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Abstract

We consider the family of polynomials xn + a1xn−1 + a2xn−2 + · · · + an, ai ∈ R, and its hyperbolicity domain Πn,

i.e. the set of values of the coefficients ai for which the polynomial is with real roots only. We prove that for

0 ≤ k ≤ n − 2 there exist generic straight lines in Rn � Oa1 . . . an intersecting Πn along k segments and two

half-lines.
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1. Introduction

1.1 The Hyperbolicity Domain

A real non-constant polynomial in one variable is (strictly) hyperbolic if it has only real (and distinct) roots.

Consider the general family of monic real degree n polynomials

P(x, a) := xn + a1xn−1 + a2xn−2 + · · · + an.

Its hyperbolicity domain Πn ⊂ Rn � Oa1 . . . an is the set of values of the coefficients ai for which the polynomial

is hyperbolic. In what follows we allow a slight abuse of terminology by identifying the points of the domain Πn

with the corresponding hyperbolic polynomials. We set

Πn,0 := Πn ∩ {a1 = 0} ⊂ Rn−1 � Oa2 . . . an and Π∗n := Πn,0 ∩ {a2 = −1}.
The set Πn,0 is of interest to us because a polynomial P can be transformed by the shift x �→ x− a1/n into one with

a1 = 0. The sets Πn and Πn,0 are invariant under the one-parameter groups of quasi-homogeneous dilatations

x �→ eτx, a j �→ e jτa j, τ ∈ R. (1)

Therefore a hyperbolic polynomial P with a1 = 0, a2 � 0 can be transformed into one with a1 = 0, a2 = −1 (If

a1 = 0 and a2 � 0, then a2 < 0 because a2 = −(x2
1 + · · · + x2

n)/2, where xi are the roots of P. The only hyperbolic

polynomial with a1 = a2 = 0 is xn).

Definition 1 We use only the letters x and y to denote independent variables. We denote by Δ[P] the discriminant
of the family of polynomials P, i.e. the set of values of the coefficients ai for which P has a multiple root in x. A

similar notation is used for the discriminants of all other polynomial families used in the paper. The discriminant

Δ[P] is defined as the zero set of a polynomial in the coefficients ai. It can be considered in the context of real or

of complex coefficients.

In the present paper we are interested in pencils of real monic polynomials of the form tQ + (1 − t)R, t ∈ R,

degQ =degR = n. We consider the question how many times can such a pencil intersect the hyperbolicity domain.

A classical result (see Obrechkoff, 1963/2003) says that all polynomials of the pencil are strictly hyperbolic if and

only if both Q and R are strictly hyperbolic and their roots interlace.

Remark 2 (1) The discriminant Δ[P] is defined as the set of zeros of the determinant D of the Sylvester matrix

S (P, P′) of the polynomials P and P′. The matrix is of size (2n − 1) × (2n − 1). Suppose that all coefficients ai are

affine functions μi s+νi of a (real or complex) parameter s. The first column of S (P, P′) does not depend on s while
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in any of its other columns there are at least two entries which are affine functions of s. Therefore it is to be expected

that typically degD = 2n − 2. One can show that the coefficient of s2n−2 in D is a non-trivial homogeneous degree

2n − 2 polynomial in the coefficients μi. Therefore a generic straight line intersects Δ[P] at 2n − 2 points. In the

case when all coefficients are real part (or none or all) of the points are real, the remaining ones form complex

pairs. In the context of Πn,0 (i. e. if one sets a1 = 0) one has degD = 2n − 3 (because two columns of S (P, P′) are

independent of s). In the same way for a1 = 0, a2 = −1 (i.e. in the context of Π∗n) one has degD = 2n − 4. Hence

in these cases a generic line intersects Δ[P] at 2n − 3 and 2n − 4 points respectively.

(2) For more details about the hyperbolicity domain see, for example, Kostov (1989, 2011), Méguerditchian

(1991a, 1991b, 1992). An impetus to study its properties was given by the articles (Arnold, 1986) and (Givental,

1987). Two particular classes of hyperbolic polynomials and the corresponding domains are studied in Kostov

(2004, 2005a, 2005b, 2007). See also Chebotarev (1942), Meiman (1938, 1940) and Meiman and Chebotarev

(1934).

1.2 Examples

In the present subsection we show how the hyperbolicity domain looks like for small values of n. We discuss what

can be the intersection of a straight line with the hyperbolicity domain.

(1) The domains Π1 and Π1,0 are just R1 and its origin.

Figure 1. The hyperbolicity domain for n = 2 and the lines intersecting it

Figure 2. The hyperbolicity domain for n = 3, a1 = 0, and the lines intersecting it

(2) One has Π2 = {a2
1−4a2 ≥ 0}, see Figure 1. A generic straight line in R2 either belongs to the interior of Π2 (see

line III) or intersects Π2 along two half-lines (line I). A non-generic line is either tangent to the parabola a2
1 = 4a2

(line II) or is parallel to the a2-axis and hence intersects Π2 along a half-line (line IV). The domain Π2,0 is the

half-line {a2 ≤ 0} ⊂ R1 � Oa2.
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(3) The domain Π3,0 is the part of R2 delimited by the semi-cubic parabola 4a3
2
+ 27a2

3 = 0 and containing the

half-line a2 ≤ 0, see Figure 2. Any generic line is neither vertical nor horizontal hence intersects it along a half-

line or a half-line and a segment, see lines 1 and 3 on Figure 2. Within the class of non-generic lines there is the

subclass of “least non-generic” ones. It consists of the vertical lines intersecting the domain along segments (line

5), the vertical lines not intersecting it at all (line 6), the horizontal lines not passing through the origin (line 4, they

intersect the domain along half-lines), the non-horizontal lines passing through the origin (line 7, they intersect the

domain along a half-line and at the origin) and the lines tangent to the semi-cubic parabola, but not at the origin

(line 2). Finally there are the “most non-generic” lines–the two coordinate axes.

Figure 3. The hyperbolicity domain for n = 4, a1 = 0, and the lines intersecting it

(4) The domain Π4,0 is shown on the left of Figure 3. This is the curvilinear pyramid OABC having a transversal

self-intersection along the open arc CO and semi-cubic singularities in the transversal cross-sections at the interior

points of the open arcs AO and BO. The concavity of the faces of the pyramid is as shown on Figure 3. The

intersection of Π4,0 with the coordinate plane Oa2a3 is the closure of the domain in Oa2a3 delimited by the semi-

cubic parabola MON and containing the negative a2-half-axis (i.e. OP).

The right part of Figure 3 shows the Oa2a3-plane and the semi-cubic parabola MON. A straight line S T belonging

to the Oa2a3-plane and as shown on Figure 3 intersects Π4,0 along a segment and a half-line. The segment contains

inside itself a point at which the line S T is tangent to the border of Π4,0; this point is in fact S T ∩ OP. Hence

when the line S T is shifted slightly while remaining parallel to itself so that the a2- and a3-coordinates of its points

remain the same while the a4-coordinate decreases, the intersection S T ∩ Π4,0 will consist of two segments and a

half-line.

We are not giving the complete description of the possible cases of intersection of a line with Π4,0. However we

prove the following proposition:

Proposition 3 Any straight line not intersecting Π4,0 either belongs to a plane {a2 = const} or its intersection with
the half-space {a2 ≤ 0} belongs to the set {a2 ≤ 0, a3 = 0, a4 < 0}.
Remark 4 Suppose that a straight line belongs to a plane {a2 = r}. If r > 0, then any such straight line does not

intersect Π4,0 because Π4,0 ⊂ {a2 ≤ 0}. If r ≤ 0, then the line does not intersect Π4,0 exactly when it avoids the

compact set Π4,0 ∩ {a2 = r}. This set is obtained from Π∗4 by a linear transformation, see formula (1). Hence it is

necessary and sufficient for the line to avoid the (rectilinear) triangle ABC, see Figure 3.

Proof of Proposition 3. If a line does not belong to a plane {a2 = const}, then it can be parametrized as follows:

a2 = −s, a3 = αs + β, a4 = γs + δ, s ∈ R. (2)

If γ > 0 or γ = 0 < δ, then the absolute values of the a3- and a4-coordinates of a point of the line increase at most

linearly in s. Consider a half-disk {a2 = −1, a2
3 + a2

4 ≤ ε, a4 ≥ 0 }, where ε > 0 is so small that the half-disk

belongs to Π∗4. Consider the image of the half-disk under the one-parameter group of diffeomorphisms defined by

formula (1). This image belongs to Π4,0. Set s = et. Then the a3- and a4-coordinates of the image of each point

of the interior of the half-disk increase respectively as s3/2 and s2. Hence for s sufficiently large the image of the

half-disk contains the point of the straight line.

For γ = δ = 0 and α � 0 or α = 0 � β the reasoning is much the same. For s large enough the point of the line
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belongs to the border of the image of the half-disk, but is not at its centre (i.e. not on the a2-axis), hence the point

belongs to the interior of Π4,0.

Suppose that γ < 0, α � 0 or γ = 0 > δ, α � 0. The set Π∗4 contains a domain of the form { a2 = −1, |a3| ≤ ε,
0 ≥ a4 ≥ −ga2

3 } for some ε > 0 and g > 0. Indeed, the arc APB has an ordinary tangency with the line MN (see

Kostov, 2011). The image of this domain under the one-parameter group of diffeomorphisms (1) is the domain

{a2 = −s, |a3| ≤ εs3/2, 0 ≥ a4 ≥ −sga2
3 }. For s > 0 sufficiently large this domain contains the corresponding point

of the straight line, see (2).

For γ < 0, α = 0 � β or γ = 0 > δ, α = 0 � β the point of the line belongs to the border of the image of the

domain, but is not on the a2-axis, hence the point belongs to the interior of Π4,0.

Hence the line might not intersect Π4,0 only for α = β = 0, i.e. when the straight line belongs to the Oa2a4-plane.

The line must not intersect the set {a2 ≤ 0, a3 = 0, a4 ≥ 0}. Indeed, in this case it will intersect Π4,0 because it will

either intersect OP (the negative a2-half-axis) or the arc OC (the a4-coordinate of a point of the arc OC increases

as s2 while the a4-coordinate of the point of the line increases at most linearly in s). Hence the intersection of the

line with the half-space {a2 ≤ 0} belongs to the set {a2 ≤ 0, a3 = 0, a4 < 0}. �
1.3 The Basic Result

The main result of the paper is the following theorem:

Theorem 5 For n ≥ 3 the following statements hold true:

(1) For a1 = 0 a generic straight line in Rn−1 � Oa2 . . . an intersects Πn,0 along k segments and a half-line, where
0 ≤ k ≤ n − 2, and for any such k there exists such a generic straight line.

(2) For 0 ≤ k ≤ n− 2 there exist generic straight lines in Rn � Oa1 . . . an intersecting Πn along k segments and two
half-lines.

To prove or disprove the following conjecture would also be of interest:

Conjecture 6 Any straight line in Rn which is not parallel to any of the coordinate hyperplanes intersects the
interior of Πn.

2. Proof of Theorem 5

For n = 3 part (1) of the theorem can be checked directly, see part (3) of Subsection 1.2.

We prove part (1) by induction on n. Suppose that it is proved for n − 1 and that n ≥ 4. The domain Π∗n is

compact (as x2
1+ · · ·+ x2

n = 2, all roots xk and all coefficients ai are bounded). This domain contains the polynomial

U := (x − b)n−1(x + (n − 1)b), b =
√

2/n(n − 1).

In a neighbourhood of the point U ∈ Rn (respectively U ∈ Rn−1) one can present any polynomial in the form

(x − u)G(x, λ) (respectively (x − λ1)G), where G(x, λ) := xn−1 + λ1xn−2 + · · · + λn−1 and u and λ1 are close to

−(n − 1)b.

Lemma 7 In a neighbourhood of the point U ∈ Rn (respectively U ∈ Rn−1) one can choose as local coordinates
the quantities (λ1, λ2, . . . , λn−1, u) (respectively (λ1, λ2, . . . , λn−1)).

The lemma is proved in the next section.

Set y := (x − b)/v, where v > 0 is a parameter. Hence vn−1U = yn−1(nb + vy). To choose v > 0 small means to

magnify the local picture around the point U.

Consider the family of polynomials in y

vn−1Ũ := (nb + vy)V, where V := yn−1 + c2yn−3 + · · · + cn−1. (3)

Consider the discriminant Δ[vn−1Ũ]. Hence Δ[vn−1Ũ] can be regarded as a family of hypersurfaces in the space

Oc2 . . . cn−1 analytically depending on v.

By inductive assumption for any 0 ≤ k ≤ n − 3 there exist generic straight lines in Rn−2 � Oc2 . . . cn−1 intersecting

the hyperbolicity domain of the family of polynomials V along k segments and a half-line. Suppose that for any

such k such a generic line Lk is fixed. Genericity of the lines implies that the intersections of these lines with the

discriminant Δ[V] are transversal. Hence the intersections of these lines (when considered as relative to the family

vn−1Ũ, not V) will be transversal for v ≥ 0 small enough as well.
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For any v > 0 small enough the straight line Lk defines a straight line Mk in Oa2 . . . an. Indeed, the coefficients ai

are affine functions (depending on v as on a parameter) of the coefficients ci. One can introduce a parameter w ∈ R
and express the coordinates of a point of the line Lk in the form ci = pi,kw + qi,k, pi,k, qi,k ∈ R, i = 1, . . ., n − 1.

Thus the coordinates of a point of the line Mk can also be expressed by affine functions (depending on v) of w.

The lines Lk and the coordinates ci can be considered also as complex ones. Hence each line Lk intersects transver-

sally the complex discriminant Δ[V] at 2n − 5 complex points out of which 2k + 1 are real. Genericity implies that

all these points are finite.

Fix v small enough. The line Mk intersects the domain Π∗n along k segments whose endpoints are close to the point

U and along another segment only one of whose endpoints is close to U. It is true that the line Lk intersects the

hyperbolicity domain of the family of polynomials V along a half-line, but the presentation of a polynomial in the

form (x − u)G(x, λ) (respectively (x − λ1)G) is defined only locally, in a neighbourhood of the point U. It implies

the existence of the endpoints of the k segments and of the half-line as intersection points of the line Lk with the

discriminant Δ[V]. However the line Mk a priori intersects the compact domain Π∗n only along segments and/or

points, not along a half-line. Hence its intersection with Π∗n consists of k + 1 segments.

The line Mk belongs to a hyperplane {a2 = const}. It has 2n − 4 intersection points with Δ[V] out of which 2n − 5

are close to the point U and 2k + 2 are real. Perturb the position of Mk so that it no longer belongs to a hyperplane

of the form {a2 = const}. Such a generic perturbation introduces a single “distant” point which is real (otherwise it

would be a complex conjugate pair). This point is the endpoint of a half-line of the intersection of Mk with Πn,0.

To finish the proof of the induction step for part (1) one should prove that there exist generic lines intersecting Πn,0

along half-lines and no segments. Consider a monic strictly hyperbolic polynomial P with roots x1 < x2 < · · · < xn.

Consider a polynomial Q := (x − z1) · · · (x − zn−2), where xi < zi < xi+1, i = 1, . . ., n − 2. The interlacing of the

roots implies that for any t ∈ R the polynomial S t := P + tQ has at least n − 2 real roots ξi such that any interval

(xi, xi+1) and any interval (zi, zi+1), i = 1, . . ., n − 3 contains exactly one of the roots ξi.

There exists t0 such that the rightmost root of the polynomial S t0 is a double one. For t > t0, S t has a complex

conjugate pair of roots. Indeed, as S t = S t0 + (t − t0)Q and as Q > 0 for x > zn−2, the polynomial S t is positive for

x > zn−2. On the other hand it has at most n − 1 and at least n − 2 roots that are distinct and ≤ zn−2. For any t ∈ R
the polynomial S t is of degree n. Hence for t > t0 the polynomial S t has exactly n − 2 real distinct roots.

For t < t0 a similar reasoning shows that S t has two distinct real roots that are > zn−2. As S t has at least n−3 distinct

real roots that are < zn−2, it has at least n − 1 distinct real roots. Hence it has n real roots (because degS t = n).

Its roots that are not greater than zn−2 are distinct hence all its roots are distinct. This means that the straight line

defined by the family of polynomials S t has the Property (A): it has a double root only for t = t0, it has n distinct

real roots for t < t0 and exactly n − 2 distinct real roots for t > t0.

The roots zi are required only to interlace with the roots x1, . . ., xn−2. Hence any nearby line defines a family S t

which satisfies the Property (A) for some t∗ close to t0. This means that the straight line defined by the family S t is

generic. This line belongs to Oa2 . . . an because the coefficients of xn−1 are 0 in P and in Q.

Part (2) of the theorem follows from part (1). Indeed, suppose that a generic line Mk ⊂ Πn,0 as above is constructed

(−1 ≤ k ≤ n − 3). Perturb this line so that it no longer belongs to a hyperplane of the form {a1 = const}. Such a

generic perturbation introduces a single “distant” point which (not being a complex conjugate pair) is real. This

point is the endpoint of a half-line of the intersection of Mk with Πn. �
3. Proof of Lemma 7

The following formulas connect the quantities ai with the quantities u and λi:

a1 = λ1 − u, a2 = λ2 − uλ1, . . . an−1 = λn−1 − uλn−2, an = −uλn−1. (4)

Hence the Jacobian matrix of this change of variables equals

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 · · · 0 0

−λ1 −u 1 · · · 0 0

−λ2 0 −u · · · 0 0
...

...
...
. . .

...
...

−λn−2 0 0 · · · −u 1

−λn−1 0 0 · · · 0 −u

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

5



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 6, No. 3; 2014

To find its determinant add the first row multiplied by u to the second one, then the second row multiplied by u to

the third one, . . . then the (n − 1)-st row multiplied by u to the n-th one. The matrix becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 · · · 0 0

−λ1 − u 0 1 · · · 0 0

−λ2 − λ1u − u2 0 0 · · · 0 0
...
...
...
. . .

...
...

−λn−2 − λn−3u − · · · − λ1un−3 − un−2 0 0 · · · 0 1

−λn−1 − λn−2u − λn−3u2 − · · · − λ1un−2 − un−1 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Its entry in position (n, 1) equals −G(u, λ), so its determinant is (−1)n+1G(u, λ). The root u is not close to b,

therefore G(u, λ) � 0.

When one sets u = λ1, then formulas (4) become

a2 = λ2 − λ2
1, a3 = λ3 − λ1λ2, . . . an−1 = λn−1 − λ1λn−2, an = −λ1λn−1.

The Jacobian matrix equals
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2λ1 1 0 · · · 0 0

−λ2 −λ1 1 · · · 0 0

−λ3 0 −λ1 · · · 0 0
...

...
...
. . .

...
...

−λn−2 0 0 · · · −λ1 1

−λn−1 0 0 · · · 0 −λ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Add the kth row multiplied by λ1 to the (k + 1)-st one for k = 1, 2, . . . n − 2. This makes disappear all terms −λ1

on the diagonal, the entry in position (n, 1) becomes −G(λ1, λ) � 0 (because λ1 is close to −(n − 1)b, not to b); the

determinant equals ±G(λ1, λ). �
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