
Vol. 1, No. 2 ISSN: 1916-9795

Formulation of Matrix Pade Approximation

in Rectangular Full Packed Storage

M. Kaliyappan (Corresponding author)

Maha college of engineering

Salem 636 106, India

E-mail: kaliprem@yahoo.co.in

S. Ponnusamy

Sona college of technology

Salem 636 005, India

E-mail: ponsam@yahoo.com

S. Sundar

Indian Institute of technology

Madras 600 036, India

E-mail: slnt@iitm.ac.in

Abstract

The Extended Euclidean algorithm for matrix Pade approximants is applied to compute matrix Pade approximants in rect-

angular full packed format (RFP) if the coefficient matrices of the input matrix polynomial are triangular. The procedure

given by Gustavson et al for packing a triangular matrix in rectangular full packed format is applied to pack sequence

of lower triangular matrices of a matrix polynomial in Rectangular Full Packed format. This RFP format of a matrix

polynomial is applied to compute matrix Pade approximants of the matrix polynomial using Matrix Pade Extended Eu-

clidean Algorithm. Algorithms for the multiplication of two triangular matrices and inverse of a triangular matrix in RFP

format are also presented. The CPU time and memory comparison in computing the matrix Pade approximants of a matrix

polynomial between RFP format case and non packed case are elucidated in detail.

Keywords: Matrix pade approximants, Rectangular Full Packed format

1. Introduction

Pade approximants have been the subject of much recent interest in many fields of applications (Baker, G.A. Jr., 1975).

Some of the applications of this efficient technique is summation of infinite series, solution of integral equations, nu-

merical inversion of Laplace transforms etc. Work on Pade or Pade-type approximants ultimately involves the explicit

determination of the polynomials forming the numerator and denominator of rational functions can be found in (Gragg,

W.B., 1972; Baker, G.A. Jr.,1975; Robert J. McEliece, James B. Shearer, 1978; Baker, G.A. Jr. and Graves - Morris,

P.R.,1981). There exists in literature the use of extended Euclidean algorithm for matrix Pade approximants. Several

researchers have worked on the problem of finding simple algorithm for computing matrix Pade approximants from a

formal power series of matrix coefficients (Rissanen, J., 1972 ;Bultheel, A.,1980; Achuthan, P. and Sundar, S., 1988). So

it is natural for us to apply these techniques for computing matrix Pade approximants in a special case where the matrices

are of very large order lower triangular type. For the sake of completeness, the definition of matrix Pade approximants is

presented in Section 2. Section 3 deals with the procedure for a lower triangular matrix in rectangular full packed format

and packing of a sequence of lower triangular matrices in rectangular full packed format. Section 4 deals with the lower

triangular inverse in rectangular full packed format. The multiplication of two lower triangular matrices in rectangular

full packed format is presented in Section 5. Section 6 is concerned with the algorithm for computing matrix Pade ap-

proximants in rectangular full packed format. Section 7 brings out CPU time and memory comparison in computing the

184 � www.ccsenet.org

Journal of Mathematics Research September, 2009

matrix Pade approximants. The subroutines used in C language are presented in Section 8. The system configuration is

given in appendix. The work presented in this paper is an advanced one that of presented in (Achuthan, P. and Sundar,

S.,1988 , P. 287-296).

Throughout this paper the following symbols are used :

[f (x)] → f (x) is the polynomial in which the coefficients are square matrices of the same order n;

In → Identity matrix of order n;

∅n → Null matrix of order n;

[RFP−g(x)] → g (x) is the polynomial in which the coefficients are triangular matrices of the same order n and each

coefficient matrices are in rectangular full packed format and also all the rectangular full packed matrices are packed

according to their degree.

2. The matrix Pade approximants

The [M/N] matrix Pade approximant of a formal power series

[S (x)] =

∞∑
i=0

(sn)i x
i (1)

where (sn)i ’s are coefficients of the power series which are square matrices of the same order n, is defined as the rational

function [PM(x)]/[QN(x)] such that

[S (x)] = [PM (x)]/QN (x)] + O
(
xM+N+1

)
. (2)

The numerator and denominator of this matrix Pade approximant are

[PM(x)] =

M∑
i=0

(pn)i x
i (3)

and

[QN(x)] =

N∑
i=0

(qn)i x
i, [QN(0)] = In (4)

where [PM(x)] and [QN(x)] are polynomials of degree M and N at most respectively. [PM(x)]/[QN(x)] is called the normal

matrix Pade approximant of order (M,N) and is symbolically denoted by (M/N)[S](x). We may define two types of Pade

approximants, since the (sn)i ’s need no longer commute, by the equations

[S (x)] − [PM(x)] [QN(x)]−1 = O
(
xM+N+1

)
(5)

or

[S (x)] − [QN(x)]−1 [PM(x)] = O
(
xM+N+1

)
(by equation (2)). (6)

However we can show that these two Pade approximants are actually identical.

For different chosen values of M(≥ 0) and N(≥ 0) we can construct the Pade table in which the distinct approximants of

the function [S (x)] would be the elements. There arise mainly two problems: one is the coefficient problem, in which it is

required to find the numerator and denominator coefficient matrices, (pn)i and (qn)i, of equations (3) and (4) for the input

(sn)i of equation (1); the other is the value problem, which is to determine the value of the desired approximant for an

explicit input chosen for x. The algorithm to find matrix Pade approximants by using Extended Euclidean algorithm was

given in (Achuthan, P. and Sundar, S.,1988 , P. 287-296).

3. Lower triangular matrix in rectangular full packed format

Symmetric or triangular matrix may be stored in rectangular full packed format. The advantage of storing symmetric or

triangular matrix in Rectangular full packed format is explained in (Gustavson, G. and Jerzy Wasniewsky., 2007, P. 570

- 579). We presented here the method for storing a triangular matrix in Rectangular full packed format. Break the lower

triangular matrix A into A11, A21 and A22 as three sub matrices as shown in figure 1.

When n is even , the lower triangular sub matrix of A11 and the upper triangular sub matrix of AT
22 can be concatenated

along their main diagonals into a (k+1)×k dense matrix. Then the square sub matrix A21 of order k×k is appended below

the dense matrix (k+1)× k , where k = !n/2". Thus the lower triangular matrix A can be stored as a (n+1)× k rectangular

matrix. When n is odd, the lower triangular sub matrix A11 is concatenated with the upper triangular matrix AT
22 along

their main diagonals into a k × k dense matrix. Then the rectangular sub matrix A21 of order (k − 1) × k is appended below

the k × k dense matrix. Thus A is stored as a n × k rectangular matrix. The above procedure is presented in figure 2.

� www.ccsenet.org/jmr 185

Vol. 1, No. 2 ISSN: 1916-9795

3.1 Packing of the coefficient matrices of the matrix polynomial [S (x)].

As in Section 3 a triangular matrix of order n can be stored as a (n + 1) × k rectangular matrix if ’n’ is even and n × k
rectangular matrix if ’n’ is odd in rectangular full packed format. If coefficient matrices of a matrix polynomial [S (x)] are

triangular then each coefficient matrices of [S (x)] packed as Rectangular full packed format one by one according to their

degree. Thus obtained Rectangular full packed matrices are sequentially packed according to the degree of the matrix

polynomial [S (x)] as shown in figure 3. Now the resulting matrix is also rectangular. If the number of coefficient matrices

of [S (x)] is m, the resulting rectangular matrix must be of order (n + 1) × (mk), if n is even and n × (mk) if n is odd.

4. Triangular inverse in rectangular full packed format

There are many algorithms in literature to find the inverse of a lower triangular matrix. Let the inverse of lower triangular

matrix A be D. Since A and D are in 2− by −2 blocking as shown in figure 4, from the identity AD = DA = I, we

get three block equations A11D11 = I, A21D11 + A22D21 = 0, A22D22 = I. The above three block equations implies that

D11 = A−1
11 ,D22 = A−1

22 ,D21 = −D22A21D11 . We find inverse of A11, AT
22 using the algorithm given below separately and

developed an algorithm to compute the inverse of A in rectangular full packed format. Algorithm to find inverse of a lower
triangular matrix in RFP form
Name of the Algorithm: RFPTI (Rectangular Full Packed Triangular Inverse)
INPUT:Lower triangular matrix A in Rectangular full packed format.

OUT PUT: Inverse of lower triangular matrix A in Rectangular full packed format.
1 D11 ← In(A11) % find inverse of A11.
2 DT

22 ← In(AT
22) % find inverse of AT

22 (since A22 is AT
22 in RFP format)

3 D21 ← mul(A21,D11) % multiplication of A21 and D11

4 D21 ← (−1)mul(D22,D21) % multiplication of D22 and D21.

To find the inverse of matrix A11 of order k, we used the following algorithm in (Jeremy J Du Croz and Nicholas, Higham,

J., 1992, P. 1- 19) which computes the inverse of A11, column by column in the reverse order. Let the inverse of A11 be X.

Algorithm to find inverse of A11

INPUT:Lower triangular matrix A11 of order k.

OUT PUT: Inverse of lower triangular matrix A11 of order k.
for j = k : −1 : 1

x j j =
1

a j j

X(j + 1 : k, j) = X(j + 1 : k, j + 1 : k)A11(j + 1 : k, j)
X(j + 1 : k, j) = −x j jX(j + 1 : k, j)

end

In order to find the inverse of AT
22 , the above algorithm modified to compute row by row in the reverse order.

5. Multiplications of two triangular matrixes in rectangular full packed format

As the lower triangular matrix A and B are in 2− by −2 block form as shown in figure 5, from C = AB, we obtain three

block equations C11 = A11B11,C21 = A21B11 + A22B21,C22 = A22B22 .

Using the three block equations we presented an algorithm which multiplies A and B and returns the resulting matrix C in

rectangular full packed format.

Name of the algorithm: RFPTRTRM (Rectangular Full Packed Triangular matrix and Triangular matrix Multi-
plication)
INPUT:Two lower triangular matrices A and B in Rectangular full packed format.

OUT PUT: Matrix C in Rectangular full packed format
1 C11 ←LTLTM(A11, B11) % multiplication of the lower triangular matrices A11 and B11

2 CT
22 ←UTUTM

(
BT

22, A
T
22

)
% multiplication of the upper triangular matrices BT

22 and AT
22

(since A22, B22 and C22 are AT
22, B

T
22 and CT

22 respectively in RFPF)

3 Ĉ21 ←mul(A21, B21) % multiplication of the matrices A21 and B11

4 C21 ← Ĉ21+mul(A22, B21) % multiplication of the matrices A22 and B21 and addition with Ĉ21

Note 1: LTLTM = Lower Triangular matrix Lower Triangular matrix Multiplication.

UTUTM = Upper Triangular matrix Upper Triangular matrix Multiplication

6. Algorithm for computing matrix Pade approximants in Rectangular Full Packed format

The Extended Euclidean Algorithm (EEA) is a well known algorithm, originally suggested by Aho et al (Aho, A.V.,

Hopcroft, J.E., and Ullman, J.D., 1974). An application of EEA to ordinary non-matrix Pade was presented by McEliece

and Sherarer (Robert J.McEliece, James B. Shearer., 1978, P. 611-615) and Brent et al (Brent, R.P., Gustavson,F.G., and

Yun, D.Y.Y., 1980). The extended Euclidean Algorithm to matrix Pade was presented by P.Achuthan and S.Sundar in

(Achuthan, P. and Sundar, S.,1988, P. 287-296) for square matrix coefficients.

We packed the triangular matrix coefficients of the matrix polynomials as explained in Section 3 and applied this packed

186 � www.ccsenet.org

Journal of Mathematics Research September, 2009

matrix polynomials in MAtrix Pade Extended Euclidean Algorithm(MAPEA) in (Achuthan, P. and Sundar, S.,1988, P.

287-296).This algorithm gives a sequences of anti-diagonal approximants starting from (M + N, 0) to (M,N) in the Pade

table if all the approximants exists. We presented here a new algorithm MAPEARFP (MAtrix Pade Extended Euclidean

Algorithm in Rectangular Full Packed format) to compute matrix Pade approximants if coefficient matrices of a matrix

polynomial are triangular.

Name of the algorithm: MAPEARFP (MAtrix Pade Extended Euclidean Algorithm in Rectangular Full Packed format)

INPUT: n,N,M, [S (x)], n is order of the matrix, M is Pade numerator, N is Pade denominator, [S (x)] is the Series whose

coefficients are triangular matrices.

OUT PUT: Sequence of anti - diagonal approximants starting from (M + N, 0) to (M,N) if all the approximants exists.

Function MAPEARFP ([S(x)], degree S,N,M,n)
1 Degree sum ← M + N
2 IF degree S < Degree sum THEN EXIT 1

3 [a(x)] ← In xdegree sum+1

4 [RFP S (x)]

5 [RFP a(x)]

6 [RFP b(x)] ← [RFP S (x)] mod [RFP a(x)]

7 IF N = 0 THEN EXIT 2

8 [dummy1(x)] ← ∅n

9 [RFP dummy1(x)]

10 [dummy2(x)] ← In

11 [RFP dummy2(x)]

12 count ← 0

13 found ← false

REPEAT

14 bn ←Highest degree coefficient matrix of [RFP b(x)]

15 IF (b−1
n not exists) THEN EXIT 3

16 [RFP Q(x)] ←quotient ([RFP a(x)], [RFP b(x)])

17 [RFP R(x)] ← remainder ([RFP a(x)], [RFP b(x)])

18 IF ([RFP R(x)] = ∅n) THEN (found = true)

ELSE BEGIN

19 FOR index = 2 TO degree [RFP Q(x)] DO

20 count ← count +1

21 IF count ≥ N THEN found ← true

ELSE BEGIN

22 [RFP R1(x)] ← [RFP dummy1(x)] − [RFP Q(x)] × [RFP dummy2(x)]

23 count ← count +1

24 Pade approximant ← [RFP R(x)]/[RFP R1(x)]

25 OUTPUT [Pade approximant (x)]

26 IF count < > N THEN

BEGIN

27 [RFP a(x)] ← [RFP b(x)]

28 [RFP b(x)] ← [RFP R(x)]

29 [RFP dummy 1(x)] ← [RFP dummy 2(x)]

30 [RFP dummy 2(x)] ← [RFP R1(x)]

END

END

END

31 UNTIL(count ≥ N) OR (found = true)

END (of MAPEARFP)

EXIT 1: In sufficient degree for the input matrix polynomial [S (x)], so we cannot find approximants.

EXIT 2: As the Pade denominator degree is zero , [b(x)] itself is the required Pade approximant.

EXIT 3: As the inverse of bn does not exist, Pade approximant cannot be found.

7. Calculation of CPU time and memory comparison

7.1 CPU time

We have computed the matrix Pade approximants for the Semi - normal power Series

[S (x)] = I + Ix + Ix2 + Ix4 + Ix8 + Ix16 + · · · (7)

� www.ccsenet.org/jmr 187

Vol. 1, No. 2 ISSN: 1916-9795

in (Leighton, W. and Scott,W.T., 1939) using the algorithms MAPEA in (Achuthan, P. and Sundar, S.,1988 , P.287-296)

and MAPEARFP for various matrix orders and various Pade orders when x = 1. We have considered identity matrices

in (7) as triangular matrices while using MAPEARFP algorithm.

CPU time to compute (7/7) matrix Pade approximants for the semi-normal power series (7) at x = 1 for various order of

square matrices are presented in table 1 also the CPU time to compute (7/7) matrix Pade approximants for the semi-normal

power series (7) at x = 1 for various order of triangular matrices in RFP format are presented in table 2.

While comparing the CPU time to compute matrix Pade approximants for the square matrix case using the algorithm

MAPEA and for the triangular matrix case using the algorithm MAPEARFP, it is clear that MAPEARFP algorithm is

very fast while using higher order triangular matrix coefficients of the matrix polynomial.

7.2 Memory comparison

The memory needed to store a matrix polynomial is depends on its matrix coefficients and degree. Hence the memory

needed to store a matrix polynomial is (Number of coefficients matrices of the polynomial) (Memory for storing a

coefficient matrix) + (Memory for storing exponents of the polynomial). The difference in memory size to compute (M

/ N) matrix Pade approximants for square matrix case and triangular matrix case in rectangular full packed storage are

presented below.

7.2.1 The memory required to compute (M/N) matrix Pade approximants for square matrix case.

To get the (M/N) matrix Pade approximants, degree of the input series [S (x)] must be M + N + 1, hence the number

of coefficient matrices of [S (x)] are at most M + N + 2. So the memory needed to store [S (x)] in square matrix case is

(M + N + 2)n2 + (M + N + 2). Similarly, the memory needed to store various matrix polynomials used to compute (M/N)

matrix Pade approximants are presented in the table 3. In addition various subroutines are used to compute the matrix

Pade approximants, the memory required to execute the subroutines are presented in table 4.

Total memory we required to compute (M/N) matrix Pade approximants for square matrix case is

24(M + N)n2 + 56n2 + 24(M + N + 2).

7.2.2 The memory required to compute the matrix Pade approximants for the triangular matrix case in rectangular full

packed storage.

The memory required to store a triangular matrix of order ‘n’ in rectangular full packed format is n(n + 1)/2. To get the

(M/N) matrix Pade approximants , the degree of the input the series [S (x)] must be M + N + 1 , hence the number of

coefficient matrices of [S (x)] are at most M + N + 2 . So the memory needed to store [S (x)] in Rectangular full packed

format case is (M+N+2)(n(n+1)/2)+M+N+2. Similarly, the memory needed to store various matrix polynomials used

to compute (M/N) matrix Pade approximants in rectangular full packed format are presented in the table 5. In addition we

allocated 4(M+N+2)n2+4(M+N+2) storage space to store [S (x)], [a(x)], [dummy1(x)] and [dummy2(x)] before packing.

To compute matrix Pade approximants various subroutines are used, the memory required to execute the subroutines are

presented in the following table 6.

The total memory we required to compute (M/N) matrix Pade approximants in rectangular full packed storage

25((M + N)(n2 + n)/2) + 54(n2 + n)/2 + 4(M + N + 2)n2 + 28(M + N + 2).

Hence the difference in memory size to compute (M/N) Matrix Pade approximants between square matrix and triangular

matrix cases is

(15/2)(M + N)n2 − (25/2)(M + N)n + 21n2 − 27n − 4(M + N + 2).

8. Subroutines used in C

The following subroutines were used to calculate matrix Pade approximants in rectangular full packed format:

188 � www.ccsenet.org

Journal of Mathematics Research September, 2009

1 Rect pack Matrix multiply : Returns the result of multiplication of two triangular matrices

in rectangular full packed format.

2 Rect pack Matrix inversion : Returns the inverse of a triangular matrix in rectangular full

packed format.

3 Rect pack : Returns the rectangular full packed format of a triangular matrix

4 Rect polynomial packing : Returns the packed form of the coefficient matrices of polynomial matrix

5 Rect packpoly multiply : Returns the result of multiplication of two matrix polynomials

in rectangular full packed format.

6 Rect packpoly addition : Returns the result of addition of two matrix polynomials in

rectangular full packed format.

7 Rect packpoly subtraction : Returns the result of subtraction of two matrix polynomials

in rectangular full packed format.

8 Rect packpoly division : Returns the quotient and remainder of the two matrix

polynomials in rectangular full packed format.

CONCLUDING REMARKS

We have shown here how to construct normal matrix Pade approximants if the coefficients matrices of the input matrix

polynomial are triangular matrix by using MAtrix Pade Extended Euclidean Algorithm in Rectangular Full Packed format

(MAPEARFP). If the coefficients of the input matrix polynomial are triangular, MAPEARFP algorithm is very useful in

getting matrix Pade approximants instead of using square matrix case algorithm MAPEA. This packed algorithm is very

fast while using higher order triangular matrix coefficients of the matrix polynomial. Its memory usage is also reduced

nearly half compared to the square matrix case.

APPENDIX

The configuration of the system used to find the CPU time to compute matrix Pade approximants for the semi normal

power series (7) is presented below.

System configuration:

Operating System : Linux

Processor : Intel (R) Pentium (R) 4 CPU 2.93 GHZ

RAM : 256 MB

Cache size : 1 MB

References

Achuthan, P. and Sundar, S. (1988). A new application of the extended Euclidean algorithm for matrix Pade approximants,

Comput. math. Applic. 16(4). P. 287-296.

Aho, A.V., Hopcroft, J.E., and Ullman, J.D. (1974). The Design and Analysis of Computer Algorithms. Addition-Wesly,

Reading, Mass.

Baker, G.A. Jr. (1975). Essentials of Pade approximants. New York: Academic press.

Baker, G.A. Jr. and Graves -Morris, P.R. (1981). Pade approximants, part I : Basic theory, Encyclopedia Math. Appl.13

Addition - Wesley, Reading, MA.

Bultheel, A. (1980). Recursive algorithm for matrix Pade problem. Maths Comput. 35, 875.

Brent, R.P., Gustavson,F.G., and Yun, D.Y.Y. (1980). Fast solution of Toeplitz systems of equations and computation of

Pade approximations. J.Algorithm 1, 259.

Gragg, W.B. (1972). The Pade table and its relation to certain algorithms of numerical analysis. SIAM Rev. 14. P. 1-62.

Gustavson, G. and Jerzy Wasniewsky. (2007). Rectangular Full Packed Format for LAPACK Algorithms Timings on

Several Computers. Applied and parallel computing, state the art in scientific computing, Springer. P. 570 - 579.

Jain, M.K., Iyengar, S.R.K., Jain, R.K. (2003). Numerical methods for Scientific and Engineering Computation. Fourth

edition, New Delhi: New Age International (P) Limited.

Jeremy J Du Croz and Nicholas, Higham, J. (1992). Stability of methods for Matrix inversion. IMA J. Numer. Anal., 12.

P. 1- 19.

Leighton, W. and Scott, W.T. (1939). A general continued fraction expansion. Bull.Amer. Math. Soc, 45, 596.

Rissanen, J. (1972). Recursive evaluation of Pade approximants for matrix sequences. IBM Jl Res. Dev. 401.

� www.ccsenet.org/jmr 189

Vol. 1, No. 2 ISSN: 1916-9795

Robert J. McEliece, James B. Shearer. (1978). A property of Euclid’s Algorithm and an application to Pade approxima-

tion. SIAM Jl appl. Math. 34(4). P. 611-615.

Table 1. CPU Time to compute (7/7) matrix Pade for the semi normal power series (7) at x = 1 for various order of square

matrices.

Matrix order 100 200 300 400 500 600 700 800 900

CPU Time (Seconds) 1 7 29 61 162 336 672 1048 1662

Table 2. CPU Time to compute (7/7) matrix Pade for the semi normal power series (7) at x = 1 for various order of the

triangular matrices in rectangular full Packed format.

Matrix order 100 200 300 400 500 600 700 800 900

CPU Time (Seconds) 1 2 12 48 84 167 410 474 667

Table 3. Memory allocation of various matrix polynomials which are used to compute (M/N) matrix Pade approximants

in square matrix case.

S.No Name of the matrix polynomial Memory Needed to the matrix polynomial

1 [S (x)] (M + N + 2)n2 + M + N + 2

2 [a(x)] (M + N + 2)n2 + M + N + 2

3 [b(x)] (M + N + 2)n2 + M + N + 2

4 [dummy1(x)] (M + N + 2)n2 + M + N + 2

5 [dummy2(x)] (M + N + 2)n2 + M + N + 2

6 Q (x) (M + N + 2)n2 + M + N + 2

7 R (x) (M + N + 2)n2 + M + N + 2

8 R1 (x) (M + N + 2)n2 + M + N + 2

Table 4. Memory allocation of various subroutines which are used to compute (M/N) matrix Pade approximants in square

matrix case.

S.No Name of the Subroutines Memory needed to execute the subroutines

1 Matrix Polynomial division 7
(
(M + N + 2)n2 + M + N + 2

)
2 Matrix Polynomial multiplication 6

(
(M + N + 2)n2 + M + N + 2

)
3 Matrix Polynomial addition

(
(M + N + 2)n2 + M + N + 2

)
4 Matrix Polynomial subtraction 2

(
(M + N + 2)n2 + M + N + 2

)
5 Matrix multiplication n2

6 Matrix inversion∗ 6n2

7 Determinant n2

∗ Note2: We have used L U decomposition method to find inverse of a matrix

(Jain, M.K., Iyengar, S.R.K.,Jain, R.K. 2003).

Table 5. Memory allocation of various polynomials which are used to compute matrix (M/N) Pade approximants in RFP

format.

S.No Name of the matrix polynomial Memory Needed to the matrix polynomial

1 [RFP S (x)] (M + N + 2) (n(n + 1)/2) + M + N + 2

2 [RFP a(x)] (M + N + 2) (n(n + 1)/2) + M + N + 2

3 [RFP b(x)] (M + N + 2) (n(n + 1)/2) + M + N + 2

4 [RFP dummy1(x)] (M + N + 2) (n(n + 1)/2) + M + N + 2

5 [RFP dummy2(x)] (M + N + 2) (n(n + 1)/2) + M + N + 2

6 [RFP Q (x)] (M + N + 2) (n(n + 1)/2) + M + N + 2

7 [RFP R (x)] (M + N + 2) (n(n + 1)/2) + M + N + 2

8 [RFP R1 (x)] (M + N + 2) (n(n + 1)/2) + M + N + 2

190 � www.ccsenet.org

Journal of Mathematics Research September, 2009

Table 6. Memory allocation of various subroutines that are required to compute (M/N) matrix Pade approximants in RFP

format.

S.No Name of the Subroutines Memory needed to execute the subroutines

1 Rect packpoly division 7(M + N + 2) (n(n + 1)/2) + 7 (M + N + 2)

2 Rect packpoly multiply 6(M + N + 2) (n(n + 1)/2) + 6 (M + N + 2)

3 Rect packpoly addition (M + N + 2) (n(n + 1)/2) + (M + N + 2)

4 Rect packpoly subtraction 2(M + N + 2) (n(n + 1)/2) + 2 (M + N + 2)

5 Rect pack Matrix multiply (n(n + 1)/2)

6 Rect pack Matrix inversion (n(n + 1)/2)

7 Rect pack (n(n + 1)/2)

8 Rect polynomial packing (M + N + 2) (n(n + 1)/2) + (n(n + 1)/2)

A =
(

A11 0

A21 A22

)

Figure 1. Breaking of lower triangular matrix A.

Triangular matrix Rectangular full packed format of Triangular matrix A

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1,1 0 0 0 0 0

a2,1 a2,2 0 0 0 0

a3,1 a3,2 a3,3 0 0 0

a4,1 a4,2 a4,3 a4,4 0 0

a5,1 a5,2 a5,3 a5,4 a5,5 0

a6,1 a6,2 a6,3 a6,4 a6,5 a6,6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a4,4 a5,4 a6,4

a1,1 a5,5 a6,5

a2,1 a2,2 a6,6

a3,1 a3,2 a3,3

a4,1 a4,2 a4,3

a5,1 a5,2 a5,3

a6,1 a6,2 a6,3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1,1 0 0 0 0 0 0

a2,1 a2,2 0 0 0 0 0

a3,1 a3,2 a3,3 0 0 0 0

a4,1 a4,2 a4,3 a4,4 0 0 0

a5,1 a5,2 a5,3 a5,4 a5,5 0 0

a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 0

a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1,1 a5,5 a6,5 a7,5

a2,1 a2,2 a6,6 a7,6

a3,1 a3,2 a3,3 a7,7

a4,1 a4,2 a4,3 a4,4

a5,1 a5,2 a5,3 a5,4

a6,1 a6,2 a6,3 a6,4

a7,1 a7,2 a7,3 a7,4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Figure 2. Rectangular full packed format of a lower triangular matrix A when n = 6, 7.

Matrix 1 Matrix 2 Matrix 3 Matrix 4 Matrix 5 Matrix 6 Matrix 7

Figure 3. Packing of ’m’ coefficient matrices of [S (x)] in rectangular full packed format (m = 7).

A =
(

A11 0

A21 A22

)
D =

(
D11 0

D21 D22

)

Figure 4. 2− by −2 Block form of A and D.

(
C11 0

C21 C22

)
=

(
A11 0

A21 A22

) (
B11 0

B21 B22

)

Figure 5. Multiplication of A and B in 2− by −2 Block form.

� www.ccsenet.org/jmr 191

Vol. 1, No. 2 ISSN: 1916-9795

Figure 6. Graphical representation of Table 1.

Figure 7. Graphical representation of Table 2.

Figure 8. Graphical representation for the comparison of Table 1 and Table 2.

192 � www.ccsenet.org

