Making Holes in the Second Symmetric Product of a Cyclicly Connected Graph

José G. Anaya ${ }^{1}$, David Maya ${ }^{1}$ \& Fernando Orozco-Zitli ${ }^{1}$
${ }^{1}$ Universidad Autónoma del Estado de México, Facultad de Ciencias, Toluca, México
Correspondence: David Maya, Universidad Autónoma del Estado de México, Facultad de Ciencias, Instituto Literario 100. Col. Centro, C. P. 50000, Toluca, Estado de México, México. E-mail: dmayae@uaemex.mx

Received: June 9, 2014 Accepted: July 2, 2014 Online Published: August 4, 2014
doi:10.5539/jmr.v6n3p105 URL: http://dx.doi.org/10.5539/jmr.v6n3p105

Abstract

A continuum is a connected compact metric space. The second symmetric product of a continuum $X, \mathcal{F}_{2}(X)$, is the hyperspace of all nonempty subsets of X having at most two elements. An element A of $\mathcal{F}_{2}(X)$ is said to make a hole with respect to multicoherence degree in $\mathcal{F}_{2}(X)$ if the multicoherence degree of $\mathcal{F}_{2}(X)-\{A\}$ is greater than the multicoherence degree of $\mathcal{F}_{2}(X)$. In this paper, we characterize those elements $A \in \mathcal{F}_{2}(X)$ such that A makes a hole with respect to multicoherence degree in $\mathcal{F}_{2}(X)$ when X is a cyclicly connected graph.

Keywords: continuum, symmetric products, multicoherence degree, make a hole with respect to multicoherence degree

1. Introduction

A continuum is a connected compact metric space. Let X be a continuum. For each positive interger n, let $\mathcal{F}_{n}(X)=\{A \subset X: A$ has at most n elements and $A \neq \emptyset\}$. The hyperspace $\mathcal{F}_{n}(X)$ is called the $n^{\text {th }}$ symmetric product of X. It is known that each hyperspace $\mathcal{F}_{n}(X)$ is a continuum (see Borsuk \& Ulam, 1931, pp. 876, 877) and (Michael, 1951, Theorem 4.10, p. 165).
If Z is any topological space, let $b_{0}(Z)$ denote the number of components of Z minus one if this number is finite and $b_{0}(Z)=\infty$ otherwise. Given a connected topological space Y, the multicoherence degree of Y, is defined by $r(Y)=\sup \left\{b_{0}(K \cap L): K\right.$ and L are closed connected subsets of Y and $\left.Y=K \cup L\right\}$. The space Y is said to be unicoherent if $r(Y)=0$. Let $y \in Y$ such that $Y-\{y\}$ is connected, we say that y makes a hole with respect to multicoherence degree in Y if $r(Y-\{y\})>r(Y)$. This is a generalization of the notion of to make a hole in a unicoherent topological space defined in (Anaya, 2007, p. 2000).

In this paper, we are interesting in the following problem.
Problem. Let $\mathcal{H}(X)$ be a hyperspace of a continuum X. For which elements $A \in \mathcal{H}(X), A$ makes a hole with respect to multicoherence degree in $\mathcal{H}(X)$.
In the current paper, we are presenting the solution to this problem when X is a cyclicly connected graph and $\mathcal{H}(X)=\mathcal{F}_{2}(X)$.
Readers specially interested in this problem are refered to Anaya (2007, 2011), Anaya, Maya and Orozco-Zitli (2010, 2012).

2. Preliminaries

Given a positive interger m, define $\lambda(m)=\{1,2, \ldots, m\}$. A map is a continuous function. The identity map for a topological space Z is denoted by id_{Z}. An arc is any space homeomorphic to [0, 1]. A simple closed curve is a space which is homeomorphic to the unit circle S^{1} in the Euclidean plane \mathbb{R}^{2}. A theta curve is a space which is homeomorphic to $S^{1} \cup([-1,1] \times\{0\})$ in \mathbb{R}^{2}. The symbol $[0,1]^{2}$ denotes the space $[0,1] \times[0,1]$. The set $\left\{(u, v) \in[0,1]^{2}: u \leq v\right\}$ is denoted by Δ. A graph is a continuum which can be written as the union of finitely many arcs any two of which are either disjoint or intersect only in one or both their end points. A point y in a connected topological space Y is called cut point (non-cut point) if $Y-\{y\}$ is not connected (connected). A space W is said to be cyclicly connected provided that every two points of W belong to some simple closed curve in W
(see (Whyburn, 1942, p. 77)). A graph X is a cyclicly connected graph if X is a cyclicly connected space.
Given a topological space Y. A subspace Z of Y is said to be:
(a) a retract of Y if there exists a map $f: Y \rightarrow Z$ such that $f(z)=z$ for every $z \in Z$. The map f is called a retraction.
(b) a deformation retract of Y if there exist a retraction $f: Y \rightarrow Z$ and a map $g: Y \times[0,1] \rightarrow Y$ such that $g(x, 0)=x$ and $g(x, 1)=f(x)$ for every $x \in Y$.
(c) a strong deformation retract of Y if there exist f and g as in (b) with the additional property that $g(z, t)=z$ for every $(z, t) \in Z \times[0,1]$.

Let $y \in Y$. Let β be a cardinal number. We say that y is of order less than or equal to β in Y, written $\operatorname{ord}(y, Y) \leq \beta$, provided that for each open subset U of Y containing y, there exists an open subset V of Y such that $y \in V \subset U$ and the cardinality of the boundary of V is less than or equal to β. We say that y is of order β in Y, written $\operatorname{ord}(y, Y)=\beta$, provided that $\operatorname{ord}(y, Y) \leq \beta$ and $\operatorname{ord}(y, Y) \not \leq \alpha$ for any cardinal number $\alpha<\beta$. Put $E(Y)=\{x \in Y$: $\operatorname{ord}(x, Y)=1\}, O(Y)=\{x \in Y: \operatorname{ord}(x, Y)=2\}$ and $R(Y)=\{x \in Y: \operatorname{ord}(x, Y) \geq 3\}$. Define $\mathcal{I}(Y)=\{I \subset Y$: I is an arc and $E(I)=I \cap R(Y)\}, \mathcal{N}(y, Y)=\{I \in I(Y): y \notin I\}, \mathcal{M}(y, Y)=\{I \in I(Y): y \in I\}, N(y, Y)=\bigcup \mathcal{N}(y, Y)$ and $M(y, Y)=\bigcup \mathcal{M}(y, Y)$. If K and L are nonempty subsets of Y, let $\langle K, L\rangle=\{\{x, y\} \subset Y: x \in K, y \in L\}$.

2.1 Auxiliary Results

Lemma 2.1 If X is a cyclicly connected graph different from a simple closed curve, then the following conditions hold:
(1) for each simple closed curve S in $X, S \cap R(X)$ has at least two points;
(2) $X=\bigcup I(X)$;
(3) the set $\mathcal{I}(X)$ is finite;
(4) for each $p \in X, M(p, X)$ is a nondegenerate subcontinuum of X.

Proof. In order to prove (1), let S be a simple closed curve in X. Since $S \neq X$, there exists a simple closed curve $S_{1} \neq S$ in X such that $S \cap S_{1} \neq \emptyset$. So, using (Nadler, Jr., 1992, Proposition 9.5, p. 142), $R\left(S \cup S_{1}\right) \cap S \cap S_{1} \neq \emptyset$. Thus, by (Kuratowski, 1968, Theorem 3, p. 278), $R(X) \cap S \cap S_{1} \neq \emptyset$. Now, assume that $R(X) \cap S \cap S_{1}$ consists of precisely one point. Then, there exists a simple closed curve $S_{2} \neq S$ in X such that $S_{2} \cap\left(S-S_{1}\right) \neq \emptyset$. Applying the previous argument to $S \cup S_{2}$, we have $R(X) \cap\left(S-S_{1}\right) \cap S_{2} \neq \emptyset$. Hence, $S \cap R(X)$ has at least two points.
(2) Follows from (1) and the fact that $R(X)$ is a finite set (see (Nadler, Jr., 1992, Theorem 9.10, p. 144)).
(3) Follows from the fact that $R(X)$ is a finite set (see (Nadler, Jr., 1992, Theorem 9.10, p. 144)).

Finally, to check (4), let $p \in X$. By (2), there exists $I \in I(X)$ such that $p \in I$. So, since $I \subset M(p, X), M(p, X)$ is nondegenerate set. On the other hand, clearly, $M(p, X)$ is connected. By (3), $M(p, X)$ is closed in X.
Lemma 2.2 Let X be a cyclicly connected graph and let $p \in X$. If $\mathcal{N}(p, X) \neq \emptyset$, then $N(p, X)$ is a subcontinuum of X.
Proof. First, by (3) of Lemma 2.1, $N(p, X)$ is closed in X. We shall prove the connectedness of $N(p, X)$. By (Whyburn, 1942, (9.3), p. 79), $X-\{p\}$ is connected. So, it suffices to prove that $N(p, X)$ is a continuous image of $X-\{p\}$. Consider $F=\bigcup\{E(I): I \in \mathcal{M}(p, X)\}-\{p\}$. By (3) of Lemma 2.1, $\mathcal{M}(p, X)$ is finite. Then, F is discrete. By (4) of Lemma 2.1, $M(p, X)-\{p\}$ is a nonempty set. Now, define $f: M(p, X)-\{p\} \rightarrow F$ as follows: given $z \in M(p, X)-\{p\}$, let $f(z)$ be the unique element of $F \cap C$ where C is the component of $M(p, X)-\{p\}$ containing z. Clearly, f is surjective. We prove that f is continuous. Let $e \in F$. By the definition of f, it is easy to see that $f^{-1}(\{e\})$ is a component of $M(p, X)-\{p\}$. Thus, since each component of $M(p, X)-\{p\}$ is closed in $M(p, X)-\{p\}$, $f^{-1}(\{e\})$ is closed in $M(p, X)-\{p\}$.
Now, define $\bar{f}: X-\{p\} \rightarrow N(p, X)$ by

$$
\bar{f}(x)=\left\{\begin{array}{cl}
x, & \text { if } x \in N(p, X) \\
f(x), & \text { if } x \in M(p, X)-\{p\}
\end{array}\right.
$$

Since $N(p, X) \cap M(p, X)=F$ and by the definition of f, \bar{f} is well defined. Clearly, \bar{f} is surjective. The continuity of \bar{f} follows from the continuity of f and the fact that $N(p, X)$ and $M(p, X)-\{p\}$ are closed subsets of $X-\{p\}$. This finishes the proof of that $N(p, X)$ is connected.

Lemma 2.3 Let X be a cyclicly connected graph different from a simple closed curve and let p, q be different points in X. If $X-\{p, q\}$ is not connected, there exist a simple closed curve S in X containing p and q and a retract f : $X \rightarrow S$ such that $f^{-1}(p)=\{p\}$ and $f^{-1}(q)=\{q\}$.

Proof. Let C_{1} and C_{2} be different components of $X-\{p, q\}$. Since $C_{k} \cup\{p, q\}$ is a subcontinuum of X, there exists an arc J_{k} in $C_{k} \cup\{p, q\}$ such that $E\left(J_{k}\right)=\{p, q\}$ for each $k \in\{1,2\}$. Put $S=J_{1} \cup J_{2}$. Clearly, S is a simple closed curve in X and $p, q \in S$.
Now, let $f_{0}: R(X) \rightarrow S$ be a function such that $\left.f_{0}\right|_{R(X) \cap S}=\operatorname{id}_{R(X) \cap S}, f_{0}\left(R(X) \cap C_{1}\right) \subset J_{1}$ and $f_{0}(R(X) \cap C) \subset J_{2}$ for each component C of $X-\{p, q\}$ with $C \neq C_{1}$.
Given $I \in I(X)$, let $f_{I}: I \rightarrow S$ be a one-to-one map such that $f_{I} \mid S=\mathrm{id}_{S \cap I}, E\left(f_{I}(I)\right)=f_{0}(E(I)), f_{I}\left(I \cap C_{1}\right) \subset J_{1}$ and $f_{I}(I \cap C) \subset J_{2}$ for each component C of $X-\{p, q\}$ with $C \neq C_{1}$. From the fact that f_{I} is one-to-one, it follows that $f_{I}(I-\{p, q\}) \subset S-\{p, q\}$.
Define $f: X \rightarrow S$ as follows: for each $x \in X$, take $I \in \mathcal{I}(X)$ such that $x \in I$ and let $f(x)=f_{I}(x)$. Notice that $\left.f\right|_{R(X)}=f_{0}$. Hence, f is well defined. The continuity of f follows from the fact that each f_{I} is continuous and, by (2) and (3) of Lemma 2.1. It is easy to see that $\left.f\right|_{S}=\mathrm{id}_{S}$. Thus, f is a retraction.

Finally, since $S-\{p, q\} \subset X-\{p, q\}$ and $\left.f\right|_{S}=\operatorname{id}_{S}, S-\{p, q\} \subset f(X-\{p, q\})$. To check that $f(X-\{p, q\}) \subset$ $S-\{p, q\}$, notice that $f(X-\{p, q\})=\bigcup\left\{f_{I}(I-\{p, q\}): I \in I(X)\right\} \subset S-\{p, q\}$ (see (2). of Lemma 2.1). Thus, $f(X-\{p, q\})=S-\{p, q\}$. Hence, $f^{-1}(\{p, q\})=\{p, q\}$. From the fact that $p \neq q$, we have that $f^{-1}(p)=\{p\}$ and $f^{-1}(q)=\{q\}$.
Lemma 2.4 Let X be a cyclicly connected graph different from a simple closed curve and let p, q be different points in X. If $X-\{p, q\}$ is connected, there exist a theta curve Y in X containing p and q and a retract $f: X \rightarrow Y$ such that $f^{-1}(p)=\{p\}$ and $f^{-1}(q)=\{q\}$.
Proof. By the definition of cyclic connectedness, there exists a simple closed curve S in X such that $p, q \in Y$. Since $X-\{p, q\}$ is connected, there exists an arc J in X such that $S-\{p, q\} \cap J=E(J)$. Put $Y=S \cup J$. Clearly, Y is a theta curve in X containing p and q such that $Y-\{p, q\}$ is connected.
First, consider a function $f_{0}: R(X) \rightarrow Y$ such that $\left.f_{0}\right|_{Y}=\operatorname{id}_{R(X) \cap Y}$. Now, for each $I \in \mathcal{I}(X)$, fix a one-to-one map f_{I} : $I \rightarrow Y$ such that $\left.f_{I}\right|_{Y}=\operatorname{id}_{Y \cap I}$ and $f(I-\{p, q\}) \subset Y-\{p, q\}$.
Define $f: X \rightarrow Y$ as follows: for each $x \in X$, take $I \in I(X)$ such that $x \in I$ and let $f(x)=f_{I}(x)$. From the fact that $\left.f\right|_{R(X)}=f_{0}$, it follows that f is well defined. Since $X=\bigcup I(X)$ and $\mathcal{I}(X)$ is finite (see (2) and (3) of Lemma 2.1), f is continuous. From the fact that $\left.f\right|_{Y}=\operatorname{id}_{Y}$, it follows that f is a retraction.
We will prove that $f(X-\{p, q\})=Y-\{p, q\}$. Since $X-\{p, q\}=\bigcup\{I-\{p, q\}: I \in \mathcal{I}(X)\}, f(X-\{p, q\}) \subset Y-\{p, q\}$. Clearly, $Y-\{p, q\}$ is contained in $f(X-\{p, q\})$. We have that $f^{-1}(\{p, q\})=\{p, q\}$. Since $p \neq q, f^{-1}(p)=\{p\}$ and $f^{-1}(q)=\{q\}$.
Proposition 2.5 Let X be a continuum and let K and L be connected subsets (subcontinua) of X. Then $\langle K, L\rangle$ is a connected subset (subcontinuum) of $\mathcal{F}_{2}(X)$ and, it does not have cut points when K and L are nondegenerate sets.
Proof. The connectedness of $\langle K, L\rangle$ follows from (Martínez-Montejano, 2002, Lemma 1, p. 230).
In order to prove the second part of this proposition, let $\{p, q\} \in\langle K, L\rangle$. Using K and L are nondegenerate sets and the arguments in (Kuratowski, 1968, Theorem 11, p. 137), it can be shown that $K \times L-\{(p, q),(q, p)\}$ is connected. So, since $\langle K, L\rangle-\{\{p, q\}\}$ is a continuous image of $K \times L-\{(p, q),(q, p)\},\langle K, L\rangle-\{\{p, q\}\}$ is connected.
Lemma 2.6 Let I be an arc and let $p \in I-E(I)$. If H and J are subcontinua of I such that $H \cup J \subset I-\{p\}$ and each one of them contains a different end point of I, then $\langle H, I\rangle \cup\langle J, I\rangle$ is a strong deformation retract of $\mathcal{F}_{2}(I)-\{\{p\}\}$.
Proof. Put $\Gamma=\Delta-\left\{\left(\frac{1}{2}, \frac{1}{2}\right)\right\}, \Gamma_{0}=\left\{(u, v) \in \Gamma: u \leq \frac{1}{4}\right\} \cup\left\{(u, v) \in \Gamma: \frac{3}{4} \leq v\right\}$ and $\Gamma_{1}=\left\{(u, v) \in \Gamma: \frac{1}{4} \leq u, v \leq \frac{3}{4}\right\}$. First, we are going to prove that Γ_{0} is a strong deformation retract of Γ. Define $f: \Gamma \rightarrow \Gamma_{0}$ by

$$
f(u, v)=\left\{\begin{array}{cl}
(u, v), & \text { if }(u, v) \in \Gamma_{0} \\
\left(\frac{1}{4}, u+v-\frac{1}{4}\right), & \text { if }(u, v) \in \Gamma_{1} \text { and } v \leq 1-u \\
\left(u+v-\frac{3}{4}, \frac{3}{4}\right), & \text { if }(u, v) \in \Gamma_{1} \text { and } 1-u \leq v
\end{array}\right.
$$

and $g: \Gamma \times[0,1] \rightarrow \Gamma$ by

$$
g((u, v), t)=(1-t) \cdot(u, v)+t \cdot f(u, v)
$$

It is easy to verify that f and g have the required properties.
Finally, let $h:[0,1] \rightarrow I$ be a homeomorphism such that $h\left(\left[0, \frac{1}{4}\right]\right)=H, h\left(\left[\frac{3}{4}, 1\right]\right)=J$ and $h\left(\frac{1}{2}\right)=p$. Define $\bar{h}: \Gamma \rightarrow$ $\mathcal{F}_{2}(I)-\{\{p\}\}$ by $\bar{h}(u, v)=\{h(u), h(v)\}$. It can be proved that \bar{h} is a homeomorphism such that $\bar{h}\left(\Gamma_{0}\right)=\langle H, I\rangle \cup\langle J, I\rangle$. Therefore, $\langle H, I\rangle \cup\langle J, I\rangle$ is a strong deformation retract of $\mathcal{F}_{2}(I)-\{\{p\}\}$.
Lemma 2.7 If X is a graph containing a simple closed curve, then X is not unicoherent.
Proof. We shall prove that there exist subcontinua K and L of X such that $b_{0}(K \cap L)>0$ and $X=K \cup L$. Let S be a simple closed curve in X. By (Nadler, Jr., 1992, Theorem 9.10, p. 144), there exists $x \in S$ such that ord $(x, X)=2$. Now, using (Nadler, Jr., 1992, Theorem 9.7, p. 143), it can be proved that there exists an arc J in S which is a neighborhood of x in X. Then, $J-E(J)$ is an open connected subset of X. Now, by (Nadler, Jr., 1992, 9.44, (a), p. 160), $S-(J-E(J))$ is connected. Hence, $X-(J-E(J))$ is a subcontinuum of X. So, $K=J$ and $L=X-(J-E(J))$ satify the requiered properties.
Theorem 2.8 If X is a cyclicly connected graph, then $r\left(\mathcal{F}_{2}(X)\right)=1$.
Proof. The result follows from (Nadler, Jr., 1992, Theorem 8.25, p. 131), Lemma 2.7 and (Illanes, 1985, Theorem 1.6, p. 16).

3. Making Holes in the Second Symmetric Product of a Cyclicly Connected Graph

Theorem 3.1 Let X be a graph and let $p \in O(X)$. Then $\{p\}$ does not make a hole with respect to multicoherence degree in $\mathcal{F}_{2}(X)$.
Proof. We will show that $r\left(\mathcal{F}_{2}(X)-\{\{p\}\}\right)=r\left(\mathcal{F}_{2}(X)\right)$. Since X is a graph, it is easy to see that $\mathcal{F}_{2}(X)-\{\{p\}\}$ is a locally connected metric space and, by Proposition $2.5, \mathcal{F}_{2}(X)-\{\{p\}\}$ is connected. So, in light of (Eilenberg, 1936, Theorem 4, p. 162) and (Stone, 1950, Theorem 5, p. 472), it suffices to prove that there exists a deformation retract \mathcal{Z} of $\mathcal{F}_{2}(X)-\{\{p\}\}$ such that $r(\mathcal{Z})=r\left(\mathcal{F}_{2}(X)\right)$.
Since $p \in O(X)$, using (Nadler, Jr., 1992, Lemma 9.7, p. 143), it can be shown that there exists an arc I in X such that I is a neighborhood of p in X. So, clearly, $p \in I-E(I)$. Let H and J be nondegenerate subcontinua of I such that $H \cup J \subset I-\{p\}$ and each one of them contains a different end point of I. Put $Z=(X-I) \cup H \cup J$ and $\mathcal{Z}=\langle X, Z\rangle$. Clearly, $\mathcal{F}_{2}(X)=\mathcal{Z} \cup \mathcal{F}_{2}(I)$. Now, by Lemma 2.6, there exist a retraction $f: \mathcal{F}_{2}(I)-\{\{p\}\} \rightarrow\langle H, I\rangle \cup\langle J, I\rangle$ and a map $g:\left(\mathcal{F}_{2}(I)-\{\{p\}\}\right) \times[0,1] \rightarrow \mathcal{F}_{2}(I)-\{\{p\}\}$ such that $g(A, 0)=A$ and $g(A, 1)=f(A)$ for each $A \in \mathcal{F}_{2}(I)-\{\{p\}\}$ and $g(B, t)=B$ for each $(B, t) \in(\langle H, I\rangle \cup\langle J, I\rangle) \times[0,1]$.
Define $\bar{f}: \mathcal{F}_{2}(X)-\{\{p\}\} \rightarrow \mathcal{Z}$ by

$$
\bar{f}(A)=\left\{\begin{array}{cl}
A, & \text { if } A \in \mathcal{Z} \\
f(A), & \text { if } A \in \mathcal{F}_{2}(I)-\{\{p\}\}
\end{array}\right.
$$

and $\bar{g}:\left(\mathcal{F}_{2}(X)-\{\{p\}\}\right) \times[0,1] \rightarrow \mathcal{F}_{2}(X)-\{\{p\}\}$ by

$$
\bar{g}(A, t)=\left\{\begin{array}{cl}
A, & \text { if } A \in \mathcal{Z} \\
g(A, t), & \text { if } A \in \mathcal{F}_{2}(I)-\{\{p\}\}
\end{array}\right.
$$

To check that \bar{f} and \bar{g} are well defined, notice that $\mathcal{Z} \cap \mathcal{F}_{2}(I)-\{\{p\}\}=\langle H, I\rangle \cup\langle J, I\rangle$ and $f(B)=B=g(B, t)$ for each $(B, t) \in(\langle H, I\rangle \cup\langle J, I\rangle) \times[0,1]$. Now, the continuity of \bar{f} and \bar{g} follows from the continuity of the maps f and g and the fact that \mathcal{Z} and $\mathcal{F}_{2}(I)-\{\{p\}\}$ are closed in $\mathcal{F}_{2}(X)-\{\{p\}\}$. It is easy to verify that \bar{f} and \bar{g} have the required properties. Thus, \mathcal{Z} is a deformation retract of $\mathcal{F}_{2}(X)-\{\{p\}\}$.
Finally, to check that $r(\mathcal{Z})=r\left(\mathcal{F}_{2}(X)\right)$, we shall show that \mathcal{Z} is homeomorphic to $\mathcal{F}_{2}(X)$. It can be shown that there exists a homeomorphism $h: \mathcal{F}_{2}(I) \rightarrow\langle H, I\rangle \cup\langle J, I\rangle$ such that $\left.h\right|_{\langle E(I), I\rangle}=\operatorname{id}_{\langle E(I), I\rangle}$. Define $\bar{h}: \mathcal{F}_{2}(X) \rightarrow \mathcal{Z}$ by

$$
\bar{h}(A)=\left\{\begin{array}{cl}
h(A), & \text { if } A \in \mathcal{F}_{2}(I) \\
A, & \text { otherwise }
\end{array}\right.
$$

It is easy to see that \bar{h} is a homeomorphism. Hence, $r\left(\mathcal{F}_{2}(X)\right)=r(\mathcal{Z})$.
This finishes the proof that $\{p\}$ does not make a hole with respect to multicoherence degree in $\mathcal{F}_{2}(X)$.
Theorem 3.2 Let X be a cyclicly connected graph and $p \in R(X)$. Then $\{p\}$ makes a hole with respect to multicoherence degree in $\mathcal{F}_{2}(X)$.

Proof. Since $r\left(\mathcal{F}_{2}(X)\right)=1$ (see Theorem 2.8), we shall show that $r\left(\mathcal{F}_{2}(X)-\{\{p\}\}\right) \geq 2$. So, it suffices to prove that there exist two closed connected subsets \mathcal{K} and \mathcal{L} of $\mathcal{F}_{2}(X)-\{\{p\}\}$ such that $\mathcal{F}_{2}(X)-\{\{p\}\}=\mathcal{K} \cup \mathcal{L}$ and $b_{0}(\mathcal{K} \cap \mathcal{L}) \geq 2$.
Put $\Lambda=\left\{(u, v) \in[0,1]^{2}-\{\mathbf{0}\}: \frac{u}{2} \leq v \leq 2 u\right\}, \Omega=\left\{(u, v) \in[0,1]^{2}-\{\mathbf{0}\}: v \leq \frac{u}{2}\right\}, \Gamma=\left\{(u, v) \in[0,1]^{2}-\{\mathbf{0}\}: 2 u \leq v\right\}$ where $\mathbf{0}=(0,0), m=\operatorname{ord}(p, X)$ and $\mathcal{M}(p, X)=\left\{I_{1}, I_{2}, \ldots, I_{m}\right\}$. For each $k \in \lambda(m)$, fix a homeomorphism φ_{k} : $[0,1] \rightarrow I_{k}$ such that $\varphi_{k}(0)=p$. Given elements $k \neq j \in \lambda(m)$, define $\psi_{(k, j)}:[0,1]^{2}-\{0\} \rightarrow\left\langle I_{k}, I_{j}\right\rangle-\{\{p\}\}$ by $\psi_{(k, j)}(s, t)=\left\{\varphi_{k}(s), \varphi_{j}(t)\right\}$. Since $\varphi_{k}(0)=\varphi_{j}(0)=p$ and, φ_{k} and φ_{j} are one-to-one, $\psi_{(k, j)}$ is well defined. Using the fact that φ_{k} and φ_{j} are surjective, it is easy to prove that $\psi_{(k, j)}$ is surjective. Clearly, for each $k, j \in \lambda(m)$ with $k \neq j$, $\psi_{(k, j)}(\Lambda)=\psi_{(j, k)}(\Lambda)$ and $\psi_{(k, j)}(\Omega)=\psi_{(j, k)}(\Gamma)$.
Consider the following cases.
Case A. $\mathcal{N}(p, X) \neq \emptyset$.
Let $Y=N(p, X)$. By Lemma 2.2, Y is a subcontinuum of X. For each $k \in \lambda(m)$, define

$$
\mathcal{K}_{k}=\left\langle\varphi_{k}\left(\left[\frac{1}{2}, 1\right]\right), Y \cup \varphi_{k}\left(\left[\frac{1}{2}, 1\right]\right)\right\rangle \text { and } \mathcal{L}_{k}=\left\langle\varphi_{k}\left(\left[0, \frac{1}{2}\right]\right), Y \cup \varphi_{k}([0,1])\right\rangle-\{\{p\}\} .
$$

Consider

$$
\begin{gathered}
\mathcal{K}=\mathcal{F}_{2}(Y) \cup \bigcup\left\{\mathcal{K}_{k}: k \in \lambda(m)\right\} \cup \bigcup\left\{\psi_{(k, j)}(\Lambda): k, j \in \lambda(m), k \neq j\right\} \\
\text { and } \mathcal{L}=\bigcup\left\{\mathcal{L}_{k}: k \in \lambda(m)\right\} \cup \bigcup\left\{\psi_{(k, j)}(\Gamma): k, j \in \lambda(m), k \neq j\right\} .
\end{gathered}
$$

Clearly, \mathcal{K} and \mathcal{L} are closed subsets of $\mathcal{F}_{2}(X)-\{\{p\}\}$. To prove $\mathcal{F}_{2}(X)-\{\{p\}\}=\mathcal{K} \cup \mathcal{L}$, let $\{x, y\} \in \mathcal{F}_{2}(X)-\{\{p\}\}$. Since $X=M(p, X) \cup Y, \mathcal{F}_{2}(X)=\mathcal{F}_{2}(M(p, X)) \cup \mathcal{F}_{2}(Y) \cup\langle M(p, X), Y\rangle$. If $\{x, y\} \in \mathcal{F}_{2}(Y) \cup\langle M(p, X), Y\rangle$, it is easy to see that $\{x, y\} \in \mathcal{K} \cup \mathcal{L}$. Suppose that $\{x, y\} \in \mathcal{F}_{2}(M(p, X))-\{\{p\}\}$. Take $k, j \in \lambda(m)$ such that $x \in I_{k}$ and $y \in I_{j}$. First, if $k=j$, then $\{x, y\} \in \mathcal{K}_{k} \cup \mathcal{L}_{k}$. Now, without loss of generality, we may assume that $k<j$. Consider $(u, v) \in[0,1]^{2}-\{\mathbf{0}\}$ such that $\psi_{(k, j)}(u, v)=\{x, y\}$. Thus, since $[0,1]^{2}-\{\mathbf{0}\}=\Lambda \cup \Omega \cup \Gamma, \psi_{(k, j)}(\Lambda)=\psi_{(j, k)}(\Lambda)$ and $\psi_{(k, j)}(\Gamma)=\psi_{(j, k)}(\Omega),\{x, y\} \in \mathcal{K} \cup \mathcal{L}$.

To show that \mathcal{K} and \mathcal{L} are connected, let $k \neq j \in \lambda(m)$. The connectedness of \mathcal{K}_{k} and \mathcal{L}_{k} follows from the fact that $\varphi_{k}(1) \in Y$ and Proposition 2.5. Without loss of generality, we may assume that $k<j$. The connectedness of \mathcal{L} follows from the connectedness of Ω and the fact that $\psi_{(k, j)}(1,0) \in \mathcal{L}_{k} \cap \mathcal{L}_{j} \cap \psi_{(k, j)}(\Omega)$. Since $\psi_{(k, j)}(\Lambda)$ is connected, $\psi_{(k, j)}(\Lambda)=\psi_{(j, k)}(\Lambda)$ and $\psi_{(k, j)}(1,1) \in \mathcal{K}_{k} \cap \psi_{(k, j)}(\Lambda) \cap \mathcal{F}_{2}(Y), \mathcal{K}$ is connected.
Finally, we will show that $b_{0}(\mathcal{K} \cap \mathcal{L}) \geq 2$. Put $\Sigma=\left\{(u, v) \in[0,1]^{2}-\{\mathbf{0}\}: v=2 u\right\}$. Given $k \in \lambda(m)$. Define $\mathcal{D}_{k}=\left\langle\left\{\varphi_{k}\left(\frac{1}{2}\right)\right\}, Y \cup \varphi_{k}\left(\left[\frac{1}{2}, 1\right]\right)\right\rangle$ and $C_{k}=\bigcup\left\{\psi_{(k, j)}(\Sigma): j \in \lambda(m)-\{k\}\right\} \cup \mathcal{D}_{k}$. We are going to prove that C_{1}, \ldots, C_{m} are the components of $\mathcal{K} \cap \mathcal{L}$. The connectedness of \mathcal{D}_{k} follows from the fact that $\varphi_{k}(1) \in Y$ and Proposition 2.5. Since $\psi_{(k, j)}(\Sigma)$ is connected and $\psi_{(k, j)}\left(\frac{1}{2}, 1\right) \in \psi_{(k, j)}(\Sigma) \cap \mathcal{D}_{k}$ for each $j \in \lambda(m)-\{k\}, C_{k}$ is connected.
We need to prove the following properties,
i) $\mathcal{F}_{2}(Y) \cap \mathcal{L}=\emptyset$,
ii) $\mathcal{K}_{k} \cap \mathcal{L}_{k}=\mathcal{D}_{k}$ for each $k \in \lambda(m)$,
iii) $\mathcal{K}_{k} \cap \mathcal{L}_{j}=\emptyset$ and $\mathcal{K}_{k} \cap \psi_{(k, j)}(\Gamma)=\left\{\varphi_{k}\left(\frac{1}{2}\right), \varphi_{j}(1)\right\}$ for each $k \neq j \in \lambda(m)$,
iv) $\mathcal{L} \cap\left\langle I_{k}, I_{j}\right\rangle=\psi_{(k, j)}(\Omega) \cup \psi_{(k, j)}(\Gamma)$ for each $k \neq j \in \lambda(m)$,
v) $\varphi_{k}([0,1]) \cap \varphi_{j}([0,1])=\left\{\varphi_{k}(0), \varphi_{k}(1)\right\} \cap\left\{\varphi_{j}(0), \varphi_{j}(1)\right\}$ for each $k \neq j \in \lambda(m)$,
vi) $\mathcal{D}_{k} \cap \mathcal{D}_{j}=\emptyset$ for each $k \neq j \in \lambda(m)$,
vii) if $k \neq j \in \lambda(m)$, then $\psi_{(k, j)}(\Sigma) \cap \mathcal{D}_{l}=\emptyset$ for each $l \in \lambda(m)-\{k\}$,
viii) if $k \neq j \in \lambda(m)$, then $\psi_{(k, j)}(\Sigma) \cap \psi_{(l, n)}(\Sigma)=\emptyset$ for each $(l, n) \in((\lambda(m)-\{k\}) \times(\lambda(m)-\{j\}))-\{(j, k)\}$.

It is easy to see the properties $i)-v$).
vi) Follows from the facts that $\varphi_{k}\left(\frac{1}{2}\right) \notin Y \cup \varphi_{j}\left(\left[\frac{1}{2}, 1\right]\right), \varphi_{j}\left(\frac{1}{2}\right) \notin Y \cup \varphi_{k}\left(\left[\frac{1}{2}, 1\right]\right)$ and v).
vii) Suppose to the contrary that there exists $l \in \lambda(m)-\{k\}$ such that $\psi_{(k, j)}(\Sigma) \cap \mathcal{D}_{l} \neq \emptyset$. Consider $(u, 2 u) \in \Sigma$ such that $\psi_{(k, j)}(u, 2 u) \in \mathcal{D}_{l}$. Then, either $\varphi_{k}(u)=\varphi_{l}\left(\frac{1}{2}\right)$ or $\varphi_{j}(2 u)=\varphi_{l}\left(\frac{1}{2}\right)$. So, by v $), j=l$ and $\varphi_{j}(2 u)=\varphi_{l}\left(\frac{1}{2}\right)$. Thus, $u=\frac{1}{4}$ and $\varphi_{k}\left(\frac{1}{4}\right) \in Y \cup \varphi_{l}\left(\left[\frac{1}{2}, 1\right]\right)$, a contradiction.
viii) Suppose to the contrary that there exist $(l, n) \in((\lambda(m)-\{k\}) \times(\lambda(m)-\{j\}))-\{(j, k)\}$ and $(u, v),(s, t) \in \Sigma$ such that $\psi_{(k, j)}(u, v)=\psi_{(l, n)}(s, t)$. So, since $u>0, s \leq \frac{1}{2}$ and $k \neq l$, by v), $\varphi_{k}(u) \neq \varphi_{l}(s)$ and $\varphi_{k}(u)=\varphi_{n}(t)$. Then, $\varphi_{j}(v)=\varphi_{l}(s)$. Thus, since $0<u, s \leq \frac{1}{2}$, by v), $k=n$ and $j=l$. Hence, since φ_{k} and φ_{l} are one-to-one maps, $u=t$ and $v=s$. Therefore, $(t, s),(s, t) \in \Sigma$, a contradiction.

We are ready to prove that $\mathcal{K} \cap \mathcal{L}=\bigcup\left\{C_{k}: k \in \lambda(m)\right\}$. From the fact that $\Sigma=\Lambda \cap \Gamma$ and ii), we have that $\bigcup\left\{C_{k}\right.$: $k \in \lambda(m)\} \subset \mathcal{K} \cap \mathcal{L}$. Now, let $\{w, z\} \in \mathcal{K} \cap \mathcal{L}$. If $\{w, z\} \in \mathcal{K}_{k} \cap \mathcal{L}$ for some $k \in \lambda(m)$, by ii) and iii), $\{w, z\} \in \mathcal{D}_{k} \subset \mathcal{C}_{k}$. Now, suppose that $\{w, z\} \in \psi_{(k, j)}(\Lambda) \cap \mathcal{L}$ for some $k \neq j \in \lambda(m)$. Since $\psi_{(k, j)}(\Lambda) \subset\left\langle I_{k}, I_{j}\right\rangle$ and $\psi_{(k, j)}(\Gamma)=\psi_{(j, k)}(\Omega)$, by iv), $\{w, z\} \in\left(\psi_{(k, j)}(\Lambda) \cap \psi_{(k, j)}(\Omega)\right) \cup\left(\psi_{(k, j)}(\Lambda) \cap \psi_{(j, k)}(\Omega)\right)$. So, using $\Sigma=\Lambda \cap \Omega, \varphi_{(k, j)}(\Lambda)=\varphi_{(j, k)}(\Lambda)$ and $\varphi_{(k, j)}\left|\Sigma, \varphi_{(j, k)}\right| \Sigma$ are one-to-one maps, it can be proved $\{w, z\} \in \varphi_{(k, j)}(\Sigma) \cup \varphi_{(j, k)}(\Sigma)$. Hence, $\{w, z\} \in \mathcal{C}_{k} \cup \mathcal{C}_{j}$.
Finally, in order to prove that $C_{1}, C_{2}, \ldots, C_{m}$ are mutually disjoint, let $k \neq j \in \lambda(m)$. By vi)-viii), $C_{k} \cap C_{j}=\emptyset$. Thus, $b_{0}(\mathcal{K} \cap \mathcal{L})+1=m \geq 3$.

Case B. $\mathcal{N}(p, X)=\emptyset$.
Then, $N(p, X)=\emptyset$ and $\varphi_{1}(1)=\varphi_{2}(1)=\cdots=\varphi_{k}(1)$. This case can be proved using similar arguments in the proof of Case A by considering $Y=\left\{\varphi_{1}(1)\right\}$.
Theorem 3.3 Let X be a simple closed curve and let $p, q \in X$ such that $p \neq q$. Then $\{p, q\}$ makes a hole with respect to multicoherence degree in $\mathcal{F}_{2}(X)$.
Proof. First, we are going to prove that $A=\{(1,0),(-1,0)\} \subset S^{1}$ makes a hole with respect to multicoherence degree in $\mathcal{F}_{2}\left(S^{1}\right)$. By Theorem 2.8, $r\left(\mathcal{F}_{2}\left(S^{1}\right)\right)=1$. So, it suffices to show that there exist two closed connected subsets \mathcal{K} and \mathcal{L} of $\mathcal{F}_{2}\left(S^{1}\right)-\{A\}$ such that $\mathcal{F}_{2}\left(S^{1}\right)-\{A\}=\mathcal{K} \cup \mathcal{L}$ and $b_{0}(\mathcal{K} \cap \mathcal{L}) \geq 2$.
Define $\varphi:[0,1] \rightarrow S^{1}$ by $\varphi(t)=(\cos (2 \pi t), \sin (2 \pi t))$ and $\psi: \Delta \rightarrow \mathcal{F}_{2}\left(S^{1}\right)$ by $\psi(t, s)=\{\varphi(t), \varphi(s)\}$. Notice that ψ is well defined and it is surjective. The continuity of ψ follows from that of φ. Put $\Gamma_{1}=\left\{(u, v) \in \Delta-\left\{\left(0, \frac{1}{2}\right)\right\}: \frac{1}{2}-u \leq\right.$ $v \leq 1-u\}, \Gamma_{2}=\left\{(u, v) \in \Delta-\left\{\left(\frac{1}{2}, 1\right)\right\}: \frac{3}{2}-u \leq v\right\}, \Gamma_{3}=\left\{(u, v) \in \Delta-\left\{\left(0, \frac{1}{2}\right)\right\}: v \leq \frac{1}{2}-u\right\}, \Gamma_{4}=\left\{(u, v) \in \Delta-\left\{\left(\frac{1}{2}, 1\right)\right\}:\right.$ $\left.1-u \leq v \leq \frac{3}{2}-u\right\}, \mathcal{K}=\psi\left(\Gamma_{1}\right) \cup \psi\left(\Gamma_{2}\right)$ and $\mathcal{L}=\psi\left(\Gamma_{3}\right) \cup \psi\left(\Gamma_{4}\right)$.
It is easy to prove that \mathcal{K} and \mathcal{L} are closed subset of $\mathcal{F}_{2}\left(S^{1}\right)-\{A\}$. Clearly, $\mathcal{K} \cup \mathcal{L} \subset \mathcal{F}_{2}\left(S^{1}\right)-\{A\}$. Now, we will prove that $\mathcal{F}_{2}\left(S^{1}\right)-\{A\} \subset \mathcal{K} \cup \mathcal{L}$. Let $\{x, y\} \in \mathcal{F}_{2}\left(S^{1}\right)-\{A\}$ and let $t, s \in[0,1]$ such that $\varphi(t)=x$ and $\varphi(s)=y$. Without loss of generality, we may suppose that $t \leq s$. So, since $\psi(t, s)=\{x, y\}$ and $(t, s) \in \Delta-\left\{\left(0, \frac{1}{2}\right),\left(\frac{1}{2}, 1\right)\right\}=\Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3} \cup \Gamma_{4}$, $\{x, y\} \in \psi\left(\Gamma_{1}\right) \cup \psi\left(\Gamma_{2}\right) \cup \psi\left(\Gamma_{3}\right) \cup \psi\left(\Gamma_{4}\right)=\mathcal{K} \cup \mathcal{L}$. Thus, $\mathcal{F}_{2}\left(S^{1}\right)-\{A\}=\mathcal{K} \cup \mathcal{L}$.
The connectedness of \mathcal{K} and \mathcal{L} follows from the facts that $\psi(0,0)=\psi(0,1)=\psi(1,1) \in \psi\left(\Gamma_{1}\right) \cap \psi\left(\Gamma_{2}\right) \cap \psi\left(\Gamma_{3}\right) \cap \psi\left(\Gamma_{4}\right)$ and each $\psi\left(\Gamma_{i}\right)$ is connected.
Now, we are going to prove that $b_{0}(\mathcal{K} \cap \mathcal{L}) \geq 2$. Put $\Lambda_{1}=\{(u, v) \in \Delta: v=1-u\}, \Lambda_{2}=\left\{(u, v) \in \Delta-\left\{\left(0, \frac{1}{2}\right)\right\}\right.$: $\left.v=\frac{1}{2}-u\right\}$ and $\Lambda_{3}=\left\{(u, v) \in \Delta-\left\{\left(\frac{1}{2}, 1\right)\right\}: v=\frac{3}{2}-u\right\}$. Notice that $\Lambda_{1}=\Gamma_{1} \cap \Gamma_{4}, \Lambda_{2}=\Gamma_{1} \cap \Gamma_{3}, \Lambda_{3}=\Gamma_{2} \cap \Gamma_{4}$ and, Λ_{1}, Λ_{2} and Λ_{3} are mutually disjoint. It is easy to see that $\psi\left(\Lambda_{1}\right)=\psi\left(\Gamma_{1} \cap \Gamma_{4}\right)=\psi\left(\Gamma_{1}\right) \cap \psi\left(\Gamma_{4}\right), \psi\left(\Lambda_{2}\right)=$ $\psi\left(\Gamma_{1} \cap \Gamma_{3}\right)=\psi\left(\Gamma_{1}\right) \cap \psi\left(\Gamma_{3}\right), \psi\left(\Lambda_{3}\right)=\psi\left(\Gamma_{2} \cap \Gamma_{4}\right)=\psi\left(\Gamma_{2}\right) \cap \psi\left(\Gamma_{4}\right)$ and $\psi\left(\Gamma_{2}\right) \cap \psi\left(\Gamma_{3}\right)=\emptyset$. We will show that $\psi\left(\Lambda_{1}\right)$, $\psi\left(\Lambda_{2}\right)$ and $\psi\left(\Lambda_{3}\right)$ are the components of $\mathcal{K} \cap \mathcal{L}$. First, notice that $\psi\left(\Lambda_{1}\right) \subset \mathcal{K} \cap \mathcal{L}$ since $\psi\left(\Gamma_{1}\right) \subset \mathcal{K}$ and $\psi\left(\Gamma_{4}\right) \subset \mathcal{L}$. Similarly, it can be proved that $\psi\left(\Lambda_{2}\right)$ and $\psi\left(\Lambda_{3}\right)$ is contained in $\mathcal{K} \cap \mathcal{L}$. Now, to verify that $\mathcal{K} \cap \mathcal{L} \subset \bigcup_{i=1}^{3} \varphi\left(\Lambda_{i}\right)$, let $\{x, y\} \in \mathcal{K} \cap \mathcal{L}$. Since $\mathcal{K}=\psi\left(\Gamma_{1}\right) \cup \psi\left(\Gamma_{2}\right)$, either $\{x, y\} \in \psi\left(\Gamma_{1}\right) \cap \mathcal{L}$ or $\{x, y\} \in \psi\left(\Gamma_{2}\right) \cap \mathcal{L}$. From the facts that $\mathcal{L}=\psi\left(\Gamma_{3}\right) \cup \psi\left(\Lambda_{4}\right)$ and $\psi\left(\Gamma_{2}\right) \cap \psi\left(\Gamma_{3}\right)=\emptyset$, we have $\{x, y\} \in\left(\psi\left(\Gamma_{1}\right) \cap \psi\left(\Gamma_{3}\right)\right) \cup\left(\psi\left(\Gamma_{1}\right) \cap \psi\left(\Gamma_{4}\right)\right) \cup\left(\psi\left(\Gamma_{2}\right) \cap \psi\left(\Gamma_{4}\right)\right)$. So, $\{x, y\} \in \bigcup_{i=1}^{3} \psi\left(\Lambda_{i}\right)$. Finally, since Λ_{1}, Λ_{2} and Λ_{3} are connected and mutually disjoint, $\psi\left(\Lambda_{1}\right), \psi\left(\Lambda_{2}\right)$ and $\psi\left(\Lambda_{3}\right)$ are also connected and mutually disjoint. This proves that $b(\mathcal{K} \cap \mathcal{L})+1=3$.
So, \mathcal{K} and \mathcal{L} satisfy the required properties.
We are ready to prove that $\{p, q\}$ makes a hole with respect to multicoherence degree in $\mathcal{F}_{2}(X)$. Since X is a simple closed curve, there exists a homeomorphism $h: S^{1} \rightarrow X$ such that $h(A)=\{p, q\}$. Consider the induced mapping $h_{2}: \mathcal{F}_{2}\left(S^{1}\right) \rightarrow \mathcal{F}_{2}(X)$ defined by $h_{2}(B)=h(B)$ for each $B \in \mathcal{F}_{2}\left(S^{1}\right)$. By (Higuera \& Illanes, 2011, Theorem 3.1, p. 369), h_{2} is a homeomorphism. Then, since A makes a hole with respect to multicoherence degree in $\mathcal{F}_{2}\left(S^{1}\right)$ and $h_{2}(A)=\{p, q\},\{p, q\}$ makes a hole with respect to multicoherence degree in $\mathcal{F}_{2}(X)$.
Theorem 3.4 Let X be a theta curve and let $p, q \in X$ such that $\operatorname{ord}(p, X)=\operatorname{ord}(q, X)=2$ and $X-\{p, q\}$ is connected. Then $\{p, q\}$ makes a hole with respect to multicoherence degree in $\mathcal{F}_{2}(X)$.

Proof. Clearly, X is a cyclicly connected graph. Then, by Theorem $2.8, r\left(\mathcal{F}_{2}(X)\right)=1$. So, to show that $r\left(\mathcal{F}_{2}(X)-\right.$ $\{\{p, q\}\})>1$, we are going to prove that there exist connected closed subsets \mathcal{K} and \mathcal{L} of $\mathcal{F}_{2}(X)-\{\{p, q\}\}$ satisfying $\mathcal{F}_{2}(X)-\{\{p, q\}\}=\mathcal{K} \cup \mathcal{L}$ and $b_{0}(\mathcal{K} \cap \mathcal{L}) \geq 2$.
Put $\mathcal{I}(X)=\left\{I_{1}, I_{2}, I_{3}\right\}$. Without loss of generality, we may assume that $p \in I_{1}$ and $q \in I_{2}$. Given $k \in\{1,2,3\}$, fix a homeomorphism $\varphi_{k}:[0,1] \rightarrow I_{k}$ such that $\varphi_{1}(0)=\varphi_{2}(0)=\varphi_{3}(0)$. We may assume that $\varphi_{1}\left(\frac{1}{2}\right)=p$ and $\varphi_{2}\left(\frac{1}{2}\right)=q$. Notice that $\varphi_{1}(1)=\varphi_{2}(1)=\varphi_{3}(1)$. Put $w=\varphi_{1}(0)$ and $z=\varphi_{1}(1)$. So, $R(X)=\{w, z\}$. Now, for each $k, j \in\{1,2,3\}$, consider $\pi_{k}: \Delta \rightarrow \mathcal{F}_{2}\left(I_{k}\right)$ and $\psi_{(k, j)}:[0,1]^{2} \rightarrow\left\langle I_{k}, I_{j}\right\rangle$ defined by $\pi_{k}(t, s)=\left\{\varphi_{k}(t), \varphi_{k}(s)\right\}$ for each $(t, s) \in \Delta$ and $\psi_{(k, j)}(u, v)=\left\{\varphi_{k}(u), \varphi_{j}(v)\right\}$ for each $(u, v) \in[0,1]^{2}$. Now, let $\Lambda_{1}=\left\{(u, v) \in\left[0, \frac{1}{2}\right] \times\left[\frac{1}{2}, 1\right]-\{\boldsymbol{a}\}\right.$: $\left.\frac{1}{2} \leq v \leq \frac{3-2 u}{4}\right\}, \Lambda_{2}=\left(\left(\left[\frac{1}{2}, \frac{3}{4}\right] \times\left[\frac{1}{2}, 1\right]\right) \cup\left(\left[\frac{1}{2}, 1\right] \times\left[\frac{1}{2}, \frac{3}{4}\right]\right)\right)-\{\boldsymbol{a}\}, \Lambda_{3}=\left\{(u, v) \in\left[\frac{1}{2}, 1\right] \times\left[0, \frac{1}{2}\right]-\{\boldsymbol{a}\}: v \leq \frac{4-3 u}{2}\right\}$, $\Omega_{1}=\left\{(u, v) \in\left[0, \frac{1}{2}\right] \times\left[\frac{1}{2}, 1\right]-\{\boldsymbol{a}\}: \frac{3-2 u}{4} \leq v\right\}, \Omega_{2}=\left[\frac{3}{4}, 1\right] \times\left[\frac{3}{4}, 1\right], \Omega_{3}=\left\{(u, v) \in\left[\frac{1}{2}, 1\right] \times\left[0, \frac{1}{2}\right]-\{\boldsymbol{a}\}: \frac{3-4 u}{2} \leq v\right\}$ and $\Omega_{4}=\left[0, \frac{1}{2}\right] \times\left[0, \frac{1}{2}\right]-\{\boldsymbol{a}\}$ where $\boldsymbol{a}=\left(\frac{1}{2}, \frac{1}{2}\right)$. Consider $\Gamma_{1}=\left\{(u, v) \in \Delta: \frac{1}{2}-u \leq v \leq \frac{3}{4}-u\right\}, \Gamma_{2}=\{(u, v) \in \Delta$: $\left.\frac{3}{2}-u \leq v \leq \frac{7}{4}-u\right\}, \Sigma_{1}=\left\{(u, v) \in \Delta: v \leq \frac{1}{2}-u\right\}, \Sigma_{2}=\left\{(u, v) \in \Delta: \frac{3}{4}-u \leq v \leq \frac{3}{2}-u\right\}$ and $\Sigma_{3}=\{(u, v) \in \Delta$: $\left.\frac{7}{4}-u \leq v\right\}$. Put $\Lambda=\Lambda_{1} \cup \Lambda_{2} \cup \Lambda_{3}, \Omega=\Omega_{1} \cup \Omega_{2} \cup \Omega_{3} \cup \Omega_{4}, \Gamma=\Gamma_{1} \cup \Gamma_{2}$ and $\Sigma=\Sigma_{1} \cup \Sigma_{2} \cup \Sigma_{3}$
For each $k \in\{1,2\}$, let $\mathcal{K}_{k}=\psi_{(k, 3)}\left(\left[\frac{1}{2}, \frac{3}{4}\right] \times[0,1]\right), \mathcal{L}_{k}^{1}=\psi_{(k, 3)}\left(\left[0, \frac{1}{2}\right] \times[0,1]\right)$ and $\mathcal{L}_{k}^{2}=\psi_{(k, 3)}\left(\left[\frac{3}{4}, 1\right] \times[0,1]\right)$.
Define

$$
\mathcal{K}=\psi_{(1,2)}(\Lambda) \cup \pi_{1}(\Gamma) \cup \pi_{2}(\Gamma) \cup \mathcal{K}_{1} \cup \mathcal{K}_{2} \text { and }
$$

$$
\mathcal{L}=\psi_{(1,2)}(\Omega) \cup \pi_{1}(\Sigma) \cup \pi_{2}(\Sigma) \cup \mathcal{L}_{1}^{1} \cup \mathcal{L}_{2}^{1} \cup \mathcal{L}_{1}^{2} \cup \mathcal{L}_{2}^{2} \cup \mathcal{F}_{2}\left(I_{3}\right)
$$

It is easy to see that \mathcal{K} and \mathcal{L} are closed subset of $\mathcal{F}_{2}(X)-\{\{p, q\}\}$. In order to prove that $\mathcal{F}_{2}(X)-\{\{p, q\}\} \subset \mathcal{K} \cup \mathcal{L}$, let $\{x, y\} \in \mathcal{F}_{2}(X)-\{\{p, q\}\}$. First, since $X=I_{1} \cup I_{2} \cup I_{3}, \mathcal{F}_{2}(X)=\mathcal{F}_{2}\left(I_{1}\right) \cup \mathcal{F}_{2}\left(I_{2}\right) \cup \mathcal{F}_{2}\left(I_{3}\right) \cup\left\langle I_{1}, I_{2}\right\rangle \cup\left\langle I_{1}, I_{3}\right\rangle \cup\left\langle I_{2}, I_{3}\right\rangle$. Now, notice that $\mathcal{F}_{2}\left(I_{1}\right)=\pi_{1}(\Gamma \cup \Sigma), \mathcal{F}_{2}\left(I_{2}\right)=\pi_{2}(\Gamma \cup \Sigma), \mathcal{F}_{2}\left(I_{3}\right) \subset \mathcal{L},\left\langle I_{1}, I_{2}\right\rangle-\{\{p, q\}\}=\psi_{(1,2)}(\Gamma \cup \Omega),\left\langle I_{1}, I_{3}\right\rangle=\mathcal{K}_{1} \cup \mathcal{L}_{1}^{1} \cup \mathcal{L}_{1}^{2}$ and $\left\langle I_{2}, I_{3}\right\rangle=\mathcal{K}_{2} \cup \mathcal{L}_{2}^{1} \cup \mathcal{L}_{2}^{2}$. Hence, $\{x, y\} \in \mathcal{K} \cup \mathcal{L}$. This proves that $\mathcal{F}_{2}(X)-\{\{p, q\}\}=\mathcal{K} \cup \mathcal{L}$.
To prove that \mathcal{K} and \mathcal{L} are connected, put $\mathfrak{C}=\left\{\Lambda_{1}, \Lambda_{2}, \Lambda_{3}, \Omega_{1}, \Omega_{2}, \Omega_{3}, \Omega_{4}\right\}, \mathfrak{D}=\left\{\Gamma_{1}, \Gamma_{2}, \Sigma_{1}, \Sigma_{2}, \Sigma_{3}\right\}, \mathfrak{F}=\left\{\left[\frac{1}{2}, \frac{3}{4}\right] \times\right.$ $\left.[0,1],\left[0, \frac{1}{2}\right] \times[0,1],\left[\frac{3}{4}, 1\right] \times[0,1]\right\}$ and $\mathfrak{G}=\mathfrak{C} \cup \mathfrak{D} \cup \mathfrak{F}$. It is easy to see that each element of \mathfrak{G} is connected. So, $\psi_{(1,2)}(\Theta), \pi_{k}(\Psi)$ and $\psi_{(k, 3)}(\Upsilon)$ are connected for each $(\Theta, \Psi, \Upsilon, k) \in \mathfrak{C} \times \mathfrak{D} \times \mathfrak{F} \times\{1,2\}$. Notice that $\{w, p\} \in \pi_{1}\left(\Gamma_{1}\right) \cap$ $\psi_{(1,2)}\left(\Lambda_{3}\right) \cap \mathcal{K}_{1},\{p, z\} \in \pi_{1}\left(\Gamma_{2}\right) \cap \psi_{(1,2)}\left(\Lambda_{2}\right) \cap \mathcal{K}_{1},\{q, z\} \in \psi_{(1,2)}\left(\Lambda_{2}\right) \cap \pi_{2}\left(\Gamma_{2}\right) \cap \mathcal{K}_{2}$ and $\{w, q\} \in \psi_{(1,2)}\left(\Lambda_{1}\right) \cap \pi_{2}\left(\Gamma_{1}\right) \cap \mathcal{K}_{2}$. Then, \mathcal{K} is connected. Now, since $\{w\} \in \pi_{1}\left(\Sigma_{1}\right) \cap \pi_{2}\left(\Sigma_{1}\right) \cap \psi_{(1,2)}\left(\Omega_{4}\right) \cap \mathcal{L}_{1}^{1} \cap \mathcal{L}_{2}^{1} \cap \mathcal{F}_{2}\left(I_{3}\right),\{z\} \in \pi_{1}\left(\Sigma_{3}\right) \cap \pi_{2}\left(\Sigma_{3}\right) \cap$ $\psi_{(1,2)}\left(\Omega_{2}\right) \cap \mathcal{L}_{1}^{2} \cap \mathcal{L}_{2}^{2} \cap \mathcal{F}_{2}\left(I_{3}\right)$ and $\{w, z\} \in \pi_{1}\left(\Sigma_{2}\right) \cap \pi_{2}\left(\Sigma_{2}\right) \cap \psi_{(1,2)}\left(\Omega_{1}\right) \cap \psi_{(1,2)}\left(\Omega_{3}\right) \cap \mathcal{L}_{1}^{1} \cap \mathcal{L}_{1}^{2} \cap \mathcal{L}_{2}^{1} \cap \mathcal{L}_{2}^{2} \cap \mathcal{F}_{2}\left(I_{3}\right)$, \mathcal{L} is connected.

Finally, we are going to show that $b_{0}(\mathcal{K} \cap \mathcal{L}) \geq 2$. Given $(n, m) \in\{1,2\} \times\{1,2,3\}$, let $\Pi_{(n, m)}=\Gamma_{n} \cap \Sigma_{m}$. Define $\Upsilon_{(i, j)}=$ $\Lambda_{i} \cap \Omega_{j}$ for each $(i, j) \in\{1,2,3\} \times\{1,2,3,4\}$. For each $k \in\{1,2\}$, consider $\mathcal{H}_{k}=\mathcal{L}_{k}^{1} \cap \mathcal{K}_{k}$ and $\mathcal{J}_{k}=\mathcal{L}_{k}^{2} \cap \mathcal{K}_{k}$. Let $\mathcal{C}_{1}=$ $\pi_{1}\left(\Pi_{(1,1)}\right) \cup \psi_{(1,2)}\left(\Upsilon_{(3,4)}\right) \cup \mathcal{H}_{1} \cup \pi_{1}\left(\Pi_{(2,2)}\right) \cup \psi_{(1,2)}\left(\Upsilon_{(2,1)}\right), C_{2}=\pi_{2}\left(\Pi_{(1,1)}\right) \cup \psi_{(1,2)}\left(\Upsilon_{(1,4)}\right) \cup \mathcal{H}_{2} \cup \pi_{2}\left(\Pi_{(2,2)}\right) \cup \psi_{(1,2)}\left(\Upsilon_{(2,3)}\right)$ and $C_{3}=\pi_{1}\left(\Pi_{(1,2)}\right) \cup \psi_{(1,2)}\left(\Upsilon_{(3,3)}\right) \cup \mathcal{J}_{1} \cup \pi_{1}\left(\Pi_{(2,3)}\right) \cup \psi_{(1,2)}\left(\Upsilon_{(2,2)}\right) \cup \pi_{2}\left(\Pi_{(2,3)}\right) \cup \mathcal{J}_{2} \cup \pi_{2}\left(\Pi_{(1,2)}\right) \cup \psi_{(1,2)}\left(\Upsilon_{(1,1)}\right)$. We are going to prove that C_{1}, C_{2} and C_{3} are the components of $\mathcal{K} \cap \mathcal{L}$.
The following properties are easy to verify,
i) $\Pi_{(n, m)}$ is connected and $\pi_{k}\left(\Pi_{(n, m)}\right)=\pi_{k}\left(\Gamma_{n}\right) \cap \pi_{k}\left(\Sigma_{m}\right)$ for each $n, k \in\{1,2\}$ and $m \in\{n, n+1\}$,
ii) if $\Upsilon_{(i, j)} \neq \emptyset$, then $\Upsilon_{(i, j)}$ is connected and $\psi_{(1,2)}\left(\Upsilon_{(i, j)}\right)=\psi_{(1,2)}\left(\Lambda_{i}\right) \cap \psi_{(1,2)}\left(\Omega_{j}\right)$,
iii) \mathcal{H}_{k} and J_{k} are connected for each $k \in\{1,2\}$,
iv) $\{w, p\} \in \pi_{1}\left(\Pi_{(1,1)}\right) \cap \psi_{(1,2)}\left(\Upsilon_{(3,4)}\right) \cap \mathcal{H}_{1}$,
v) $\{p, z\} \in \mathcal{H}_{1} \cap \pi_{1}\left(\Pi_{(2,2)}\right) \cap \psi_{(1,2)}\left(\Upsilon_{(2,1)}\right)$,
vi) $\{w, q\} \in \pi_{2}\left(\Pi_{(1,1)}\right) \cap \psi_{(1,2)}\left(\Upsilon_{(1,4)}\right) \cap \mathcal{H}_{2}$,
vii) $\{q, z\} \in \mathcal{H}_{2} \cap \pi_{2}\left(\Pi_{(2,2)}\right) \cap \psi_{(1,2)}\left(\Upsilon_{(2,3)}\right)$,
viii) $\left\{w, \varphi_{1}\left(\frac{3}{4}\right)\right\} \in \pi_{1}\left(\Pi_{(1,2)}\right) \cap \psi_{(1,2)}\left(\Upsilon_{(3,3)}\right) \cap \mathcal{J}_{1}$,
ix) $\left\{\varphi_{1}\left(\frac{3}{4}\right), z\right\} \in \mathcal{J}_{1} \cap \pi_{1}\left(\Pi_{(2,3)}\right) \cap \psi_{(1,2)}\left(\Upsilon_{(2,2)}\right)$,
x) $\left\{\varphi_{2}\left(\frac{3}{4}\right), z\right\} \in \psi_{(1,2)}\left(\Upsilon_{(2,2)}\right) \cap \pi_{2}\left(\Pi_{(2,3)}\right) \cap \mathcal{J}_{2}$,
xi) $\left\{w, \varphi_{2}\left(\frac{3}{4}\right)\right\} \in \mathcal{J}_{2} \cap \pi_{2}\left(\Pi_{(1,2)}\right) \cap \psi_{(1,2)}\left(\Upsilon_{(1,1)}\right)$,
xii) $\Pi_{\left(n_{1}, m_{1}\right)} \cap \Pi_{\left(n_{2}, m_{2}\right)}=\emptyset$ for each $\left(n_{1}, m_{1}\right) \neq\left(n_{2}, m_{2}\right) \in\{1,2\} \times\{1,2,3\}$,
xiii) $\Upsilon_{\left(i_{1}, j_{1}\right)} \cap \Upsilon_{\left(i_{2}, j_{2}\right)}=\emptyset$ for each $\left(i_{1}, j_{1}\right) \neq\left(i_{2}, j_{2}\right) \in\{1,2,3\} \times\{1,2,3,4\}$,
xiv) $\mathcal{H}_{k} \cap \mathcal{J}_{k}=\emptyset$ for each $k \in\{1,2\}$, and
xv) $\mathcal{K} \cap \mathcal{L}=\bigcup\left\{\pi_{k}\left(\Pi_{(n, m)}\right):(k, n, m) \in\{1,2\} \times\{1,2\} \times\{1,2,3\}\right\} \cup \bigcup\left\{\psi_{(1,2)}\left(\Upsilon_{(i, j)}\right):(i, j) \in\{1,2,3\} \times\{1,2,3,4\}\right\} \cup$ $\bigcup\left\{\mathcal{H}_{k} \cup \mathcal{J}_{k}: k \in\{1,2\}\right\}$.
The connectedness of C_{1}, C_{2} and C_{3} follows from i)-xi). Using xii)-xiv), it can be proved that C_{1}, C_{2} and C_{3} are mutually disjoint. Finally, from xv), it follows that $\mathcal{K} \cap \mathcal{L}=\mathcal{C}_{1} \cup C_{2} \cup C_{3}$.
So, \mathcal{K} and \mathcal{L} satisfy the required properties.
Theorem 3.5 Let X be a cyclicly connected graph and $p, q \in X$. If $p \neq q$, then $\{p, q\}$ makes a hole with respect to multicoherence degree in $\mathcal{F}_{2}(X)$.
Proof. In the case that X is a simple closed curve, the result follows from Theorem 3.3. Now, suppose that X is not a simple closed curve. Since X is a graph, by (Borsuk \& Ulam, 1931, (a), p. 877), $\mathcal{F}_{2}(X)$ is a locally connected space. Then, $\mathcal{F}_{2}(X)-\{\{p, q\}\}$ is a locally connected metric space. So, by (Eilenberg, 1936, Theorem 4, p. 162) and (Stone, 1950, Theorem 5, p. 472), it suffices to show that there exists a retract \mathcal{Z} of $\mathcal{F}_{2}(X)-\{\{p, q\}\}$ such that $r(\mathcal{Z})>r\left(\mathcal{F}_{2}(X)\right)=1$ (see Theorem 2.8). We consider two cases.
Case I. $X-\{p, q\}$ is not connected.
By Lemma 2.3, there exists a simple closed curve S in X containing p and q and a retraction $f: X \rightarrow S$ such that $f^{-1}(p)=\{p\}$ and $f^{-1}(q)=\{q\}$. Put $\mathcal{Z}=\mathcal{F}_{2}(S)-\{\{p, q\}\}$. Since S is a cyclicly connected graph, $r\left(\mathcal{F}_{2}(S)\right)=1$ (see Theorem 2.8). So, by Theorem 3.3, $r(\mathcal{Z}) \geq 2$. Finally, define $\bar{f}: \mathcal{F}_{2}(X)-\{\{p, q\}\} \rightarrow \mathbb{Z}$ as follows: for each $A \in \mathcal{F}_{2}(X)-\{\{p, q\}\}$, let $\bar{f}(A)=f(A)$. Using the fact that $f^{-1}(p)=\{p\}$ and $f^{-1}(q)=\{q\}$, it can be proved that \bar{f} is well defined. Since f is continuous, \bar{f} is continuous. Finally, notice that $\bar{f}(B)=B$ for each $B \in \mathcal{Z}$. Thus, \bar{f} is a retraction.
Case II. $X-\{p, q\}$ is connected.
There exists a theta curve Y in X such that $p, q \in Y$ and a retraction $f: X \rightarrow Y$ satisfying $f^{-1}(p)=\{p\}$ and $f^{-1}(q)=\{q\}$ (see Lemma 2.4). Since $X-\{p, q\}$ is connected, $Y-\{p, q\}$ is also connected. Put $\mathcal{Z}=\mathcal{F}_{2}(Y)-\{\{p, q\}\}$. By Theorem 3.4, $r(\mathcal{Z}) \geq 2$ since $r\left(\mathcal{F}_{2}(Y)\right)=1$ (see Theorem 2.8). Now, define $\bar{f}: \mathcal{F}_{2}(X)-\{\{p, q\}\} \rightarrow \mathcal{Z}$ by $\bar{f}(A)=f(A)$ for each $A \in \mathcal{F}_{2}(X)-\{\{p, q\}\}$. Notice that \bar{f} is well defined since $f^{-1}(p)=\{p\}$ and $f^{-1}(q)=\{q\}$. The continuity of \bar{f} follows from the fact that f is continuous. It is easy to verify that $\bar{f}(B)=B$ for each $B \in \mathcal{Z}$. Thus, \mathcal{Z} is a retract of $\mathcal{F}_{2}(X)-\{\{p, q\}\}$.

3.1 Classification

Theorem 3.6 Let X be a cyclicly connected graph and let $p, q \in X$. Then, $\{p, q\}$ makes a hole with respect to multicoherence degree in $\mathcal{F}_{2}(X)$ if and only if either $p=q$ and $p \in R(X)$, or $p \neq q$.
Proof. From (Nadler, Jr., 1992, Theorem 9.10, p. 144; Kuratowski, 1968, Theorem 3, p. 278) and (Nadler, Jr., 1992, Corollary 9.6, p. 142), it follows that $E(X)=\emptyset$. Then, $p, q \in O(X) \cup R(X)$
Assume that $\{p, q\}$ makes a hole in $\mathcal{F}_{2}(X)$. Now, by Theorem 3.1, either $p=q$ and $p \notin O(X)$, or $p \neq q$. So, eihter $p=q$ and $p \in R(X)$ or $p \neq q$. This proves the necessity.
Finally, the sufficiency follows from Theorems 3.2 and 3.5.

References

Anaya, J. G. (2007). Making holes in hyperspaces. Top. Appl., 154, 2000-2008. http://dx.doi.org/10.1016/j.topol.2006.09.017
Anaya, J. G. (2011). Making holes in the hyperspace of subcontinua of a Peano continuum. Top. Proc., 37, 1-15.
Anaya, J. G., Maya, D., \& Orozco-Zitli, F. (2010). Agujeros en el segundo producto simétrico de subcontinuos del continuo figura 8. Ciencia Ergosum, 17(3), 307-312.

Anaya, J. G., Maya, D., \& Orozco-Zitli, F. (2012). Making holes in the second symmetric product of dendrites and some fans. Ciencia Ergosum, 19(1), 83-92.
Borsuk, K., \& Ulam, S. (1931). On symmetric products of topological spaces. Bull. Amer. Math. Soc., 37, 875-882. http://dx.doi.org/10.1090/S0002-9904-1931-05290-3

Eilenberg, S. (1936). Sur les espaces multicohérents I. Fund. Math., 27(1), 153-190.
Higuera, G., \& Illanes, A. (2011). Induced mapping on symmetric product. Top. Proc., 37, 367-401.
Illanes, A. (1985). Multicoherence in symmetric products. An. Inst. Mat. Univ. Nac. Autónoma México, 25, 11-24.
Kuratowski, K. (1968). Topology (Vol. II). New York, London and Warszawa: Academic Press and PWN.
Martínez-Montejano, J. M. (2002). Non-confluence of natural map of products onto symmetric products. In Continuum Theory (Denton, TX. 1999) (Vol. 230, 229-236). Lecture Notes in Pure and Appl. Math., Dekker, New York. http://dx.doi.org/10.1201/9780203910245.ch16
Michael, E. (1951). Topologies on space of subsets. Trans. Amer. Math. Soc., 71, 152-182. http://dx.doi.org/10.1090/S0002-9947-1951-0042109-4
Nadler, Jr., S. B. (1992). Continuum Theory: An introduction. Monographs and Textbooks in Pure and Applied Mathematics, 158. New York: Marcel Dekker, Inc.

Stone, A. H. (1950). Incidence relations in multicoherence spaces II. Canadian J. Math., 2, 461-480. http://dx.doi.org/10.4153/CJM-1950-044-5
Whyburn, G. T. (1942). Analytic Topology (Vol. 28). Amer. Math. Soc. Colloq. Publ. (reprinted with corrections 1971).

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

