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Abstract

In this paper we have considered a two species competitive system where one species produces a substance, which is toxic
to the other. Various equilibrium points and their stability are discussed. Optimal policy of using fertilizer is determined
by means of control theory. Finally, some numerical simulations are given.
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1. Introduction

Plant-plant chemical interference play an important role in nature. It is common experience that there are two types
of such interference (i) direct plant - plant interference mediated by allelo chemicals, and (ii) the effect of secondary
compounds released by plants on abiotic and biotic soil processes that effect other plants. The toxic effect between two
plants becomes vulnerable when we do not maintain the normal distance between them. The most important effects of
compounds released into the soil environment by plants on other plants occur through indirect effects. We know that if
we try to grow tomatoes near black walnut (juglans nigra), then we face the devastating effect the chemical juglone can
have on certain plants. Both blackwalnut and butternut (J.cinerea) produce juglone in sufficient amount to cause wilting
and yellowing of leaves, and sometimes the death of the entire plants.

Sometimes due to shortage of land, it becomes necessary to grow different plants even if they do not maintain the normal
distance between them. In such case, the problem is to see whether proper dose of fertilizer could be ascertained which
would ensure the optimal growth of the plants in the best possible way.

Fertilizers are available in several forms, the most commonly used forms for house plants being liquids, spikes, tablets,
powders, pellets and granules. Liquids come in concentrated or dilute form, the dilute “ready-to-use” forms being conve-
nient but expensive. Spikes, pallets and tablets are often slow-release or time-release. When we shall use some fertilizer
we have to keep in mind the price of the fertilizer. The rate and timing of fertilizer applications are very important in
maintaining a vigorous and healthy turf as well as keeping the nutrients of our garden. We should keep in mind that too
much fertilizer can be toxic to plants, damaging roots and leaves. Periodic leaching washing excess nutrients out of the
soil by deep, long watering and appropriate application of fertilizer will help to reduce soluble salt burn.

The application of optimal control theory in ecology appeared at the end of the 1960s. Shoemaker (1973a, 1973b,
1973c) investigated the application of optimization techniques, especially dynamic programming, to making decision in
agricultural pest management. To talk about various mathematical models to which optimal control theory have been used,
we prefer to mention ( Kirk (1970), Clark (1990), Kar and Matsuda (2008), Shastri and Diwekar (2006)). Many studies
have been developed to better understand the effect of toxicants on populations ( Barrett (1983), Hallam and Luna (1984),
Luna and Hallam (1987), Bhattacharya (2004), Hallam et.al. (1983), Chatterjee (1996), Tillmann and John (2002), Das
et.al. (2009), Sole et.al (2005)).
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2. Mathematical Models

The models before and after the use of fertilizer are given by (I) and (II)

(I)
dx1

dt
= x1[α1 − β1x1 − v1x2 − γx1x2

2]

dx2

dt
= x2[α2 − β2x2 − v2x1]

(II)
dx1

dt
= x1[α1 − β1x1 − v1x2 − γx1x2

2] + qux1

dx2

dt
= x2[α2 − β2x2 − v2x1]

where α1andα2 are natural growth, β1 and β2 are coefficients of intra-specific competition, v1 and v2 are coefficients of
inter-specific competition of two biomasses x1 and x2 respectively; γ is the coefficient of toxicity of the biomass x1; q is
the coefficient of additional growth effective to x1 due to the application of fertilizer of amount u per unit biomass.

3. Existence & Stability Analysis of Equilibrium

For model (I), there exist three boundary equilibrium points, namely E10(0, 0), E11(α1/β1, 0) and E12(0, α2/β2). The inte-
rior equilibrium E∗(x∗1, x

∗
2) is given by

α1 − β1x∗1 − v1x∗2 − γx∗1(x∗2)2 = 0, (1)

α2 − β2x∗2 − v2x∗1 = 0. (2)

From (2), x∗1 = (α2 − β2x∗2)/v2, (3)

and x∗2 is given by α1 − {β1 + γ(x∗2)2}x∗1 − v1x∗2 = 0,

or, γβ2(x∗2)3 − γα2(x∗2)2 − (v1v2 − β1β2)x∗2 − (α2β1 − α1v2) = 0. (4)

So, by Descartes’ rule of signs there exists at least one positive root of (4) if

α2β1 − α1v2 > 0, i.e. if (α2/α1) > (v2/β1). (5)

again x∗1 > 0 if x∗2 < (α2/β2). For model (II), there exist three boundary equilibriums
E20(0, 0), E21((α1 + qu)/β1, 0), E22(0, α2/β2), and the interior equilibrium Ē(x̄1, x̄2) is given by

(α1 + qu) − β1 x̄1 − v1 x̄2 − γx̄1(x̄2)2 = 0, (6)

and α2 − β2 x̄2 − v2 x̄1 = 0. (7)

Therefore, x̄1 = (α2 − β2 x̄2)/v2, (8)

where x̄2 is obtained from the equation

γβ2(x̄2)3 − γα2(x̄2)2 − (v1v2 − β1β2)x̄2 − {α2β1 − v2(α1 + qu)} = 0. (9)

So, there exists at least one positive solution of (9) if u < (α2β1 − α1v2)/v2q. (10)

Again x̄1 > 0, if x̄2 < (α2/β2).
To investigate the stability of all the above equilibriums we consider the characteristic equation |A−λI| = 0. For the model
(I), A = (ai j)3×3 where

a11 = (α1 − β1x1 − v1x2 − γx1x2
2) + x1(−β1 − γx2

2),
a12 = x1(−v1 − 2γx1x2), a21 = −v2x2,

a22 = (α2 − β2x2 − v2x1) + x2(−β2).

Now for E10(0, 0), characteristic equation becomes (α1 − λ)(α2 − λ) = 0 and it is always unstable.
For E11(α1/β1, 0), characteristic equation becomes (λ + α1)(λ − α2 + α1v2/β1) = 0.
Hence, E11(α1/β1, 0) is asymptotically stable if (α2β1 − α1v2) < 0 and is unstable if (α2β1 − α1v2) > 0.
Similarly, E12(0, α2/β2) is asymptotically stable if (α1β2 − α2v1) < 0 and is unstable if (α1β2 − α2v1) > 0.
Now for the interior equilibrium, characteristic equation becomes,

λ2 + Aλ + B = 0, (11)

86 www.ccsenet.org/jmr



ISSN: 1916-9795
E-ISSN: 1916-9809

Journal of Mathematics Research
Vol. 2, No. 2, May 2010

where
A = β1x∗1 + β2x∗2 + γx∗1(x∗2)2, (12)

B = {(β1β2 − v1v2) + (β2x∗2 − 2v2x∗1)γx∗2}x∗1x∗2. (13)

Therefore (x∗1, x
∗
2) is stable node if B > 0,

i.e., if (β2/v2) > {(v1 + 2γx∗1x∗2)/(β1 + γx∗2
2 )}. (14)

For the model (II), E20(0, 0) is always unstable. E21((α1 + qu)/β1, 0) is asymptotically stable if {α2β1 − (α1 + qu)v2} < 0
and is unstable if {α2β1 − (α1 + qu)v2} > 0.

Also, (x̄1, x̄2)is asymptotically stable if (β2/v2) > {(v1 + 2γx̄1 x̄2)/(β1 + γx̄2
2)}. (15)

So, we reach the Theorem 3.1.

Theorem 3.1. (i) The trivial equilibrium (0,0) is always unstable for both the model (I) and (II).

(ii) The common equilibrium (0, α2/β2) of the model (I) and (II) is asymptotically stable for (α2/α1) > (β2/v1).

(iii) The equilibrium point (α1/β1, 0) of the model (I) is asymptotically stable if (α2/α1) < (v2/β1) and ((α1 + qu)/β1, 0)
of the model (II) is asymptotically stable if {α2/(α1 + qu)} < v2/β1.

(iv) The interior equilibrium (x∗1, x
∗
2) of the model (I) is asymptotically stable if (β2/v2) > {(v1 + 2γx∗1x∗2)/(β1 + γx∗2

2 )} and
same for the model (II) is asymptotically stable if (β2/v2) > {(v1 + 2γx̄1 x̄2)/(β1 + γx̄2

2)}.
Again if vt = {u : 0 < u < umax} denote the control set, then umax = {α2β1 −α1v2)/v2q}. From (3) and (4) we see that,there
exists a unique positive equilibrium (x∗1, x

∗
2) of the

model (I) if (α2/α1) > (v2/β1), G2 + 4H3 > 0, and x∗2 < (α2/β2), (16)

where G = a2
0a3 − 3a0a1a2 + 2a3

1,H = a0a2 − a2
1, (17)

a0 = γβ2, a1 = −(γα2)/3, a2 = (β1β2 − v1v2)/3 & a3 = (α1v2 − α2β1). (18)

Similarly, from (8) and (9), we see that there exists unique positive equilibrium (x̄1, x̄2)

for the model (II) if, (α2/(α1 + qu)) > (v2/β1), G2
1 + 4H3

1 > 0, and x̄2 < (α2/β2), (19)

where, G1 = (a′
0)2 a′

3 − 3a′
0a′

1a′
2 + 2(a′

1)3, H1 = a′
0a′

2 − (a′
1)2, (20)

a′
0 = a0 = γβ2, a

′
1 = a1 = −(γα2)/3, a′

2 = a2 = (β1β2 − v1v2)/3, and a′
3 = (α1 + qu) v2 − α2β1. (21)

To establish the non-existence of periodic orbit encircling (x∗1, x
∗
2) of model (I) and (x̄1, x̄2) of model (II), we use Bendixon-

Dulac criterion. Now the model (I) can be written as

dx1

dt
= f1(x1, x2),

dx2

dt
= f2(x1, x2), where f1(x1, x2) = x1[α1 − β1x1 − v1x2 − γx1x2

2],

f2(x1, x2) = x2[α2 − β2x2 − v2x1]. we consider Dulac function D(x1, x2) = 1/(x1x2). Obviously,
D(x1, x2) > 0 for all x1, x2 > 0.

Then,
∂

∂x1
(D f1) +

∂

∂x2
(D f2) = {(−β1 − γx2

2)/x2} + (−β2/x1) < 0, for all x1, x2 > 0, since all other parameters are strictly

positive.

For model (II), let
dx1

dt
= F1(x1, x2),

dx2

dt
= F2(x1, x2),

where F1(x1, x2) = x1{(α1 + qu) − β1x1 − v1x2 − γx1x2
2},

F2(x1, x2) = x2{α2 − β2x2 − v2x1}.

Then,
∂

∂x1
(DF1) +

∂

∂x2
(DF2) = {(−β1 − γx2

2)/x2} + (−β2/x1) < 0.

Therefore, there exists no limit cycle for the model (I) and (II). So, we reach the theorem 3.2.

Theorem 3.2 Whenever the conditions (16) to (21) hold, both the interior equilibrium of the model (I) and (II) are globally
stable.
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4. Bionomic Aspect of the Model

Let π be the profit function defined by π = (pqx1 − c0) u(t), where p is the market value per unit biomass of x1, c0 is
the cost per unit amount of fertilizer. Then bionomic equilibrium (x1∞, x2∞) of the model (II) is defined as the point of
intersection of ẋ1 = 0, ẋ2 = 0 and π = 0 provided the corresponding u ∈ vt.

Now, π = 0 =⇒ x1 =
c0

pq
> 0, (22)

x2 =
α2 − v2x1

β2
=
α2 pq − c0v2

β2 pq
, (23)

u =
1
q

[
c0β1

pq
+
α2 pq − c0v2

β2 pq

{
v1 +

c0γ

pq

(
α2 pq − c0v2

β2 pq

)}
− α1

]
.

So, x1∞ =
c0

pq
, x2∞ =

α2 pq − c0v2

β2 pq
and

u∞ =
1
q

[
c0β1

pq
+
α2 pq − c0v2

β2 pq

{
v1 +

c0γ

pq

(
α2 pq − c0v2

β2 pq

)}
− α1

]
.

Now x2∞ > 0 provided c0 <
α2 pq

v2
. Thus the system has a bionomic equilibrium.

Theorem 4.1 Let us consider the model (II) with the restrictions given by (10) and (15). Let the objective function be

J =

∫ T

0
π(x1, u, t)dt, where π = (x1, u, t) = (pqx1 − c0)u(t) and T is the total time of application of the fertilizer u(t). Our

goal is to maximize J over u(t), u(t) ∈ vt.

The optimal biomass (x1, x2) are determined by the point of intersection of
(pqx1 − c0)[(β1β2 − v1v2)+γx2(β2x2 −2v2x1)]+ pq2β2u = 0, α2 −β2x2 − v2x1 = 0 and (α1+qu)−β1x1 − v1x2 −γx1x2

2 = 0.
In that case corresponding u = u∗ is the optimal value of u.

Proof : Let P(x1, x2) = α1x1 − β1x2
1 − v1x1x2 − γx2

1x2
2,

Q(x1, x2) = α2x2 − β2x2
2 − v2x1x2. Then the Hamiltonian corresponding to (II) is given by H = (pqx1 − c0) u(t) +

λ1(t)[P(x1, x2) + qux1] + λ2(t)Q(x1, x2), where λ1(t) and λ2(t) are adjoint variables.

Now the adjoint equations for λ1(t) and λ2(t) are

dλ1

dt
= − ∂H
∂x1
= −pqu(t) − λ1(t)[Px1 (x1, x2) + qu] − λ2(t)[Qx1 (x1, x2)]

= −pqu(t) − λ1(t)[−β1x1 − γx1x2
2] + λ2(t)v2x2 (24)

dλ2

dt
= − ∂H
∂x2
= −λ1(t)[−v1x1 − 2γx2

1x2] − λ2(t)[−β2x2]. (25)

Here we use the steady state solution as we are concerned with optimal equilibrium and we consider x1 & x2 as constant
in the subsequent steps.

So, at the optimal point
dλ1

dt
= 0 =

dλ2

dt
imply

λ1(t)(β1x1 + γx2
1x2) + λ2(t)v2x2 = pqu, (26)

λ1(t)(v1x1 + 2γx2
1x2) + λ2(t)β2x2 = 0. (27)

Therefore we get λ1(t) =
pqβ1x2u

[(β1β2 − v1v2) + γx2(β2x2 − 2v2x1)] x1x2
. (28)

Let us now assume that H is maximum for u∗ ∈ vt i.e.
∂H

∂u

∣∣∣∣∣
u=u∗
= 0.

Then (pqx1 − c0) + λ1(t)qx1 = 0

or, (pqx1 − c0)[(β1β2 − v1v2) + γx2(β2x2 − 2v2x1)] + pq2 β2u = 0 (29)
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which represents the optimal path.

Optimal biomass (x1, x2) are determined by the point of intersection of (29), α2 − β2x2 − v2x1 = 0, and (α1 + qu) −
β2x1v1x2 − γx1x2

2 = 0, corresponding value of u is the optimal value of u.

5. Numerical Simulation & Discussion

It we choose the values of parameters as α1 = 9, β1 = 0.4, α2 = 10, β2 = 0.2, v1 = 0.01, v2 = 0.02, γ = 0.002 and
q = 1, we find that u = 58.50314, umax = 191.

Here α2/α1 = 1.111, v2/β1 = 0.05, therefore (α2/α1) > (v2/β1).

Now, a′
0 = γβ2 = 0.0004, a′

1 = −(γα2)/3 = −0.0067, a′
2 = (β1β2 − v1v2)/3 = 0.0266, a′

3 = (α1v2 −α2β1)+ quv2 = −2.65.

Now H1 = a′
0a′

2 − (a′
1)2 = −0.3380444 × (10)−4, G1 = −0.8037825 × (10)−6, G2

1 + 4H3
1 = 0.4915476 × (10)−12 > 0.

Since,G2
1+4H3

1 > 0 there exists a pair of complex roots of the equation (9). Again α2/(α1+qu) = 0.1481413, v2/β1 = 0.05.
So α2/(α1 + qu) > v2/β1 and hence (9) has at least one positive root. Combining the above two results we can claim that
(9) has a unique positive root. Also for the above choice of parameters x̄2 = 48.69689 < α2/β2. So, for the above choice
of parameters, there exists a unique positive equilibrium of the model (II) (see figure 1).

Since there exists no limit cycle and the positive equilibrium is unique it will be globally stable (see figures 2 & 3).

For bionomic equilibrium we have the above set of parameters as it is with p=3.5 and c0 = 75. Then we get the bionomic
equilibrium point (x1∞, x2∞), where x1∞ = 21.42857 and x2∞ = 47.85714 with u∗ = 98.20598 < umax(191). Here we see
that existence condition for the bionomic equilibrium point holds, since c0 <

α2 pq

v2
(see figure 4).

To get the optimal equilibrium point we solve the equations

10 − 0.2x2 − 0.02x1 = 0,

59.0799 − 0.4x1 − 0.01x2 − 0.002x1x2
2 = 0,

and (3.5x1 − 75)[0.0798 + 0.002x2(0.2x2)(0.4x1)] + 35.05593 = 0.

We get the optimal equilibrium point (x1, x2), where x1 = 11.31945, x2 = 48.86805, and the corresponding u∗ = 50.0799,
which is the optimal value of u (see figure 5).

Now, if we choose the set of parameters as follows, α1 = 9, α2 = 10, β1 = 0.4, β2 = 0.2, v1 = 0.01, v2 = 0.07, p = 1, q =
1, c0 = 25, we get the optimal point (12.33669, 45.68216) and the corresponding optimal value of u is 47.8821, which is
less than the maximum value of u(umax = 48.14286).

From (5.5), we get the value of adjoint variable λ1(t) = 1.0026455. Next we draw the bang-bang diagram (see figure 6).

It is observed that optimal paths always take less time than suboptimal path to reach the optimal steady state.
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