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Correspondence: David Maya, Universidad Autónoma del Estado de México, Facultad de Ciencias, Instituto Lit-
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Received: June 9, 2014 Accepted: July 2, 2014 Online Published: August 4, 2014

doi:10.5539/jmr.v6n3p105 URL: http://dx.doi.org/10.5539/jmr.v6n3p105

Abstract

A continuum is a connected compact metric space. The second symmetric product of a continuum X, F2(X), is the

hyperspace of all nonempty subsets of X having at most two elements. An element A of F2(X) is said to make a
hole with respect to multicoherence degree in F2(X) if the multicoherence degree of F2(X)− {A} is greater than the

multicoherence degree of F2(X). In this paper, we characterize those elements A ∈ F2(X) such that A makes a hole

with respect to multicoherence degree in F2(X) when X is a cyclicly connected graph.

Keywords: continuum, symmetric products, multicoherence degree, make a hole with respect to multicoherence

degree

1. Introduction

A continuum is a connected compact metric space. Let X be a continuum. For each positive interger n, let

Fn(X) = {A ⊂ X : A has at most n elements and A � ∅}. The hyperspace Fn(X) is called the nth symmetric product
of X. It is known that each hyperspace Fn(X) is a continuum (see Borsuk & Ulam, 1931, pp. 876, 877) and

(Michael, 1951, Theorem 4.10, p. 165).

If Z is any topological space, let b0(Z) denote the number of components of Z minus one if this number is finite

and b0(Z) = ∞ otherwise. Given a connected topological space Y , the multicoherence degree of Y , is defined

by r(Y) = sup{b0(K ∩ L) : K and L are closed connected subsets of Y and Y = K ∪ L}. The space Y is said to

be unicoherent if r(Y) = 0. Let y ∈ Y such that Y − {y} is connected, we say that y makes a hole with respect
to multicoherence degree in Y if r(Y − {y}) > r(Y). This is a generalization of the notion of to make a hole in a

unicoherent topological space defined in (Anaya, 2007, p. 2000).

In this paper, we are interesting in the following problem.

Problem. Let H(X) be a hyperspace of a continuum X. For which elements A ∈ H(X), A makes a hole with

respect to multicoherence degree inH(X).

In the current paper, we are presenting the solution to this problem when X is a cyclicly connected graph and

H(X) = F2(X).

Readers specially interested in this problem are refered to Anaya (2007, 2011), Anaya, Maya and Orozco-Zitli

(2010, 2012).

2. Preliminaries

Given a positive interger m, define λ(m) = {1, 2, . . . ,m}. A map is a continuous function. The identity map for

a topological space Z is denoted by idZ . An arc is any space homeomorphic to [0, 1]. A simple closed curve is

a space which is homeomorphic to the unit circle S 1 in the Euclidean plane R2. A theta curve is a space which

is homeomorphic to S 1 ∪ ([−1, 1] × {0}) in R2. The symbol [0, 1]2 denotes the space [0, 1] × [0, 1]. The set

{(u, v) ∈ [0, 1]2: u ≤ v} is denoted by Δ. A graph is a continuum which can be written as the union of finitely

many arcs any two of which are either disjoint or intersect only in one or both their end points. A point y in a

connected topological space Y is called cut point (non-cut point) if Y − {y} is not connected (connected). A space

W is said to be cyclicly connected provided that every two points of W belong to some simple closed curve in W

105



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 6, No. 3; 2014

(see (Whyburn, 1942, p. 77)). A graph X is a cyclicly connected graph if X is a cyclicly connected space.

Given a topological space Y . A subspace Z of Y is said to be:

(a) a retract of Y if there exists a map f : Y → Z such that f (z) = z for every z ∈ Z. The map f is called a retraction.

(b) a deformation retract of Y if there exist a retraction f : Y → Z and a map g: Y × [0, 1]→ Y such that g(x, 0) = x
and g(x, 1) = f (x) for every x ∈ Y .

(c) a strong deformation retract of Y if there exist f and g as in (b) with the additional property that g(z, t) = z for

every (z, t) ∈ Z × [0, 1].

Let y ∈ Y . Let β be a cardinal number. We say that y is of order less than or equal to β in Y , written ord(y,Y) ≤ β,
provided that for each open subset U of Y containing y, there exists an open subset V of Y such that y ∈ V ⊂ U
and the cardinality of the boundary of V is less than or equal to β. We say that y is of order β in Y , written

ord(y,Y) = β, provided that ord(y,Y) ≤ β and ord(y,Y) � α for any cardinal number α < β. Put E(Y) = {x ∈ Y:

ord(x,Y) = 1}, O(Y) = {x ∈ Y: ord(x,Y) = 2} and R(Y) = {x ∈ Y: ord(x,Y) ≥ 3}. Define I(Y) = {I ⊂ Y:

I is an arc and E(I) = I ∩ R(Y)}, N(y,Y) = {I ∈ I(Y): y � I},M(y,Y) = {I ∈ I(Y): y ∈ I}, N(y, Y) =
⋃N(y, Y)

and M(y,Y) =
⋃M(y, Y). If K and L are nonempty subsets of Y , let 〈K, L〉 = {{x, y} ⊂ Y: x ∈ K, y ∈ L}.

2.1 Auxiliary Results

Lemma 2.1 If X is a cyclicly connected graph different from a simple closed curve, then the following conditions
hold:

(1) for each simple closed curve S in X, S ∩ R(X) has at least two points;

(2) X =
⋃I(X);

(3) the set I(X) is finite;

(4) for each p ∈ X, M(p, X) is a nondegenerate subcontinuum of X.

Proof. In order to prove (1), let S be a simple closed curve in X. Since S � X, there exists a simple closed curve

S 1 � S in X such that S ∩ S 1 � ∅. So, using (Nadler, Jr., 1992, Proposition 9.5, p. 142), R(S ∪ S 1) ∩ S ∩ S 1 � ∅.
Thus, by (Kuratowski, 1968, Theorem 3, p. 278), R(X) ∩ S ∩ S 1 � ∅. Now, assume that R(X) ∩ S ∩ S 1 consists of

precisely one point. Then, there exists a simple closed curve S 2 � S in X such that S 2 ∩ (S − S 1) � ∅. Applying

the previous argument to S ∪ S 2, we have R(X) ∩ (S − S 1) ∩ S 2 � ∅. Hence, S ∩ R(X) has at least two points.

(2) Follows from (1) and the fact that R(X) is a finite set (see (Nadler, Jr., 1992, Theorem 9.10, p. 144)).

(3) Follows from the fact that R(X) is a finite set (see (Nadler, Jr., 1992, Theorem 9.10, p. 144)).

Finally, to check (4), let p ∈ X. By (2), there exists I ∈ I(X) such that p ∈ I. So, since I ⊂ M(p, X), M(p, X) is

nondegenerate set. On the other hand, clearly, M(p, X) is connected. By (3), M(p, X) is closed in X. �
Lemma 2.2 Let X be a cyclicly connected graph and let p ∈ X. If N(p, X) � ∅, then N(p, X) is a subcontinuum of
X.

Proof. First, by (3) of Lemma 2.1, N(p, X) is closed in X. We shall prove the connectedness of N(p, X). By

(Whyburn, 1942, (9.3), p. 79), X − {p} is connected. So, it suffices to prove that N(p, X) is a continuous image of

X − {p}. Consider F =
⋃{E(I): I ∈ M(p, X)} − {p}. By (3) of Lemma 2.1,M(p, X) is finite. Then, F is discrete.

By (4) of Lemma 2.1, M(p, X) − {p} is a nonempty set. Now, define f : M(p, X) − {p} → F as follows: given

z ∈ M(p, X) − {p}, let f (z) be the unique element of F ∩ C where C is the component of M(p, X) − {p} containing

z. Clearly, f is surjective. We prove that f is continuous. Let e ∈ F. By the definition of f , it is easy to see that

f −1({e}) is a component of M(p, X)− {p}. Thus, since each component of M(p, X)− {p} is closed in M(p, X)− {p},
f −1({e}) is closed in M(p, X) − {p}.
Now, define f̄ : X − {p} → N(p, X) by

f̄ (x) =

⎧⎪⎪⎨⎪⎪⎩
x, if x ∈ N(p, X),

f (x), if x ∈ M(p, X) − {p}.

Since N(p, X) ∩ M(p, X) = F and by the definition of f , f̄ is well defined. Clearly, f̄ is surjective. The continuity

of f̄ follows from the continuity of f and the fact that N(p, X) and M(p, X)−{p} are closed subsets of X−{p}. This

finishes the proof of that N(p, X) is connected. �
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Lemma 2.3 Let X be a cyclicly connected graph different from a simple closed curve and let p, q be different points
in X. If X − {p, q} is not connected, there exist a simple closed curve S in X containing p and q and a retract f :
X → S such that f −1(p) = {p} and f −1(q) = {q}.
Proof. Let C1 and C2 be different components of X − {p, q}. Since Ck ∪ {p, q} is a subcontinuum of X, there exists

an arc Jk in Ck ∪ {p, q} such that E(Jk) = {p, q} for each k ∈ {1, 2}. Put S = J1 ∪ J2. Clearly, S is a simple closed

curve in X and p, q ∈ S .

Now, let f0: R(X) → S be a function such that f0|R(X)∩S = idR(X)∩S , f0(R(X) ∩ C1) ⊂ J1 and f0(R(X) ∩ C) ⊂ J2 for

each component C of X − {p, q} with C � C1.

Given I ∈ I(X), let fI : I → S be a one-to-one map such that fI |S = idS∩I , E( fI(I)) = f0(E(I)), fI(I ∩C1) ⊂ J1 and

fI(I ∩C) ⊂ J2 for each component C of X − {p, q} with C � C1. From the fact that fI is one-to-one, it follows that

fI(I − {p, q}) ⊂ S − {p, q}.
Define f : X → S as follows: for each x ∈ X, take I ∈ I(X) such that x ∈ I and let f (x) = fI(x). Notice that

f |R(X) = f0. Hence, f is well defined. The continuity of f follows from the fact that each fI is continuous and, by

(2) and (3) of Lemma 2.1. It is easy to see that f |S = idS . Thus, f is a retraction.

Finally, since S − {p, q} ⊂ X − {p, q} and f |S = idS , S − {p, q} ⊂ f (X − {p, q}). To check that f (X − {p, q}) ⊂
S − {p, q}, notice that f (X − {p, q}) = ⋃{ fI(I − {p, q}): I ∈ I(X)} ⊂ S − {p, q} (see (2). of Lemma 2.1). Thus,

f (X − {p, q}) = S − {p, q}. Hence, f −1({p, q}) = {p, q}. From the fact that p � q, we have that f −1(p) = {p} and

f −1(q) = {q}. �
Lemma 2.4 Let X be a cyclicly connected graph different from a simple closed curve and let p, q be different points
in X. If X − {p, q} is connected, there exist a theta curve Y in X containing p and q and a retract f : X → Y such
that f −1(p) = {p} and f −1(q) = {q}.
Proof. By the definition of cyclic connectedness, there exists a simple closed curve S in X such that p, q ∈ Y . Since

X − {p, q} is connected, there exists an arc J in X such that S − {p, q} ∩ J = E(J). Put Y = S ∪ J. Clearly, Y is a

theta curve in X containing p and q such that Y − {p, q} is connected.

First, consider a function f0: R(X)→ Y such that f0|Y = idR(X)∩Y . Now, for each I ∈ I(X), fix a one-to-one map fI :

I → Y such that fI |Y = idY∩I and f (I − {p, q}) ⊂ Y − {p, q}.
Define f : X → Y as follows: for each x ∈ X, take I ∈ I(X) such that x ∈ I and let f (x) = fI(x). From the fact that

f |R(X) = f0, it follows that f is well defined. Since X =
⋃I(X) and I(X) is finite (see (2) and (3) of Lemma 2.1),

f is continuous. From the fact that f |Y = idY , it follows that f is a retraction.

We will prove that f (X − {p, q}) = Y − {p, q}. Since X − {p, q} = ⋃{I − {p, q}: I ∈ I(X)}, f (X − {p, q}) ⊂ Y − {p, q}.
Clearly, Y − {p, q} is contained in f (X − {p, q}). We have that f −1({p, q}) = {p, q}. Since p � q, f −1(p) = {p} and

f −1(q) = {q}. �
Proposition 2.5 Let X be a continuum and let K and L be connected subsets (subcontinua) of X. Then 〈K, L〉 is a
connected subset (subcontinuum) of F2(X) and, it does not have cut points when K and L are nondegenerate sets.

Proof. The connectedness of 〈K, L〉 follows from (Martı́nez-Montejano, 2002, Lemma 1, p. 230).

In order to prove the second part of this proposition, let {p, q} ∈ 〈K, L〉. Using K and L are nondegenerate sets and

the arguments in (Kuratowski, 1968, Theorem 11, p. 137), it can be shown that K × L− {(p, q), (q, p)} is connected.

So, since 〈K, L〉 − {{p, q}} is a continuous image of K × L − {(p, q), (q, p)}, 〈K, L〉 − {{p, q}} is connected. �
Lemma 2.6 Let I be an arc and let p ∈ I−E(I). If H and J are subcontinua of I such that H∪ J ⊂ I−{p} and each
one of them contains a different end point of I, then 〈H, I〉 ∪ 〈J, I〉 is a strong deformation retract of F2(I) − {{p}}.
Proof. Put Γ = Δ −

{(
1
2
, 1

2

)}
, Γ0 = {(u, v) ∈ Γ: u ≤ 1

4
} ∪ {(u, v) ∈ Γ: 3

4
≤ v} and Γ1 = {(u, v) ∈ Γ: 1

4
≤ u, v ≤ 3

4
}. First,

we are going to prove that Γ0 is a strong deformation retract of Γ. Define f : Γ→ Γ0 by

f (u, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(u, v), if (u, v) ∈ Γ0,
(

1
4
, u + v − 1

4

)
, if (u, v) ∈ Γ1 and v ≤ 1 − u,

(
u + v − 3

4
, 3

4

)
, if (u, v) ∈ Γ1 and 1 − u ≤ v,

and g: Γ × [0, 1]→ Γ by

g((u, v), t) = (1 − t) · (u, v) + t · f (u, v).
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It is easy to verify that f and g have the required properties.

Finally, let h: [0, 1]→ I be a homeomorphism such that h([0, 1
4
]) = H, h([ 3

4
, 1]) = J and h( 1

2
) = p. Define h̄: Γ→

F2(I)− {{p}} by h̄(u, v) = {h(u), h(v)}. It can be proved that h̄ is a homeomorphism such that h̄(Γ0) = 〈H, I〉 ∪ 〈J, I〉.
Therefore, 〈H, I〉 ∪ 〈J, I〉 is a strong deformation retract of F2(I) − {{p}}. �
Lemma 2.7 If X is a graph containing a simple closed curve, then X is not unicoherent.

Proof. We shall prove that there exist subcontinua K and L of X such that b0(K ∩ L) > 0 and X = K ∪ L. Let S be a

simple closed curve in X. By (Nadler, Jr., 1992, Theorem 9.10, p. 144), there exists x ∈ S such that ord(x, X) = 2.

Now, using (Nadler, Jr., 1992, Theorem 9.7, p. 143), it can be proved that there exists an arc J in S which is a

neighborhood of x in X. Then, J − E(J) is an open connected subset of X. Now, by (Nadler, Jr., 1992, 9.44, (a),

p. 160), S −(J−E(J)) is connected. Hence, X−(J−E(J)) is a subcontinuum of X. So, K = J and L = X−(J−E(J))

satify the requiered properties. �
Theorem 2.8 If X is a cyclicly connected graph, then r(F2(X)) = 1.

Proof. The result follows from (Nadler, Jr., 1992, Theorem 8.25, p. 131), Lemma 2.7 and (Illanes, 1985, Theo-

rem 1.6, p. 16). �
3. Making Holes in the Second Symmetric Product of a Cyclicly Connected Graph

Theorem 3.1 Let X be a graph and let p ∈ O(X). Then {p} does not make a hole with respect to multicoherence
degree in F2(X).

Proof. We will show that r(F2(X) − {{p}}) = r(F2(X)). Since X is a graph, it is easy to see that F2(X) − {{p}} is

a locally connected metric space and, by Proposition 2.5, F2(X) − {{p}} is connected. So, in light of (Eilenberg,

1936, Theorem 4, p. 162) and (Stone, 1950, Theorem 5, p. 472), it suffices to prove that there exists a deformation

retractZ of F2(X) − {{p}} such that r(Z) = r(F2(X)).

Since p ∈ O(X), using (Nadler, Jr., 1992, Lemma 9.7, p. 143), it can be shown that there exists an arc I in X such

that I is a neighborhood of p in X. So, clearly, p ∈ I − E(I). Let H and J be nondegenerate subcontinua of I such

that H∪ J ⊂ I−{p} and each one of them contains a different end point of I. Put Z = (X− I)∪H∪ J andZ = 〈X, Z〉.
Clearly, F2(X) = Z ∪ F2(I). Now, by Lemma 2.6, there exist a retraction f : F2(I) − {{p}} → 〈H, I〉 ∪ 〈J, I〉 and a

map g: (F2(I) − {{p}}) × [0, 1]→ F2(I) − {{p}} such that g(A, 0) = A and g(A, 1) = f (A) for each A ∈ F2(I) − {{p}}
and g(B, t) = B for each (B, t) ∈ (〈H, I〉 ∪ 〈J, I〉) × [0, 1].

Define f̄ : F2(X) − {{p}} → Z by

f̄ (A) =

⎧⎪⎪⎨⎪⎪⎩
A, if A ∈ Z,

f (A), if A ∈ F2(I) − {{p}},
and ḡ: (F2(X) − {{p}}) × [0, 1]→ F2(X) − {{p}} by

ḡ(A, t) =

⎧⎪⎪⎨⎪⎪⎩
A, if A ∈ Z,

g(A, t), if A ∈ F2(I) − {{p}}.
To check that f̄ and ḡ are well defined, notice that Z ∩ F2(I) − {{p}} = 〈H, I〉 ∪ 〈J, I〉 and f (B) = B = g(B, t) for

each (B, t) ∈ (〈H, I〉 ∪ 〈J, I〉)× [0, 1]. Now, the continuity of f̄ and ḡ follows from the continuity of the maps f and

g and the fact thatZ and F2(I)− {{p}} are closed in F2(X)− {{p}}. It is easy to verify that f̄ and ḡ have the required

properties. Thus,Z is a deformation retract of F2(X) − {{p}}.
Finally, to check that r(Z) = r(F2(X)), we shall show thatZ is homeomorphic to F2(X). It can be shown that there

exists a homeomorphism h: F2(I)→ 〈H, I〉 ∪ 〈J, I〉 such that h|〈E(I),I〉 = id〈E(I),I〉. Define h̄: F2(X)→ Z by

h̄(A) =

⎧⎪⎪⎨⎪⎪⎩
h(A), if A ∈ F2(I),

A, otherwise.

It is easy to see that h̄ is a homeomorphism. Hence, r(F2(X)) = r(Z).

This finishes the proof that {p} does not make a hole with respect to multicoherence degree in F2(X). �
Theorem 3.2 Let X be a cyclicly connected graph and p ∈ R(X). Then {p} makes a hole with respect to multico-
herence degree in F2(X).
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Proof. Since r(F2(X)) = 1 (see Theorem 2.8), we shall show that r(F2(X) − {{p}}) ≥ 2. So, it suffices to prove

that there exist two closed connected subsets K and L of F2(X) − {{p}} such that F2(X) − {{p}} = K ∪ L and

b0(K ∩ L) ≥ 2.

Put Λ = {(u, v) ∈ [0, 1]2 − {0}: u
2
≤ v ≤ 2u}, Ω = {(u, v) ∈ [0, 1]2 − {0}: v ≤ u

2
}, Γ = {(u, v) ∈ [0, 1]2 − {0}: 2u ≤ v}

where 0 = (0, 0), m = ord(p, X) and M(p, X) = {I1, I2, . . . , Im}. For each k ∈ λ(m), fix a homeomorphism ϕk:

[0, 1] → Ik such that ϕk(0) = p. Given elements k � j ∈ λ(m), define ψ(k, j): [0, 1]2 − {0} → 〈Ik, I j〉 − {{p}} by

ψ(k, j)(s, t) = {ϕk(s), ϕ j(t)}. Since ϕk(0) = ϕ j(0) = p and, ϕk and ϕ j are one-to-one, ψ(k, j) is well defined. Using the

fact that ϕk and ϕ j are surjective, it is easy to prove that ψ(k, j) is surjective. Clearly, for each k, j ∈ λ(m) with k � j,
ψ(k, j)(Λ) = ψ( j,k)(Λ) and ψ(k, j)(Ω) = ψ( j,k)(Γ).

Consider the following cases.

Case A. N(p, X) � ∅.
Let Y = N(p, X). By Lemma 2.2, Y is a subcontinuum of X. For each k ∈ λ(m), define

Kk = 〈ϕk([
1

2
, 1]),Y ∪ ϕk([

1

2
, 1])〉 and Lk = 〈ϕk([0,

1

2
]),Y ∪ ϕk([0, 1])〉 − {{p}}.

Consider

K = F2(Y) ∪
⋃
{Kk : k ∈ λ(m)} ∪

⋃
{ψ(k, j)(Λ) : k, j ∈ λ(m), k � j}

and L =
⋃
{Lk : k ∈ λ(m)} ∪

⋃
{ψ(k, j)(Γ) : k, j ∈ λ(m), k � j}.

Clearly, K and L are closed subsets of F2(X) − {{p}}. To prove F2(X) − {{p}} = K ∪ L, let {x, y} ∈ F2(X) − {{p}}.
Since X = M(p, X) ∪ Y , F2(X) = F2(M(p, X)) ∪ F2(Y) ∪ 〈M(p, X),Y〉. If {x, y} ∈ F2(Y) ∪ 〈M(p, X),Y〉, it is

easy to see that {x, y} ∈ K ∪ L. Suppose that {x, y} ∈ F2(M(p, X)) − {{p}}. Take k, j ∈ λ(m) such that x ∈ Ik and

y ∈ I j. First, if k = j, then {x, y} ∈ Kk ∪ Lk. Now, without loss of generality, we may assume that k < j. Consider

(u, v) ∈ [0, 1]2 − {0} such that ψ(k, j)(u, v) = {x, y}. Thus, since [0, 1]2 − {0} = Λ ∪ Ω ∪ Γ, ψ(k, j)(Λ) = ψ( j,k)(Λ) and

ψ(k, j)(Γ) = ψ( j,k)(Ω), {x, y} ∈ K ∪ L.

To show that K and L are connected, let k � j ∈ λ(m). The connectedness of Kk and Lk follows from the fact

that ϕk(1) ∈ Y and Proposition 2.5. Without loss of generality, we may assume that k < j. The connectedness of L
follows from the connectedness ofΩ and the fact that ψ(k, j)(1, 0) ∈ Lk∩L j∩ψ(k, j)(Ω). Since ψ(k, j)(Λ) is connected,

ψ(k, j)(Λ) = ψ( j,k)(Λ) and ψ(k, j)(1, 1) ∈ Kk ∩ ψ(k, j)(Λ) ∩ F2(Y), K is connected.

Finally, we will show that b0(K ∩ L) ≥ 2. Put Σ = {(u, v) ∈ [0, 1]2 − {0}: v = 2u}. Given k ∈ λ(m). Define

Dk = 〈{ϕk( 1
2
)},Y ∪ ϕk([ 1

2
, 1])〉 and Ck =

⋃{ψ(k, j)(Σ): j ∈ λ(m) − {k}} ∪ Dk. We are going to prove that C1, . . . ,Cm

are the components of K ∩ L. The connectedness of Dk follows from the fact that ϕk(1) ∈ Y and Proposition 2.5.

Since ψ(k, j)(Σ) is connected and ψ(k, j)(
1
2
, 1) ∈ ψ(k, j)(Σ) ∩Dk for each j ∈ λ(m) − {k}, Ck is connected.

We need to prove the following properties,

i) F2(Y) ∩ L = ∅,
ii) Kk ∩ Lk = Dk for each k ∈ λ(m),

iii) Kk ∩ L j = ∅ and Kk ∩ ψ(k, j)(Γ) = {ϕk( 1
2
), ϕ j(1)} for each k � j ∈ λ(m),

iv) L ∩ 〈Ik, I j〉 = ψ(k, j)(Ω) ∪ ψ(k, j)(Γ) for each k � j ∈ λ(m),

v) ϕk([0, 1]) ∩ ϕ j([0, 1]) = {ϕk(0), ϕk(1)} ∩ {ϕ j(0), ϕ j(1)} for each k � j ∈ λ(m),

vi)Dk ∩D j = ∅ for each k � j ∈ λ(m),

vii) if k � j ∈ λ(m), then ψ(k, j)(Σ) ∩Dl = ∅ for each l ∈ λ(m) − {k},
viii) if k � j ∈ λ(m), then ψ(k, j)(Σ) ∩ ψ(l,n)(Σ) = ∅ for each (l, n) ∈ ((λ(m) − {k}) × (λ(m) − { j})) − {( j, k)}.
It is easy to see the properties i)-v).

vi) Follows from the facts that ϕk( 1
2
) � Y ∪ ϕ j([

1
2
, 1]), ϕ j(

1
2
) � Y ∪ ϕk([ 1

2
, 1]) and v).

vii) Suppose to the contrary that there exists l ∈ λ(m) − {k} such that ψ(k, j)(Σ) ∩ Dl � ∅. Consider (u, 2u) ∈ Σ such

that ψ(k, j)(u, 2u) ∈ Dl. Then, either ϕk(u) = ϕl(
1
2
) or ϕ j(2u) = ϕl(

1
2
). So, by v), j = l and ϕ j(2u) = ϕl(

1
2
). Thus,

u = 1
4

and ϕk( 1
4
) ∈ Y ∪ ϕl([

1
2
, 1]), a contradiction.

109



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 6, No. 3; 2014

viii) Suppose to the contrary that there exist (l, n) ∈ ((λ(m) − {k}) × (λ(m) − { j})) − {( j, k)} and (u, v), (s, t) ∈ Σ
such that ψ(k, j)(u, v) = ψ(l,n)(s, t). So, since u > 0, s ≤ 1

2
and k � l, by v), ϕk(u) � ϕl(s) and ϕk(u) = ϕn(t). Then,

ϕ j(v) = ϕl(s). Thus, since 0 < u, s ≤ 1
2
, by v), k = n and j = l. Hence, since ϕk and ϕl are one-to-one maps, u = t

and v = s. Therefore, (t, s), (s, t) ∈ Σ, a contradiction.

We are ready to prove that K ∩ L = ⋃{Ck: k ∈ λ(m)}. From the fact that Σ = Λ ∩ Γ and ii), we have that
⋃{Ck:

k ∈ λ(m)} ⊂ K ∩L. Now, let {w, z} ∈ K ∩L. If {w, z} ∈ Kk ∩L for some k ∈ λ(m), by ii) and iii), {w, z} ∈ Dk ⊂ Ck.

Now, suppose that {w, z} ∈ ψ(k, j)(Λ) ∩ L for some k � j ∈ λ(m). Since ψ(k, j)(Λ) ⊂ 〈Ik, I j〉 and ψ(k, j)(Γ) = ψ( j,k)(Ω),

by iv), {w, z} ∈ (ψ(k, j)(Λ) ∩ ψ(k, j)(Ω)) ∪ (ψ(k, j)(Λ) ∩ ψ( j,k)(Ω)). So, using Σ = Λ ∩ Ω, ϕ(k, j)(Λ) = ϕ( j,k)(Λ) and

ϕ(k, j)|Σ, ϕ( j,k)|Σ are one-to-one maps, it can be proved {w, z} ∈ ϕ(k, j)(Σ) ∪ ϕ( j,k)(Σ). Hence, {w, z} ∈ Ck ∪ C j.

Finally, in order to prove that C1,C2, . . . ,Cm are mutually disjoint, let k � j ∈ λ(m). By vi)-viii), Ck ∩ C j = ∅.
Thus, b0(K ∩ L) + 1 = m ≥ 3.

Case B. N(p, X) = ∅.
Then, N(p, X) = ∅ and ϕ1(1) = ϕ2(1) = · · · = ϕk(1). This case can be proved using similar arguments in the proof

of Case A by considering Y = {ϕ1(1)}. �
Theorem 3.3 Let X be a simple closed curve and let p, q ∈ X such that p � q. Then {p, q} makes a hole with
respect to multicoherence degree in F2(X).

Proof. First, we are going to prove that A = {(1, 0), (−1, 0)} ⊂ S 1 makes a hole with respect to multicoherence

degree in F2(S 1). By Theorem 2.8, r(F2(S 1)) = 1. So, it suffices to show that there exist two closed connected

subsets K and L of F2(S 1) − {A} such that F2(S 1) − {A} = K ∪ L and b0(K ∩ L) ≥ 2.

Define ϕ: [0, 1] → S 1 by ϕ(t) = (cos(2πt), sin(2πt)) and ψ: Δ → F2(S 1) by ψ(t, s) = {ϕ(t), ϕ(s)}. Notice that ψ is

well defined and it is surjective. The continuity of ψ follows from that of ϕ. Put Γ1 = {(u, v) ∈ Δ− {(0, 1
2
)}: 1

2
− u ≤

v ≤ 1 − u}, Γ2 = {(u, v) ∈ Δ − {( 1
2
, 1)}: 3

2
− u ≤ v}, Γ3 = {(u, v) ∈ Δ − {(0, 1

2
)}: v ≤ 1

2
− u}, Γ4 = {(u, v) ∈ Δ − {( 1

2
, 1)}:

1 − u ≤ v ≤ 3
2
− u}, K = ψ(Γ1) ∪ ψ(Γ2) and L = ψ(Γ3) ∪ ψ(Γ4).

It is easy to prove thatK andL are closed subset ofF2(S 1)−{A}. Clearly,K∪L ⊂ F2(S 1)−{A}. Now, we will prove

that F2(S 1)−{A} ⊂ K∪L. Let {x, y} ∈ F2(S 1)−{A} and let t, s ∈ [0, 1] such that ϕ(t) = x and ϕ(s) = y. Without loss

of generality, we may suppose that t ≤ s. So, since ψ(t, s) = {x, y} and (t, s) ∈ Δ−{(0, 1
2
), ( 1

2
, 1)} = Γ1∪Γ2∪Γ3∪Γ4,

{x, y} ∈ ψ(Γ1) ∪ ψ(Γ2) ∪ ψ(Γ3) ∪ ψ(Γ4) = K ∪ L. Thus, F2(S 1) − {A} = K ∪ L.

The connectedness ofK andL follows from the facts that ψ(0, 0) = ψ(0, 1) = ψ(1, 1) ∈ ψ(Γ1)∩ψ(Γ2)∩ψ(Γ3)∩ψ(Γ4)

and each ψ(Γi) is connected.

Now, we are going to prove that b0(K ∩ L) ≥ 2. Put Λ1 = {(u, v) ∈ Δ : v = 1 − u}, Λ2 = {(u, v) ∈ Δ − {(0, 1
2
)}:

v = 1
2
− u} and Λ3 = {(u, v) ∈ Δ − {( 1

2
, 1)}: v = 3

2
− u}. Notice that Λ1 = Γ1 ∩ Γ4, Λ2 = Γ1 ∩ Γ3, Λ3 = Γ2 ∩ Γ4

and, Λ1, Λ2 and Λ3 are mutually disjoint. It is easy to see that ψ(Λ1) = ψ(Γ1 ∩ Γ4) = ψ(Γ1) ∩ ψ(Γ4), ψ(Λ2) =

ψ(Γ1 ∩ Γ3) = ψ(Γ1)∩ψ(Γ3), ψ(Λ3) = ψ(Γ2 ∩ Γ4) = ψ(Γ2)∩ψ(Γ4) and ψ(Γ2)∩ψ(Γ3) = ∅. We will show that ψ(Λ1),

ψ(Λ2) and ψ(Λ3) are the components of K ∩L. First, notice that ψ(Λ1) ⊂ K ∩L since ψ(Γ1) ⊂ K and ψ(Γ4) ⊂ L.

Similarly, it can be proved that ψ(Λ2) and ψ(Λ3) is contained in K ∩ L. Now, to verify that K ∩ L ⊂ 3⋃
i=1
ϕ(Λi),

let {x, y} ∈ K ∩ L. Since K = ψ(Γ1) ∪ ψ(Γ2), either {x, y} ∈ ψ(Γ1) ∩ L or {x, y} ∈ ψ(Γ2) ∩ L. From the facts that

L = ψ(Γ3) ∪ ψ(Λ4) and ψ(Γ2) ∩ ψ(Γ3) = ∅, we have {x, y} ∈ (ψ(Γ1) ∩ ψ(Γ3)) ∪ (ψ(Γ1) ∩ ψ(Γ4)) ∪ (ψ(Γ2) ∩ ψ(Γ4)).

So, {x, y} ∈ 3⋃
i=1
ψ(Λi). Finally, since Λ1, Λ2 and Λ3 are connected and mutually disjoint, ψ(Λ1), ψ(Λ2) and ψ(Λ3)

are also connected and mutually disjoint. This proves that b(K ∩ L) + 1 = 3.

So, K and L satisfy the required properties.

We are ready to prove that {p, q} makes a hole with respect to multicoherence degree in F2(X). Since X is a simple

closed curve, there exists a homeomorphism h: S 1 → X such that h(A) = {p, q}. Consider the induced mapping

h2: F2(S 1) → F2(X) defined by h2(B) = h(B) for each B ∈ F2(S 1). By (Higuera & Illanes, 2011, Theorem 3.1,

p. 369), h2 is a homeomorphism. Then, since A makes a hole with respect to multicoherence degree in F2(S 1) and

h2(A) = {p, q}, {p, q} makes a hole with respect to multicoherence degree in F2(X). �
Theorem 3.4 Let X be a theta curve and let p, q ∈ X such that ord(p, X) = ord(q, X) = 2 and X − {p, q} is
connected. Then {p, q} makes a hole with respect to multicoherence degree in F2(X).
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Proof. Clearly, X is a cyclicly connected graph. Then, by Theorem 2.8, r(F2(X)) = 1. So, to show that r(F2(X) −
{{p, q}}) > 1, we are going to prove that there exist connected closed subsetsK and L of F2(X)− {{p, q}} satisfying

F2(X) − {{p, q}} = K ∪ L and b0(K ∩ L) ≥ 2.

Put I(X) = {I1, I2, I3}. Without loss of generality, we may assume that p ∈ I1 and q ∈ I2. Given k ∈ {1, 2, 3},
fix a homeomorphism ϕk: [0, 1] → Ik such that ϕ1(0) = ϕ2(0) = ϕ3(0). We may assume that ϕ1( 1

2
) = p and

ϕ2( 1
2
) = q. Notice that ϕ1(1) = ϕ2(1) = ϕ3(1). Put w = ϕ1(0) and z = ϕ1(1). So, R(X) = {w, z}. Now, for each

k, j ∈ {1, 2, 3}, consider πk: Δ → F2(Ik) and ψ(k, j): [0, 1]2 → 〈Ik, I j〉 defined by πk(t, s) = {ϕk(t), ϕk(s)} for each

(t, s) ∈ Δ and ψ(k, j)(u, v) = {ϕk(u), ϕ j(v)} for each (u, v) ∈ [0, 1]2. Now, let Λ1 = {(u, v) ∈ [0, 1
2
] × [ 1

2
, 1] − {a}:

1
2
≤ v ≤ 3−2u

4
}, Λ2 = (([ 1

2
, 3

4
] × [ 1

2
, 1]) ∪ ([ 1

2
, 1] × [ 1

2
, 3

4
])) − {a}, Λ3 = {(u, v) ∈ [ 1

2
, 1] × [0, 1

2
] − {a}: v ≤ 4−3u

2
},

Ω1 = {(u, v) ∈ [0, 1
2
] × [ 1

2
, 1] − {a}: 3−2u

4
≤ v}, Ω2 = [ 3

4
, 1] × [ 3

4
, 1], Ω3 = {(u, v) ∈ [ 1

2
, 1] × [0, 1

2
] − {a}: 3−4u

2
≤ v}

and Ω4 = [0, 1
2
] × [0, 1

2
] − {a} where a = ( 1

2
, 1

2
). Consider Γ1 = {(u, v) ∈ Δ: 1

2
− u ≤ v ≤ 3

4
− u}, Γ2 = {(u, v) ∈ Δ:

3
2
− u ≤ v ≤ 7

4
− u}, Σ1 = {(u, v) ∈ Δ: v ≤ 1

2
− u}, Σ2 = {(u, v) ∈ Δ: 3

4
− u ≤ v ≤ 3

2
− u} and Σ3 = {(u, v) ∈ Δ:

7
4
− u ≤ v}. Put Λ = Λ1 ∪ Λ2 ∪ Λ3, Ω = Ω1 ∪Ω2 ∪Ω3 ∪Ω4, Γ = Γ1 ∪ Γ2 and Σ = Σ1 ∪ Σ2 ∪ Σ3

For each k ∈ {1, 2}, let Kk = ψ(k,3)([
1
2
, 3

4
] × [0, 1]), L1

k = ψ(k,3)([0,
1
2
] × [0, 1]) and L2

k = ψ(k,3)([
3
4
, 1] × [0, 1]).

Define

K = ψ(1,2)(Λ) ∪ π1(Γ) ∪ π2(Γ) ∪ K1 ∪ K2 and

L = ψ(1,2)(Ω) ∪ π1(Σ) ∪ π2(Σ) ∪ L1
1 ∪ L1

2 ∪ L2
1 ∪ L2

2 ∪ F2(I3).

It is easy to see thatK andL are closed subset of F2(X)−{{p, q}}. In order to prove that F2(X)−{{p, q}} ⊂ K∪L, let

{x, y} ∈ F2(X)−{{p, q}}. First, since X = I1∪I2∪I3, F2(X) = F2(I1)∪F2(I2)∪F2(I3)∪〈I1, I2〉∪〈I1, I3〉∪〈I2, I3〉. Now,

notice thatF2(I1) = π1(Γ∪Σ), F2(I2) = π2(Γ∪Σ), F2(I3) ⊂ L, 〈I1, I2〉−{{p, q}} = ψ(1,2)(Γ∪Ω), 〈I1, I3〉 = K1∪L1
1∪L2

1

and 〈I2, I3〉 = K2 ∪ L1
2 ∪ L2

2. Hence, {x, y} ∈ K ∪ L. This proves that F2(X) − {{p, q}} = K ∪ L.

To prove that K and L are connected, put C = {Λ1,Λ2,Λ3,Ω1,Ω2,Ω3,Ω4}, D = {Γ1,Γ2,Σ1,Σ2,Σ3}, F = {[ 1
2
, 3

4
] ×

[0, 1], [0, 1
2
] × [0, 1], [ 3

4
, 1] × [0, 1]} and G = C ∪D ∪ F. It is easy to see that each element of G is connected. So,

ψ(1,2)(Θ), πk(Ψ) and ψ(k,3)(Υ) are connected for each (Θ,Ψ,Υ, k) ∈ C×D×F× {1, 2}. Notice that {w, p} ∈ π1(Γ1)∩
ψ(1,2)(Λ3)∩K1, {p, z} ∈ π1(Γ2)∩ψ(1,2)(Λ2)∩K1, {q, z} ∈ ψ(1,2)(Λ2)∩π2(Γ2)∩K2 and {w, q} ∈ ψ(1,2)(Λ1)∩π2(Γ1)∩K2.

Then, K is connected. Now, since {w} ∈ π1(Σ1) ∩ π2(Σ1) ∩ ψ(1,2)(Ω4) ∩ L1
1
∩ L1

2
∩ F2(I3), {z} ∈ π1(Σ3) ∩ π2(Σ3) ∩

ψ(1,2)(Ω2) ∩L2
1 ∩L2

2 ∩ F2(I3) and {w, z} ∈ π1(Σ2) ∩ π2(Σ2) ∩ ψ(1,2)(Ω1) ∩ ψ(1,2)(Ω3) ∩L1
1 ∩L2

1 ∩L1
2 ∩L2

2 ∩ F2(I3),

L is connected.

Finally, we are going to show that b0(K∩L) ≥ 2. Given (n,m) ∈ {1, 2}×{1, 2, 3}, letΠ(n,m) = Γn∩Σm. DefineΥ(i, j) =

Λi∩Ω j for each (i, j) ∈ {1, 2, 3}×{1, 2, 3, 4}. For each k ∈ {1, 2}, considerHk = L1
k∩Kk andJk = L2

k∩Kk. Let C1 =

π1(Π(1,1))∪ψ(1,2)(Υ(3,4))∪H1∪π1(Π(2,2))∪ψ(1,2)(Υ(2,1)), C2 = π2(Π(1,1))∪ψ(1,2)(Υ(1,4))∪H2∪π2(Π(2,2))∪ψ(1,2)(Υ(2,3))

and C3 = π1(Π(1,2))∪ ψ(1,2)(Υ(3,3))∪J1 ∪ π1(Π(2,3))∪ ψ(1,2)(Υ(2,2))∪ π2(Π(2,3))∪J2 ∪ π2(Π(1,2))∪ ψ(1,2)(Υ(1,1)). We

are going to prove that C1, C2 and C3 are the components of K ∩ L. �
The following properties are easy to verify,

i) Π(n,m) is connected and πk(Π(n,m)) = πk(Γn) ∩ πk(Σm) for each n, k ∈ {1, 2} and m ∈ {n, n + 1},
ii) if Υ(i, j) � ∅, then Υ(i, j) is connected and ψ(1,2)(Υ(i, j)) = ψ(1,2)(Λi) ∩ ψ(1,2)(Ω j),

iii)Hk and Jk are connected for each k ∈ {1, 2},
iv) {w, p} ∈ π1(Π(1,1)) ∩ ψ(1,2)(Υ(3,4)) ∩H1,

v) {p, z} ∈ H1 ∩ π1(Π(2,2)) ∩ ψ(1,2)(Υ(2,1)),

vi) {w, q} ∈ π2(Π(1,1)) ∩ ψ(1,2)(Υ(1,4)) ∩H2,

vii) {q, z} ∈ H2 ∩ π2(Π(2,2)) ∩ ψ(1,2)(Υ(2,3)),

viii) {w, ϕ1( 3
4
)} ∈ π1(Π(1,2)) ∩ ψ(1,2)(Υ(3,3)) ∩ J1,

ix) {ϕ1( 3
4
), z} ∈ J1 ∩ π1(Π(2,3)) ∩ ψ(1,2)(Υ(2,2)),

x) {ϕ2( 3
4
), z} ∈ ψ(1,2)(Υ(2,2)) ∩ π2(Π(2,3)) ∩ J2,

xi) {w, ϕ2( 3
4
)} ∈ J2 ∩ π2(Π(1,2)) ∩ ψ(1,2)(Υ(1,1)),

xii) Π(n1,m1) ∩ Π(n2,m2) = ∅ for each (n1,m1) � (n2,m2) ∈ {1, 2} × {1, 2, 3},
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xiii) Υ(i1, j1) ∩ Υ(i2, j2) = ∅ for each (i1, j1) � (i2, j2) ∈ {1, 2, 3} × {1, 2, 3, 4},
xiv)Hk ∩ Jk = ∅ for each k ∈ {1, 2}, and

xv) K ∩ L = ⋃{πk(Π(n,m)): (k, n,m) ∈ {1, 2} × {1, 2} × {1, 2, 3}} ∪⋃{ψ(1,2)(Υ(i, j)): (i, j) ∈ {1, 2, 3} × {1, 2, 3, 4}} ∪⋃{Hk ∪ Jk: k ∈ {1, 2}}.
The connectedness of C1, C2 and C3 follows from i)-xi). Using xii)-xiv), it can be proved that C1, C2 and C3 are

mutually disjoint. Finally, from xv), it follows that K ∩ L = C1 ∪ C2 ∪ C3.

So, K and L satisfy the required properties.

Theorem 3.5 Let X be a cyclicly connected graph and p, q ∈ X. If p � q, then {p, q} makes a hole with respect to
multicoherence degree in F2(X).

Proof. In the case that X is a simple closed curve, the result follows from Theorem 3.3. Now, suppose that X is not

a simple closed curve. Since X is a graph, by (Borsuk & Ulam, 1931, (a), p. 877), F2(X) is a locally connected

space. Then, F2(X) − {{p, q}} is a locally connected metric space. So, by (Eilenberg, 1936, Theorem 4, p. 162)

and (Stone, 1950, Theorem 5, p. 472), it suffices to show that there exists a retract Z of F2(X) − {{p, q}} such that

r(Z) > r(F2(X)) = 1 (see Theorem 2.8). We consider two cases.

Case I. X − {p, q} is not connected.

By Lemma 2.3, there exists a simple closed curve S in X containing p and q and a retraction f : X → S such that

f −1(p) = {p} and f −1(q) = {q}. Put Z = F2(S ) − {{p, q}}. Since S is a cyclicly connected graph, r(F2(S )) = 1

(see Theorem 2.8). So, by Theorem 3.3, r(Z) ≥ 2. Finally, define f̄ : F2(X) − {{p, q}} → Z as follows: for each

A ∈ F2(X) − {{p, q}}, let f̄ (A) = f (A). Using the fact that f −1(p) = {p} and f −1(q) = {q}, it can be proved that f̄
is well defined. Since f is continuous, f̄ is continuous. Finally, notice that f̄ (B) = B for each B ∈ Z. Thus, f̄ is a

retraction.

Case II. X − {p, q} is connected.

There exists a theta curve Y in X such that p, q ∈ Y and a retraction f : X → Y satisfying f −1(p) = {p} and

f −1(q) = {q} (see Lemma 2.4). Since X−{p, q} is connected, Y −{p, q} is also connected. PutZ = F2(Y)−{{p, q}}.
By Theorem 3.4, r(Z) ≥ 2 since r(F2(Y)) = 1 (see Theorem 2.8). Now, define f̄ : F2(X) − {{p, q}} → Z by

f̄ (A) = f (A) for each A ∈ F2(X) − {{p, q}}. Notice that f̄ is well defined since f −1(p) = {p} and f −1(q) = {q}. The

continuity of f̄ follows from the fact that f is continuous. It is easy to verify that f̄ (B) = B for each B ∈ Z. Thus,

Z is a retract of F2(X) − {{p, q}}. �
3.1 Classification

Theorem 3.6 Let X be a cyclicly connected graph and let p, q ∈ X. Then, {p, q} makes a hole with respect to
multicoherence degree in F2(X) if and only if either p = q and p ∈ R(X), or p � q.

Proof. From (Nadler, Jr., 1992, Theorem 9.10, p. 144; Kuratowski, 1968, Theorem 3, p. 278) and (Nadler, Jr.,

1992, Corollary 9.6, p. 142), it follows that E(X) = ∅. Then, p, q ∈ O(X) ∪ R(X)

Assume that {p, q} makes a hole in F2(X). Now, by Theorem 3.1, either p = q and p � O(X), or p � q. So, eihter

p = q and p ∈ R(X) or p � q. This proves the necessity.

Finally, the sufficiency follows from Theorems 3.2 and 3.5. �
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