)
and
Wir Cz,m,N,Mﬁ 2m*[3(1+r¥1+02)iw'1+(11

L

< 7
Rm*B-yas ((g* (d))’B)

where w; = |A (k;, r,-)l’9 f (D (u — k)Y’ dLY and 9 is the positive solution of 3 (% + 1) = ;.
Alki,ri)

Choosing d such that

1

< ComNMp “ 2,%%1”(2)
> Rm*ﬁ,yaz (((I)* (d)),g)a/]

we can apply Lemma 4; then

lim @w; =0
i—+00
and
R
Uld, —) - 0.
(@3

The condition imposed on d will be satisfied taking

1 m*ﬁ(lﬂzyl +ay)
(CZ,m,N,M,ﬁ) M2

m*yay

R =
10

(@ (@) =

wo + CD;,,IB (Rm*ﬁ)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)
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hence we have

B
CA (ko, R)[” .
(cp* ess = sup (u)]] < # f (@ (u—ko)Y’ dLY + @7} (R"7) (3.27)
24 R = Alko.R)

1 m*B(1+ay+ay)

where C = (Cz‘m’N‘M"B)H 2 A and ¢ is the positive solution of ¢ (% + 1) = a1,
4. Proof of the Main Theorem

je 9 = —irVivda \/2”4“1_ 0

Lemma S Let u € V be a local minimizer of ¥ [u, Q], with f satisfying conditions Ho s, Hy s, Ha s, H3 15 or Hoy,
Hi s, Hy s, H3 s, and let 2kg = M (2R) — m (2R). Assume that |A (ko, R)| < v |Qk| for some y < 1. If for an integer
v, it holds that

osc(u,2R) 2 207} (R™P) .1

where (D;llg (?) is the inverse of @, 5 (1) = (O )P, then, setting k, = M (2R) — 27 'osc(u, 2R) we have

RNm +(N-m*B)(1+a2)

|A (kw R)I < CN,m,ﬁ,M P (42)
2% 1
N—(1-Bym]r-N
where a) = [N - ]51":’1]): mp a = (]f,i'fivl)r — 1 are the constants of Theorem 5.

Proof. For kg < h < k let us define

k—-h ifu>k
vix)={ u—-h ifh<u<k 4.3)
0 if u < h.

We have v = 0 in Qg\A (ko, R) and since |Qg\A (ko, R)| > (1 — ) |Qg| by Sobolev inequality we get
[ @ mPdLy < [ (@ +1)fdLy

AGR) AhR) )
< [ e+t PacLy
A(k,R) “4.4)
N-(1pym _pmN_
BN N-m (N-m)r
< cnmg | [ [Vu| 7T dLN} N |ARI™ [ [ 1Vul dLN]
Ar Ar
where Agyn = A(k,R) —A(h,R) and o) = WT]@% Since " < g(¢) and B > % then (]gi”g)r > 1 and we
get
@
[ @ oy ar < e | [0 || [ oo az| . “5)
A(k,R) Ar Ar
where @y = % — 1. Since for h < k, we have M 2R) —h > M (2R) — k, > 27" osc(u, 2R) > CD;L., (Rm*ﬁ) then,

using Caccioppoli inequality (3.1) for the levels k = k; = M (2R) — 2~ 'osc (u,2R) and h = k;_;, proceeding as in
the previous Theorem 5 we get

(N-m*B)(1+ar)

A (k. R < (cN,,,,,,g,M)ﬁ Ari | R (4.6)

Summing over i from 1 to v we have

(N-m*B)(1+ay)

1 e
VIA (ky, R < (cnmpar)™ RYR o (4.7)
and
RNa]Jr(N—m*ﬁ)(lJraz)
|A (k,,R)| < CN,m,ﬁ,MT. (4.8)
O

Lemma 6 Let ¢ be a positive function, and assume that there exist a constant g and a number 7, 0 < 7 < 1 such
that for every R < Ry
¢ (tR) < ¢ (R) + BR* (4.9)

11
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with 0 < 3¢ < § and
(1) < g0 (T'R) (4.10)

foreveryt e (Tk+1R, TkR). Then for every o < R < Ry we have

0@ =< C{(2) e +Bo~} @11)

where C is a constant depending only on q, T, » and 6.
Now we can prove our main Theorem.

Proof. (Proof of Theorem 1) Let ky = w we can assume |A (ko, R)| < %IQRI since otherwise we can
assume |B (kg,R)| = |0gr| — |A (kg,R)| < %IQR| and it will be sufficient to write —u« instead of u. Setting k, =
M (2R) — 27 'osc(u, 2R) we have k, > ko and

B
O less—supu-k)|| < S KR [ (@ @—k)F dLV+ vl (R7F)
°t e Alla.R) (4.12)
B
< % A (k,,R)|” RV ((D* (ess — sgp (u— kv))) + +(I);}g (R’"*ﬁ)_
R “ R

Let us choose an integer v such that

m. 19 1
c(—CN’ ’ﬁ’M) <— (4.13)
ya 2%
If osc(u,2R) > 2"“<D;;3 (R’"*ﬁ) then by Lemma 5 we get
’ s
* _ _ i A * _ _ -1 m*f
" fess —sup(u—ky)|| < 7R (@ |ess —sup (u—ky)|| + (R™#) (4.14)
Or Or
2
where A = N + (Na; + (N —m*B) (1 + ) 9 — %}7‘“ Since A > 0 [refer H; s and (1.3)] it follows
A ) B
O fess—sup(u—k,) || < == ((I)* (ess —sup (u — ky))) + <D;}, (Rm*ﬁ) (4.15)
0 2 Or ’
and
R 1
osc (u, 5) <|1- w2 | 08¢ (u,R) + xR. (4.16)

In conclusion, either osc(u, 2R) < 2V”(D;}; (R’”*ﬁ) or, if osc(u,2R) > 2"“@;; (Rm*ﬁ), osc (u, §) < (1 - 2%)
osc (u, R) + xR, in any case we get

R 1
osc (u, 5) < (1 - 21/Jrz)osc (u,R) + YR” “4.17)

with 0 < w < 1. Apply Lemma 6 with 7 = }1 and 6 = log% (1 - ﬁ) and w < 6 we have

osc(u,0) < C {(%)w osc(u,R) + B,Q“‘} (4.18)

for every o < R < min (Ry, dist (xg, 0Q)). (Il
5. Appendix: Hypotheses on 8
Let us consider the system

1<r<m<N

r(N—m)
mN

AN+ (N —m*B)(1 +a2) <N
N+ [N + (N =m"B) (1 + an)|da; —m*B+ (N —m*Baz >0

<B< min(r(me) N"")

m(N-r)> m

5.1

12
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mN

— [N-0-pm]r-Nmp = BmN__ 1, m" = and ¢ is the positive solution of ¢ (¢ + 1) = ay, i.e.

(N-m)r » @ = (N-m)r

. Moreover, since r(fv ™ <1 then we get mm(ﬁg\,_”g, %) < 1. Let us take

where a;
9= —1+\/1+4m
-2

[N-(1-B)ym]r-NmpB
(N-m)r
(N=m)r—mpB(N—-r)
(N-m)r
— 1— N-r _m ﬂ

r —m

(07 =

@ = -1

—1+ VTHa;
v = —5
_ —1+144(1-25p)

2

—1+4/5-42p

2

and
m* =N where x =

|
=
=3

=N  wherey=

=]~

wo_ Xy g
= B=z

then the system (5.1) can be written in this way

<y<x<l1
(1-x)
X

= ==

<z< m11’1<x(1_y), >

( _&) Xz x(1-y)
-x) y(l-x) = y(1-x)

T (x,y,2)>0

y(-x) —x)

<

where

- y(1=x) x) y(l=x) 2 y(1-x)

T (x,y,2) = [1_ )Z+(1 xf) Xz (Hm](l—x(l_})z)—

_%Jr(l‘lx_Z)(m - _1)+1‘ jfll )yc;Z

If
XZ

1-

w=w(x,z) =

we get

where

M@y,w) = [1—-Qiﬁmz+(1-w)%](_tlé;flifJ(l__Q%QW)_

2
—w+(1—w)(%—1)+1—“}%”w

13
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With simple algebraic calculations it follows that the system (5.1) is equivalent to the system

1
yeysxsl Leoy<x<i
D ,
y<w<m1n(1_y),l) IR y<w<mm(1+y),1)
(l—w)ﬁ<%w<=>y<w
E(y,w)>0 E(y,w) >0
where
1+ [5-4022y, _
E(y,w) = [y—(l—y)w+(1—w)w](—](1_(ly_))w)_
“wy+ A -w)yw-y)+y—(1-yw.
Since
61()’)=E(y,}’)=y2(_l+l+4y)20 forevery 0 <y <1
_ y\y__2
ez(Y)—E(y,q)——gSO forevery0 <y <1
- —14(f5-402
es(y)=E(y,1):y—1+(2>y”2( ! 5 )) forevery%$y<1
and

OE
— =w+GOy,w) >0
dy

for every w,y € (0, 1), where

Gow) = (+ w)(—“m)(

2

+y-(I=yw+ (1 -w)w] [_H‘S B ‘)W) %)+

y
=)

\5- 4“ 2y

w)+

+y-d=yw+d-wyw]

for every w,y € (0, 1).

using the Bolzano-Weiestrass Teoremand the Implicit Theorem we get that the equation

E@,w) =0
implicitly defines a fuction
w=w(y)
for every 0 < y < 1. Moreover the system
y<y<x<l

y<w<min((1#_'y),l)
E(y,w) >0

has as solutions the region defined by
y<w<wy

where W, is the function defined by
W, = min (7 (y), 1)

for every 0 < y < 1. With a simple algebraic calculations we get the following relations
I1<r<m<N
L <B< Ly, y.

14
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Let us take
Br.m,N = _*Wr,N
m
then we have the following hypoteses on 8
{ l<r<m<N

,# < :B < Br,m,N~

In the following figures we draw the graphs of E (y, w), e1 (), > (y) and e3 (y).

0.2

0.4

0.6

0.8

Figure 2. The graphs of e; ()
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Y [

0.4 /

4.6

Figure 4. The graphs of e3 (y)
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