Making Holes in the Second Symmetric Product of a Cyclicly Connected Graph

José G. Anaya¹, David Maya¹ & Fernando Orozco-Zitli¹

¹ Universidad Autónoma del Estado de México, Facultad de Ciencias, Toluca, México

Correspondence: David Maya, Universidad Autónoma del Estado de México, Facultad de Ciencias, Instituto Literario 100. Col. Centro, C. P. 50000, Toluca, Estado de México, México. E-mail: dmayae@uaemex.mx

Received: June 9, 2014Accepted: July 2, 2014Online Published: August 4, 2014doi:10.5539/jmr.v6n3p105URL: http://dx.doi.org/10.5539/jmr.v6n3p105

Abstract

A *continuum* is a connected compact metric space. The *second symmetric product* of a continuum X, $\mathcal{F}_2(X)$, is the hyperspace of all nonempty subsets of X having at most two elements. An element A of $\mathcal{F}_2(X)$ is said to *make a hole with respect to multicoherence degree* in $\mathcal{F}_2(X)$ if the multicoherence degree of $\mathcal{F}_2(X) - \{A\}$ is greater than the multicoherence degree of $\mathcal{F}_2(X)$. In this paper, we characterize those elements $A \in \mathcal{F}_2(X)$ such that A makes a hole with respect to multicoherence degree in $\mathcal{F}_2(X)$ when X is a cyclicly connected graph.

Keywords: continuum, symmetric products, multicoherence degree, make a hole with respect to multicoherence degree

1. Introduction

A *continuum* is a connected compact metric space. Let X be a continuum. For each positive interger n, let $\mathcal{F}_n(X) = \{A \subset X : A \text{ has at most } n \text{ elements and } A \neq \emptyset\}$. The hyperspace $\mathcal{F}_n(X)$ is called the n^{th} symmetric product of X. It is known that each hyperspace $\mathcal{F}_n(X)$ is a continuum (see Borsuk & Ulam, 1931, pp. 876, 877) and (Michael, 1951, Theorem 4.10, p. 165).

If Z is any topological space, let $b_0(Z)$ denote the number of components of Z minus one if this number is finite and $b_0(Z) = \infty$ otherwise. Given a connected topological space Y, the *multicoherence degree* of Y, is defined by $r(Y) = \sup\{b_0(K \cap L) : K \text{ and } L \text{ are closed connected subsets of } Y \text{ and } Y = K \cup L\}$. The space Y is said to be *unicoherent* if r(Y) = 0. Let $y \in Y$ such that $Y - \{y\}$ is connected, we say that y makes a hole with respect to multicoherence degree in Y if $r(Y - \{y\}) > r(Y)$. This is a generalization of the notion of to make a hole in a unicoherent topological space defined in (Anaya, 2007, p. 2000).

In this paper, we are interesting in the following problem.

Problem. Let $\mathcal{H}(X)$ be a hyperspace of a continuum *X*. For which elements $A \in \mathcal{H}(X)$, *A* makes a hole with respect to multicoherence degree in $\mathcal{H}(X)$.

In the current paper, we are presenting the solution to this problem when *X* is a cyclicly connected graph and $\mathcal{H}(X) = \mathcal{F}_2(X)$.

Readers specially interested in this problem are refered to Anaya (2007, 2011), Anaya, Maya and Orozco-Zitli (2010, 2012).

2. Preliminaries

Given a positive interger *m*, define $\lambda(m) = \{1, 2, ..., m\}$. A *map* is a continuous function. The identity map for a topological space *Z* is denoted by id_Z . An *arc* is any space homeomorphic to [0, 1]. A *simple closed curve* is a space which is homeomorphic to the unit circle S^1 in the Euclidean plane \mathbb{R}^2 . A *theta curve* is a space which is homeomorphic to $S^1 \cup ([-1, 1] \times \{0\})$ in \mathbb{R}^2 . The symbol $[0, 1]^2$ denotes the space $[0, 1] \times [0, 1]$. The set $\{(u, v) \in [0, 1]^2: u \le v\}$ is denoted by Δ . A *graph* is a continuum which can be written as the union of finitely many arcs any two of which are either disjoint or intersect only in one or both their end points. A point *y* in a connected topological space *Y* is called *cut point (non-cut point)* if $Y - \{y\}$ is not connected (connected). A space *W* is said to be *cyclicly connected* provided that every two points of *W* belong to some simple closed curve in *W* (see (Whyburn, 1942, p. 77)). A graph X is a cyclicly connected graph if X is a cyclicly connected space.

Given a topological space Y. A subspace Z of Y is said to be:

(a) a *retract of* Y if there exists a map $f: Y \to Z$ such that f(z) = z for every $z \in Z$. The map f is called a *retraction*.

(b) a *deformation retract of* Y if there exist a retraction $f: Y \to Z$ and a map $g: Y \times [0, 1] \to Y$ such that g(x, 0) = x and g(x, 1) = f(x) for every $x \in Y$.

(c) a strong deformation retract of Y if there exist f and g as in (b) with the additional property that g(z, t) = z for every $(z, t) \in Z \times [0, 1]$.

Let $y \in Y$. Let β be a cardinal number. We say that y is of order less than or equal to β in Y, written $\operatorname{ord}(y, Y) \leq \beta$, provided that for each open subset U of Y containing y, there exists an open subset V of Y such that $y \in V \subset U$ and the cardinality of the boundary of V is less than or equal to β . We say that y is of order β in Y, written $\operatorname{ord}(y, Y) = \beta$, provided that $\operatorname{ord}(y, Y) \leq \beta$ and $\operatorname{ord}(y, Y) \not\leq \alpha$ for any cardinal number $\alpha < \beta$. Put $E(Y) = \{x \in Y:$ $\operatorname{ord}(x, Y) = 1\}$, $O(Y) = \{x \in Y: \operatorname{ord}(x, Y) = 2\}$ and $R(Y) = \{x \in Y: \operatorname{ord}(x, Y) \geq 3\}$. Define $\mathcal{I}(Y) = \{I \subset Y:$ I is an arc and $E(I) = I \cap R(Y)\}$, $\mathcal{N}(y, Y) = \{I \in \mathcal{I}(Y): y \notin I\}$, $\mathcal{M}(y, Y) = \{I \in \mathcal{I}(Y): y \in I\}$, $N(y, Y) = \bigcup \mathcal{N}(y, Y)$ and $\mathcal{M}(y, Y) = \bigcup \mathcal{M}(y, Y)$. If K and L are nonempty subsets of Y, let $\langle K, L \rangle = \{\{x, y\} \subset Y: x \in K, y \in L\}$.

2.1 Auxiliary Results

Lemma 2.1 *If X is a cyclicly connected graph different from a simple closed curve, then the following conditions hold:*

(1) for each simple closed curve S in X, $S \cap R(X)$ has at least two points;

(2) $X = \bigcup I(X);$

(3) the set I(X) is finite;

(4) for each $p \in X$, M(p, X) is a nondegenerate subcontinuum of X.

Proof. In order to prove (1), let *S* be a simple closed curve in *X*. Since $S \neq X$, there exists a simple closed curve $S_1 \neq S$ in *X* such that $S \cap S_1 \neq \emptyset$. So, using (Nadler, Jr., 1992, Proposition 9.5, p. 142), $R(S \cup S_1) \cap S \cap S_1 \neq \emptyset$. Thus, by (Kuratowski, 1968, Theorem 3, p. 278), $R(X) \cap S \cap S_1 \neq \emptyset$. Now, assume that $R(X) \cap S \cap S_1$ consists of precisely one point. Then, there exists a simple closed curve $S_2 \neq S$ in *X* such that $S_2 \cap (S - S_1) \neq \emptyset$. Applying the previous argument to $S \cup S_2$, we have $R(X) \cap (S - S_1) \cap S_2 \neq \emptyset$. Hence, $S \cap R(X)$ has at least two points.

(2) Follows from (1) and the fact that R(X) is a finite set (see (Nadler, Jr., 1992, Theorem 9.10, p. 144)).

(3) Follows from the fact that R(X) is a finite set (see (Nadler, Jr., 1992, Theorem 9.10, p. 144)).

Finally, to check (4), let $p \in X$. By (2), there exists $I \in I(X)$ such that $p \in I$. So, since $I \subset M(p, X)$, M(p, X) is nondegenerate set. On the other hand, clearly, M(p, X) is connected. By (3), M(p, X) is closed in X.

Lemma 2.2 Let X be a cyclicly connected graph and let $p \in X$. If $N(p, X) \neq \emptyset$, then N(p, X) is a subcontinuum of X.

Proof. First, by (3) of Lemma 2.1, N(p, X) is closed in X. We shall prove the connectedness of N(p, X). By (Whyburn, 1942, (9.3), p. 79), $X - \{p\}$ is connected. So, it suffices to prove that N(p, X) is a continuous image of $X - \{p\}$. Consider $F = \bigcup \{E(I): I \in \mathcal{M}(p, X)\} - \{p\}$. By (3) of Lemma 2.1, $\mathcal{M}(p, X)$ is finite. Then, F is discrete. By (4) of Lemma 2.1, $\mathcal{M}(p, X) - \{p\}$ is a nonempty set. Now, define $f: \mathcal{M}(p, X) - \{p\} \rightarrow F$ as follows: given $z \in \mathcal{M}(p, X) - \{p\}$, let f(z) be the unique element of $F \cap C$ where C is the component of $\mathcal{M}(p, X) - \{p\}$ containing z. Clearly, f is surjective. We prove that f is continuous. Let $e \in F$. By the definition of f, it is easy to see that $f^{-1}(\{e\})$ is a component of $\mathcal{M}(p, X) - \{p\}$.

Now, define $\overline{f}: X - \{p\} \to N(p, X)$ by

$$\bar{f}(x) = \begin{cases} x, & \text{if } x \in N(p, X), \\ f(x), & \text{if } x \in M(p, X) - \{p\}. \end{cases}$$

Since $N(p, X) \cap M(p, X) = F$ and by the definition of f, \overline{f} is well defined. Clearly, \overline{f} is surjective. The continuity of \overline{f} follows from the continuity of f and the fact that N(p, X) and $M(p, X) - \{p\}$ are closed subsets of $X - \{p\}$. This finishes the proof of that N(p, X) is connected.

Lemma 2.3 Let X be a cyclicly connected graph different from a simple closed curve and let p, q be different points in X. If $X - \{p, q\}$ is not connected, there exist a simple closed curve S in X containing p and q and a retract f: $X \rightarrow S$ such that $f^{-1}(p) = \{p\}$ and $f^{-1}(q) = \{q\}$.

Proof. Let C_1 and C_2 be different components of $X - \{p, q\}$. Since $C_k \cup \{p, q\}$ is a subcontinuum of X, there exists an arc J_k in $C_k \cup \{p, q\}$ such that $E(J_k) = \{p, q\}$ for each $k \in \{1, 2\}$. Put $S = J_1 \cup J_2$. Clearly, S is a simple closed curve in X and $p, q \in S$.

Now, let $f_0: R(X) \to S$ be a function such that $f_0|_{R(X)\cap S} = id_{R(X)\cap S}$, $f_0(R(X)\cap C_1) \subset J_1$ and $f_0(R(X)\cap C) \subset J_2$ for each component *C* of $X - \{p, q\}$ with $C \neq C_1$.

Given $I \in I(X)$, let $f_I : I \to S$ be a one-to-one map such that $f_I|_S = id_{S \cap I}$, $E(f_I(I)) = f_0(E(I))$, $f_I(I \cap C_1) \subset J_1$ and $f_I(I \cap C) \subset J_2$ for each component C of $X - \{p, q\}$ with $C \neq C_1$. From the fact that f_I is one-to-one, it follows that $f_I(I - \{p, q\}) \subset S - \{p, q\}$.

Define $f: X \to S$ as follows: for each $x \in X$, take $I \in I(X)$ such that $x \in I$ and let $f(x) = f_I(x)$. Notice that $f|_{R(X)} = f_0$. Hence, f is well defined. The continuity of f follows from the fact that each f_I is continuous and, by (2) and (3) of Lemma 2.1. It is easy to see that $f|_S = id_S$. Thus, f is a retraction.

Finally, since $S - \{p,q\} \subset X - \{p,q\}$ and $f|_S = id_S$, $S - \{p,q\} \subset f(X - \{p,q\})$. To check that $f(X - \{p,q\}) \subset S - \{p,q\}$, notice that $f(X - \{p,q\}) = \bigcup \{f_I(I - \{p,q\}): I \in I(X)\} \subset S - \{p,q\}$ (see (2). of Lemma 2.1). Thus, $f(X - \{p,q\}) = S - \{p,q\}$. Hence, $f^{-1}(\{p,q\}) = \{p,q\}$. From the fact that $p \neq q$, we have that $f^{-1}(p) = \{p\}$ and $f^{-1}(q) = \{q\}$.

Lemma 2.4 Let X be a cyclicly connected graph different from a simple closed curve and let p, q be different points in X. If $X - \{p, q\}$ is connected, there exist a theta curve Y in X containing p and q and a retract $f: X \to Y$ such that $f^{-1}(p) = \{p\}$ and $f^{-1}(q) = \{q\}$.

Proof. By the definition of cyclic connectedness, there exists a simple closed curve *S* in *X* such that $p, q \in Y$. Since $X - \{p, q\}$ is connected, there exists an arc *J* in *X* such that $S - \{p, q\} \cap J = E(J)$. Put $Y = S \cup J$. Clearly, *Y* is a theta curve in *X* containing *p* and *q* such that $Y - \{p, q\}$ is connected.

First, consider a function $f_0: R(X) \to Y$ such that $f_0|_Y = id_{R(X)\cap Y}$. Now, for each $I \in \mathcal{I}(X)$, fix a one-to-one map $f_I: I \to Y$ such that $f_I|_Y = id_{Y\cap I}$ and $f(I - \{p, q\}) \subset Y - \{p, q\}$.

Define $f: X \to Y$ as follows: for each $x \in X$, take $I \in I(X)$ such that $x \in I$ and let $f(x) = f_I(x)$. From the fact that $f|_{R(X)} = f_0$, it follows that f is well defined. Since $X = \bigcup I(X)$ and I(X) is finite (see (2) and (3) of Lemma 2.1), f is continuous. From the fact that $f|_Y = id_Y$, it follows that f is a retraction.

We will prove that $f(X - \{p, q\}) = Y - \{p, q\}$. Since $X - \{p, q\} = \bigcup \{I - \{p, q\}: I \in I(X)\}, f(X - \{p, q\}) \subset Y - \{p, q\}$. Clearly, $Y - \{p, q\}$ is contained in $f(X - \{p, q\})$. We have that $f^{-1}(\{p, q\}) = \{p, q\}$. Since $p \neq q, f^{-1}(p) = \{p\}$ and $f^{-1}(q) = \{q\}$.

Proposition 2.5 Let X be a continuum and let K and L be connected subsets (subcontinua) of X. Then $\langle K, L \rangle$ is a connected subset (subcontinuum) of $\mathcal{F}_2(X)$ and, it does not have cut points when K and L are nondegenerate sets.

Proof. The connectedness of $\langle K, L \rangle$ follows from (Martínez-Montejano, 2002, Lemma 1, p. 230).

In order to prove the second part of this proposition, let $\{p, q\} \in \langle K, L \rangle$. Using *K* and *L* are nondegenerate sets and the arguments in (Kuratowski, 1968, Theorem 11, p. 137), it can be shown that $K \times L - \{(p, q), (q, p)\}$ is connected. So, since $\langle K, L \rangle - \{\{p, q\}\}$ is a continuous image of $K \times L - \{(p, q), (q, p)\}$, $\langle K, L \rangle - \{\{p, q\}\}$ is connected. \Box

Lemma 2.6 Let I be an arc and let $p \in I - E(I)$. If H and J are subcontinua of I such that $H \cup J \subset I - \{p\}$ and each one of them contains a different end point of I, then $\langle H, I \rangle \cup \langle J, I \rangle$ is a strong deformation retract of $\mathcal{F}_2(I) - \{\{p\}\}$.

Proof. Put $\Gamma = \Delta - \{(\frac{1}{2}, \frac{1}{2})\}, \Gamma_0 = \{(u, v) \in \Gamma: u \leq \frac{1}{4}\} \cup \{(u, v) \in \Gamma: \frac{3}{4} \leq v\}$ and $\Gamma_1 = \{(u, v) \in \Gamma: \frac{1}{4} \leq u, v \leq \frac{3}{4}\}$. First, we are going to prove that Γ_0 is a strong deformation retract of Γ . Define $f: \Gamma \to \Gamma_0$ by

$$f(u, v) = \begin{cases} (u, v), & \text{if } (u, v) \in \Gamma_0, \\ \left(\frac{1}{4}, u + v - \frac{1}{4}\right), & \text{if } (u, v) \in \Gamma_1 \text{ and } v \le 1 - u, \\ \left(u + v - \frac{3}{4}, \frac{3}{4}\right), & \text{if } (u, v) \in \Gamma_1 \text{ and } 1 - u \le v, \end{cases}$$

and $g: \Gamma \times [0, 1] \to \Gamma$ by

$$g((u, v), t) = (1 - t) \cdot (u, v) + t \cdot f(u, v).$$

It is easy to verify that f and g have the required properties.

Finally, let $h: [0, 1] \to I$ be a homeomorphism such that $h([0, \frac{1}{4}]) = H$, $h([\frac{3}{4}, 1]) = J$ and $h(\frac{1}{2}) = p$. Define $\bar{h}: \Gamma \to \mathcal{F}_2(I) - \{\{p\}\}$ by $\bar{h}(u, v) = \{h(u), h(v)\}$. It can be proved that \bar{h} is a homeomorphism such that $\bar{h}(\Gamma_0) = \langle H, I \rangle \cup \langle J, I \rangle$. Therefore, $\langle H, I \rangle \cup \langle J, I \rangle$ is a strong deformation retract of $\mathcal{F}_2(I) - \{\{p\}\}$.

Lemma 2.7 If X is a graph containing a simple closed curve, then X is not unicoherent.

Proof. We shall prove that there exist subcontinua *K* and *L* of *X* such that $b_0(K \cap L) > 0$ and $X = K \cup L$. Let *S* be a simple closed curve in *X*. By (Nadler, Jr., 1992, Theorem 9.10, p. 144), there exists $x \in S$ such that ord(x, X) = 2. Now, using (Nadler, Jr., 1992, Theorem 9.7, p. 143), it can be proved that there exists an arc *J* in *S* which is a neighborhood of *x* in *X*. Then, J - E(J) is an open connected subset of *X*. Now, by (Nadler, Jr., 1992, 9.44, (a), p. 160), S - (J - E(J)) is connected. Hence, X - (J - E(J)) is a subcontinuum of *X*. So, K = J and L = X - (J - E(J)) satify the required properties.

Theorem 2.8 If X is a cyclicly connected graph, then $r(\mathcal{F}_2(X)) = 1$.

Proof. The result follows from (Nadler, Jr., 1992, Theorem 8.25, p. 131), Lemma 2.7 and (Illanes, 1985, Theorem 1.6, p. 16).

3. Making Holes in the Second Symmetric Product of a Cyclicly Connected Graph

Theorem 3.1 Let X be a graph and let $p \in O(X)$. Then $\{p\}$ does not make a hole with respect to multicoherence degree in $\mathcal{F}_2(X)$.

Proof. We will show that $r(\mathcal{F}_2(X) - \{\{p\}\}) = r(\mathcal{F}_2(X))$. Since X is a graph, it is easy to see that $\mathcal{F}_2(X) - \{\{p\}\}$ is a locally connected metric space and, by Proposition 2.5, $\mathcal{F}_2(X) - \{\{p\}\}$ is connected. So, in light of (Eilenberg, 1936, Theorem 4, p. 162) and (Stone, 1950, Theorem 5, p. 472), it suffices to prove that there exists a deformation retract \mathcal{Z} of $\mathcal{F}_2(X) - \{\{p\}\}$ such that $r(\mathcal{Z}) = r(\mathcal{F}_2(X))$.

Since $p \in O(X)$, using (Nadler, Jr., 1992, Lemma 9.7, p. 143), it can be shown that there exists an arc *I* in *X* such that *I* is a neighborhood of *p* in *X*. So, clearly, $p \in I - E(I)$. Let *H* and *J* be nondegenerate subcontinua of *I* such that $H \cup J \subset I - \{p\}$ and each one of them contains a different end point of *I*. Put $Z = (X - I) \cup H \cup J$ and $Z = \langle X, Z \rangle$. Clearly, $\mathcal{F}_2(X) = Z \cup \mathcal{F}_2(I)$. Now, by Lemma 2.6, there exist a retraction $f: \mathcal{F}_2(I) - \{\{p\}\} \rightarrow \langle H, I \rangle \cup \langle J, I \rangle$ and a map $g: (\mathcal{F}_2(I) - \{\{p\}\}) \times [0, 1] \rightarrow \mathcal{F}_2(I) - \{\{p\}\}$ such that g(A, 0) = A and g(A, 1) = f(A) for each $A \in \mathcal{F}_2(I) - \{\{p\}\}$ and g(B, t) = B for each $(B, t) \in (\langle H, I \rangle \cup \langle J, I \rangle) \times [0, 1]$.

Define $\overline{f}: \mathcal{F}_2(X) - \{\{p\}\} \to \mathcal{Z}$ by

$$\bar{f}(A) = \begin{cases} A, & \text{if } A \in \mathcal{Z}, \\ f(A), & \text{if } A \in \mathcal{F}_2(I) - \{\{p\}\}, \end{cases}$$

and \bar{g} : $(\mathcal{F}_2(X) - \{\{p\}\}) \times [0, 1] \rightarrow \mathcal{F}_2(X) - \{\{p\}\}$ by

$$\bar{g}(A,t) = \begin{cases} A, & \text{if } A \in \mathcal{Z}, \\ g(A,t), & \text{if } A \in \mathcal{F}_2(I) - \{\{p\}\} \end{cases}$$

To check that \overline{f} and \overline{g} are well defined, notice that $\mathcal{Z} \cap \mathcal{F}_2(I) - \{\{p\}\} = \langle H, I \rangle \cup \langle J, I \rangle$ and f(B) = B = g(B, t) for each $(B, t) \in (\langle H, I \rangle \cup \langle J, I \rangle) \times [0, 1]$. Now, the continuity of \overline{f} and \overline{g} follows from the continuity of the maps f and g and the fact that \mathcal{Z} and $\mathcal{F}_2(I) - \{\{p\}\}$ are closed in $\mathcal{F}_2(X) - \{\{p\}\}$. It is easy to verify that \overline{f} and \overline{g} have the required properties. Thus, \mathcal{Z} is a deformation retract of $\mathcal{F}_2(X) - \{\{p\}\}$.

Finally, to check that $r(\mathcal{Z}) = r(\mathcal{F}_2(X))$, we shall show that \mathcal{Z} is homeomorphic to $\mathcal{F}_2(X)$. It can be shown that there exists a homeomorphism $h: \mathcal{F}_2(I) \to \langle H, I \rangle \cup \langle J, I \rangle$ such that $h|_{\langle E(I), I \rangle} = \operatorname{id}_{\langle E(I), I \rangle}$. Define $\bar{h}: \mathcal{F}_2(X) \to \mathcal{Z}$ by

$$\bar{h}(A) = \begin{cases} h(A), & \text{if } A \in \mathcal{F}_2(I), \\ A, & \text{otherwise.} \end{cases}$$

It is easy to see that \overline{h} is a homeomorphism. Hence, $r(\mathcal{F}_2(X)) = r(\mathcal{Z})$.

This finishes the proof that $\{p\}$ does not make a hole with respect to multicoherence degree in $\mathcal{F}_2(X)$.

Theorem 3.2 Let X be a cyclicly connected graph and $p \in R(X)$. Then $\{p\}$ makes a hole with respect to multicoherence degree in $\mathcal{F}_2(X)$. *Proof.* Since $r(\mathcal{F}_2(X)) = 1$ (see Theorem 2.8), we shall show that $r(\mathcal{F}_2(X) - \{\{p\}\}) \ge 2$. So, it suffices to prove that there exist two closed connected subsets \mathcal{K} and \mathcal{L} of $\mathcal{F}_2(X) - \{\{p\}\}$ such that $\mathcal{F}_2(X) - \{\{p\}\} = \mathcal{K} \cup \mathcal{L}$ and $b_0(\mathcal{K} \cap \mathcal{L}) \ge 2$.

Put $\Lambda = \{(u, v) \in [0, 1]^2 - \{\mathbf{0}\}$: $\frac{u}{2} \le v \le 2u\}$, $\Omega = \{(u, v) \in [0, 1]^2 - \{\mathbf{0}\}$: $v \le \frac{u}{2}\}$, $\Gamma = \{(u, v) \in [0, 1]^2 - \{\mathbf{0}\}$: $2u \le v\}$ where $\mathbf{0} = (0, 0)$, $m = \operatorname{ord}(p, X)$ and $\mathcal{M}(p, X) = \{I_1, I_2, \dots, I_m\}$. For each $k \in \lambda(m)$, fix a homeomorphism φ_k : $[0, 1] \to I_k$ such that $\varphi_k(0) = p$. Given elements $k \ne j \in \lambda(m)$, define $\psi_{(k,j)}$: $[0, 1]^2 - \{\mathbf{0}\} \to \langle I_k, I_j \rangle - \{\{p\}\}$ by $\psi_{(k,j)}(s, t) = \{\varphi_k(s), \varphi_j(t)\}$. Since $\varphi_k(0) = \varphi_j(0) = p$ and, φ_k and φ_j are one-to-one, $\psi_{(k,j)}$ is well defined. Using the fact that φ_k and φ_j are surjective, it is easy to prove that $\psi_{(k,j)}$ is surjective. Clearly, for each $k, j \in \lambda(m)$ with $k \ne j$, $\psi_{(k,j)}(\Lambda) = \psi_{(j,k)}(\Lambda)$ and $\psi_{(k,j)}(\Omega) = \psi_{(i,k)}(\Gamma)$.

Consider the following cases.

Case A. $\mathcal{N}(p, X) \neq \emptyset$.

Let Y = N(p, X). By Lemma 2.2, Y is a subcontinuum of X. For each $k \in \lambda(m)$, define

$$\mathcal{K}_k = \langle \varphi_k([\frac{1}{2}, 1]), Y \cup \varphi_k([\frac{1}{2}, 1]) \rangle \text{ and } \mathcal{L}_k = \langle \varphi_k([0, \frac{1}{2}]), Y \cup \varphi_k([0, 1]) \rangle - \{\{p\}\}.$$

Consider

$$\mathcal{K} = \mathcal{F}_2(Y) \cup \bigcup \{ \mathcal{K}_k : k \in \lambda(m) \} \cup \bigcup \{ \psi_{(k,j)}(\Lambda) : k, j \in \lambda(m), k \neq j \}$$

and $\mathcal{L} = \bigcup \{ \mathcal{L}_k : k \in \lambda(m) \} \cup \bigcup \{ \psi_{(k,j)}(\Gamma) : k, j \in \lambda(m), k \neq j \}.$

Clearly, \mathcal{K} and \mathcal{L} are closed subsets of $\mathcal{F}_2(X) - \{\{p\}\}$. To prove $\mathcal{F}_2(X) - \{\{p\}\} = \mathcal{K} \cup \mathcal{L}$, let $\{x, y\} \in \mathcal{F}_2(X) - \{\{p\}\}$. Since $X = M(p, X) \cup Y$, $\mathcal{F}_2(X) = \mathcal{F}_2(M(p, X)) \cup \mathcal{F}_2(Y) \cup \langle M(p, X), Y \rangle$. If $\{x, y\} \in \mathcal{F}_2(Y) \cup \langle M(p, X), Y \rangle$, it is easy to see that $\{x, y\} \in \mathcal{K} \cup \mathcal{L}$. Suppose that $\{x, y\} \in \mathcal{F}_2(M(p, X)) - \{\{p\}\}$. Take $k, j \in \lambda(m)$ such that $x \in I_k$ and $y \in I_j$. First, if k = j, then $\{x, y\} \in \mathcal{K}_k \cup \mathcal{L}_k$. Now, without loss of generality, we may assume that k < j. Consider $(u, v) \in [0, 1]^2 - \{\mathbf{0}\}$ such that $\psi_{(k,j)}(u, v) = \{x, y\}$. Thus, since $[0, 1]^2 - \{\mathbf{0}\} = \Lambda \cup \Omega \cup \Gamma$, $\psi_{(k,j)}(\Lambda) = \psi_{(j,k)}(\Lambda)$ and $\psi_{(k,j)}(\Gamma) = \psi_{(j,k)}(\Omega)$, $\{x, y\} \in \mathcal{K} \cup \mathcal{L}$.

To show that \mathcal{K} and \mathcal{L} are connected, let $k \neq j \in \lambda(m)$. The connectedness of \mathcal{K}_k and \mathcal{L}_k follows from the fact that $\varphi_k(1) \in Y$ and Proposition 2.5. Without loss of generality, we may assume that k < j. The connectedness of \mathcal{L} follows from the connectedness of Ω and the fact that $\psi_{(k,j)}(1,0) \in \mathcal{L}_k \cap \mathcal{L}_j \cap \psi_{(k,j)}(\Omega)$. Since $\psi_{(k,j)}(\Lambda)$ is connected, $\psi_{(k,j)}(\Lambda) = \psi_{(j,k)}(\Lambda)$ and $\psi_{(k,j)}(1,1) \in \mathcal{K}_k \cap \psi_{(k,j)}(\Lambda) \cap \mathcal{F}_2(Y)$, \mathcal{K} is connected.

Finally, we will show that $b_0(\mathcal{K} \cap \mathcal{L}) \ge 2$. Put $\Sigma = \{(u, v) \in [0, 1]^2 - \{0\}: v = 2u\}$. Given $k \in \lambda(m)$. Define $\mathcal{D}_k = \langle \{\varphi_k(\frac{1}{2})\}, Y \cup \varphi_k([\frac{1}{2}, 1]) \rangle$ and $C_k = \bigcup \{\psi_{(k,j)}(\Sigma): j \in \lambda(m) - \{k\}\} \cup \mathcal{D}_k$. We are going to prove that C_1, \ldots, C_m are the components of $\mathcal{K} \cap \mathcal{L}$. The connectedness of \mathcal{D}_k follows from the fact that $\varphi_k(1) \in Y$ and Proposition 2.5. Since $\psi_{(k,j)}(\Sigma)$ is connected and $\psi_{(k,j)}(\frac{1}{2}, 1) \in \psi_{(k,j)}(\Sigma) \cap \mathcal{D}_k$ for each $j \in \lambda(m) - \{k\}$, C_k is connected.

We need to prove the following properties,

i) $\mathcal{F}_2(Y) \cap \mathcal{L} = \emptyset$,

ii) $\mathcal{K}_k \cap \mathcal{L}_k = \mathcal{D}_k$ for each $k \in \lambda(m)$,

iii) $\mathcal{K}_k \cap \mathcal{L}_j = \emptyset$ and $\mathcal{K}_k \cap \psi_{(k,j)}(\Gamma) = \{\varphi_k(\frac{1}{2}), \varphi_j(1)\}$ for each $k \neq j \in \lambda(m)$,

iv) $\mathcal{L} \cap \langle I_k, I_j \rangle = \psi_{(k,j)}(\Omega) \cup \psi_{(k,j)}(\Gamma)$ for each $k \neq j \in \lambda(m)$,

v) $\varphi_k([0,1]) \cap \varphi_j([0,1]) = \{\varphi_k(0), \varphi_k(1)\} \cap \{\varphi_j(0), \varphi_j(1)\}$ for each $k \neq j \in \lambda(m)$,

vi) $\mathcal{D}_k \cap \mathcal{D}_j = \emptyset$ for each $k \neq j \in \lambda(m)$,

vii) if $k \neq j \in \lambda(m)$, then $\psi_{(k,j)}(\Sigma) \cap \mathcal{D}_l = \emptyset$ for each $l \in \lambda(m) - \{k\}$,

viii) if $k \neq j \in \lambda(m)$, then $\psi_{(k,j)}(\Sigma) \cap \psi_{(l,n)}(\Sigma) = \emptyset$ for each $(l,n) \in ((\lambda(m) - \{k\}) \times (\lambda(m) - \{j\})) - \{(j,k)\}$.

It is easy to see the properties i)-v).

vi) Follows from the facts that $\varphi_k(\frac{1}{2}) \notin Y \cup \varphi_j([\frac{1}{2}, 1]), \varphi_j(\frac{1}{2}) \notin Y \cup \varphi_k([\frac{1}{2}, 1])$ and v).

vii) Suppose to the contrary that there exists $l \in \lambda(m) - \{k\}$ such that $\psi_{(k,j)}(\Sigma) \cap \mathcal{D}_l \neq \emptyset$. Consider $(u, 2u) \in \Sigma$ such that $\psi_{(k,j)}(u, 2u) \in \mathcal{D}_l$. Then, either $\varphi_k(u) = \varphi_l(\frac{1}{2})$ or $\varphi_j(2u) = \varphi_l(\frac{1}{2})$. So, by v), j = l and $\varphi_j(2u) = \varphi_l(\frac{1}{2})$. Thus, $u = \frac{1}{4}$ and $\varphi_k(\frac{1}{4}) \in Y \cup \varphi_l([\frac{1}{2}, 1])$, a contradiction.

viii) Suppose to the contrary that there exist $(l, n) \in ((\lambda(m) - \{k\}) \times (\lambda(m) - \{j\})) - \{(j,k)\}$ and $(u, v), (s, t) \in \Sigma$ such that $\psi_{(k,j)}(u, v) = \psi_{(l,n)}(s, t)$. So, since u > 0, $s \le \frac{1}{2}$ and $k \ne l$, by v), $\varphi_k(u) \ne \varphi_l(s)$ and $\varphi_k(u) = \varphi_n(t)$. Then, $\varphi_j(v) = \varphi_l(s)$. Thus, since $0 < u, s \le \frac{1}{2}$, by v), k = n and j = l. Hence, since φ_k and φ_l are one-to-one maps, u = tand v = s. Therefore, $(t, s), (s, t) \in \Sigma$, a contradiction.

We are ready to prove that $\mathcal{K} \cap \mathcal{L} = \bigcup \{C_k : k \in \lambda(m)\}$. From the fact that $\Sigma = \Lambda \cap \Gamma$ and ii), we have that $\bigcup \{C_k : k \in \lambda(m)\} \subset \mathcal{K} \cap \mathcal{L}$. Now, let $\{w, z\} \in \mathcal{K} \cap \mathcal{L}$. If $\{w, z\} \in \mathcal{K}_k \cap \mathcal{L}$ for some $k \in \lambda(m)$, by ii) and iii), $\{w, z\} \in \mathcal{D}_k \subset C_k$. Now, suppose that $\{w, z\} \in \psi_{(k,j)}(\Lambda) \cap \mathcal{L}$ for some $k \neq j \in \lambda(m)$. Since $\psi_{(k,j)}(\Lambda) \subset \langle I_k, I_j \rangle$ and $\psi_{(k,j)}(\Gamma) = \psi_{(j,k)}(\Omega)$, by iv), $\{w, z\} \in (\psi_{(k,j)}(\Lambda) \cap \psi_{(k,j)}(\Omega)) \cup (\psi_{(k,j)}(\Lambda) \cap \psi_{(j,k)}(\Omega))$. So, using $\Sigma = \Lambda \cap \Omega$, $\varphi_{(k,j)}(\Lambda) = \varphi_{(j,k)}(\Lambda)$ and $\varphi_{(k,j)}|_{\Sigma}$, $\varphi_{(i,k)}|_{\Sigma}$ are one-to-one maps, it can be proved $\{w, z\} \in \varphi_{(k,j)}(\Sigma) \cup \varphi_{(j,k)}(\Sigma)$. Hence, $\{w, z\} \in C_k \cup C_j$.

Finally, in order to prove that C_1, C_2, \ldots, C_m are mutually disjoint, let $k \neq j \in \lambda(m)$. By vi)-viii), $C_k \cap C_j = \emptyset$. Thus, $b_0(\mathcal{K} \cap \mathcal{L}) + 1 = m \ge 3$.

Case B. $\mathcal{N}(p, X) = \emptyset$.

Then, $N(p, X) = \emptyset$ and $\varphi_1(1) = \varphi_2(1) = \cdots = \varphi_k(1)$. This case can be proved using similar arguments in the proof of Case A by considering $Y = \{\varphi_1(1)\}$.

Theorem 3.3 Let X be a simple closed curve and let $p,q \in X$ such that $p \neq q$. Then $\{p,q\}$ makes a hole with respect to multicoherence degree in $\mathcal{F}_2(X)$.

Proof. First, we are going to prove that $A = \{(1,0), (-1,0)\} \subset S^1$ makes a hole with respect to multicoherence degree in $\mathcal{F}_2(S^1)$. By Theorem 2.8, $r(\mathcal{F}_2(S^1)) = 1$. So, it suffices to show that there exist two closed connected subsets \mathcal{K} and \mathcal{L} of $\mathcal{F}_2(S^1) - \{A\}$ such that $\mathcal{F}_2(S^1) - \{A\} = \mathcal{K} \cup \mathcal{L}$ and $b_0(\mathcal{K} \cap \mathcal{L}) \geq 2$.

Define $\varphi: [0,1] \to S^1$ by $\varphi(t) = (\cos(2\pi t), \sin(2\pi t))$ and $\psi: \Delta \to \mathcal{F}_2(S^1)$ by $\psi(t,s) = \{\varphi(t), \varphi(s)\}$. Notice that ψ is well defined and it is surjective. The continuity of ψ follows from that of φ . Put $\Gamma_1 = \{(u,v) \in \Delta - \{(0,\frac{1}{2})\}: \frac{1}{2} - u \le v \le 1 - u\}$, $\Gamma_2 = \{(u,v) \in \Delta - \{(\frac{1}{2},1)\}: \frac{3}{2} - u \le v\}$, $\Gamma_3 = \{(u,v) \in \Delta - \{(0,\frac{1}{2})\}: v \le \frac{1}{2} - u\}$, $\Gamma_4 = \{(u,v) \in \Delta - \{(\frac{1}{2},1)\}: 1 - u \le v \le \frac{3}{2} - u\}$, $\mathcal{K} = \psi(\Gamma_1) \cup \psi(\Gamma_2)$ and $\mathcal{L} = \psi(\Gamma_3) \cup \psi(\Gamma_4)$.

It is easy to prove that \mathcal{K} and \mathcal{L} are closed subset of $\mathcal{F}_2(S^1) - \{A\}$. Clearly, $\mathcal{K} \cup \mathcal{L} \subset \mathcal{F}_2(S^1) - \{A\}$. Now, we will prove that $\mathcal{F}_2(S^1) - \{A\} \subset \mathcal{K} \cup \mathcal{L}$. Let $\{x, y\} \in \mathcal{F}_2(S^1) - \{A\}$ and let $t, s \in [0, 1]$ such that $\varphi(t) = x$ and $\varphi(s) = y$. Without loss of generality, we may suppose that $t \leq s$. So, since $\psi(t, s) = \{x, y\}$ and $(t, s) \in \Delta - \{(0, \frac{1}{2}), (\frac{1}{2}, 1)\} = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \cup \Gamma_4$, $\{x, y\} \in \psi(\Gamma_1) \cup \psi(\Gamma_2) \cup \psi(\Gamma_3) \cup \psi(\Gamma_4) = \mathcal{K} \cup \mathcal{L}$. Thus, $\mathcal{F}_2(S^1) - \{A\} = \mathcal{K} \cup \mathcal{L}$.

The connectedness of \mathcal{K} and \mathcal{L} follows from the facts that $\psi(0,0) = \psi(0,1) = \psi(1,1) \in \psi(\Gamma_1) \cap \psi(\Gamma_2) \cap \psi(\Gamma_3) \cap \psi(\Gamma_4)$ and each $\psi(\Gamma_i)$ is connected.

Now, we are going to prove that $b_0(\mathcal{K} \cap \mathcal{L}) \ge 2$. Put $\Lambda_1 = \{(u, v) \in \Delta : v = 1 - u\}$, $\Lambda_2 = \{(u, v) \in \Delta - \{(0, \frac{1}{2})\}$: $v = \frac{1}{2} - u\}$ and $\Lambda_3 = \{(u, v) \in \Delta - \{(\frac{1}{2}, 1)\}$: $v = \frac{3}{2} - u\}$. Notice that $\Lambda_1 = \Gamma_1 \cap \Gamma_4$, $\Lambda_2 = \Gamma_1 \cap \Gamma_3$, $\Lambda_3 = \Gamma_2 \cap \Gamma_4$ and, Λ_1 , Λ_2 and Λ_3 are mutually disjoint. It is easy to see that $\psi(\Lambda_1) = \psi(\Gamma_1 \cap \Gamma_4) = \psi(\Gamma_1) \cap \psi(\Gamma_4)$, $\psi(\Lambda_2) = \psi(\Gamma_1 \cap \Gamma_3) = \psi(\Gamma_1) \cap \psi(\Gamma_3)$, $\psi(\Lambda_3) = \psi(\Gamma_2 \cap \Gamma_4) = \psi(\Gamma_2) \cap \psi(\Gamma_4)$ and $\psi(\Gamma_2) \cap \psi(\Gamma_3) = \emptyset$. We will show that $\psi(\Lambda_1)$, $\psi(\Lambda_2)$ and $\psi(\Lambda_3)$ are the components of $\mathcal{K} \cap \mathcal{L}$. First, notice that $\psi(\Lambda_1) \subset \mathcal{K} \cap \mathcal{L}$ since $\psi(\Gamma_1) \subset \mathcal{K}$ and $\psi(\Gamma_4) \subset \mathcal{L}$.

Similarly, it can be proved that $\psi(\Lambda_2)$ and $\psi(\Lambda_3)$ is contained in $\mathcal{K} \cap \mathcal{L}$. Now, to verify that $\mathcal{K} \cap \mathcal{L} \subset \bigcup_{i=1}^{3} \varphi(\Lambda_i)$, let $\{x, y\} \in \mathcal{K} \cap \mathcal{L}$. Since $\mathcal{K} = \psi(\Gamma_1) \cup \psi(\Gamma_2)$, either $\{x, y\} \in \psi(\Gamma_1) \cap \mathcal{L}$ or $\{x, y\} \in \psi(\Gamma_2) \cap \mathcal{L}$. From the facts that $\mathcal{L} = \psi(\Gamma_3) \cup \psi(\Lambda_4)$ and $\psi(\Gamma_2) \cap \psi(\Gamma_3) = \emptyset$, we have $\{x, y\} \in (\psi(\Gamma_1) \cap \psi(\Gamma_3)) \cup (\psi(\Gamma_1) \cap \psi(\Gamma_4)) \cup (\psi(\Gamma_2) \cap \psi(\Gamma_4))$.

So, $\{x, y\} \in \bigcup_{i=1}^{3} \psi(\Lambda_i)$. Finally, since Λ_1 , Λ_2 and Λ_3 are connected and mutually disjoint, $\psi(\Lambda_1)$, $\psi(\Lambda_2)$ and $\psi(\Lambda_3)$ are also connected and mutually disjoint. This proves that $b(\mathcal{K} \cap \mathcal{L}) + 1 = 3$.

So, \mathcal{K} and \mathcal{L} satisfy the required properties.

We are ready to prove that $\{p, q\}$ makes a hole with respect to multicoherence degree in $\mathcal{F}_2(X)$. Since *X* is a simple closed curve, there exists a homeomorphism $h: S^1 \to X$ such that $h(A) = \{p, q\}$. Consider the induced mapping $h_2: \mathcal{F}_2(S^1) \to \mathcal{F}_2(X)$ defined by $h_2(B) = h(B)$ for each $B \in \mathcal{F}_2(S^1)$. By (Higuera & Illanes, 2011, Theorem 3.1, p. 369), h_2 is a homeomorphism. Then, since *A* makes a hole with respect to multicoherence degree in $\mathcal{F}_2(S^1)$ and $h_2(A) = \{p, q\}, \{p, q\}$ makes a hole with respect to multicoherence degree in $\mathcal{F}_2(X)$.

Theorem 3.4 Let X be a theta curve and let $p,q \in X$ such that ord(p,X) = ord(q,X) = 2 and $X - \{p,q\}$ is connected. Then $\{p,q\}$ makes a hole with respect to multicoherence degree in $\mathcal{F}_2(X)$.

Proof. Clearly, *X* is a cyclicly connected graph. Then, by Theorem 2.8, $r(\mathcal{F}_2(X)) = 1$. So, to show that $r(\mathcal{F}_2(X) - \{\{p,q\}\}) > 1$, we are going to prove that there exist connected closed subsets \mathcal{K} and \mathcal{L} of $\mathcal{F}_2(X) - \{\{p,q\}\}$ satisfying $\mathcal{F}_2(X) - \{\{p,q\}\} = \mathcal{K} \cup \mathcal{L}$ and $b_0(\mathcal{K} \cap \mathcal{L}) \ge 2$.

Put $I(X) = \{I_1, I_2, I_3\}$. Without loss of generality, we may assume that $p \in I_1$ and $q \in I_2$. Given $k \in \{1, 2, 3\}$, fix a homeomorphism φ_k : $[0, 1] \to I_k$ such that $\varphi_1(0) = \varphi_2(0) = \varphi_3(0)$. We may assume that $\varphi_1(\frac{1}{2}) = p$ and $\varphi_2(\frac{1}{2}) = q$. Notice that $\varphi_1(1) = \varphi_2(1) = \varphi_3(1)$. Put $w = \varphi_1(0)$ and $z = \varphi_1(1)$. So, $R(X) = \{w, z\}$. Now, for each $k, j \in \{1, 2, 3\}$, consider π_k : $\Delta \to \mathcal{F}_2(I_k)$ and $\psi_{(k,j)}$: $[0, 1]^2 \to \langle I_k, I_j \rangle$ defined by $\pi_k(t, s) = \{\varphi_k(t), \varphi_k(s)\}$ for each $(t, s) \in \Delta$ and $\psi_{(k,j)}(u, v) = \{\varphi_k(u), \varphi_j(v)\}$ for each $(u, v) \in [0, 1]^2$. Now, let $\Lambda_1 = \{(u, v) \in [0, \frac{1}{2}] \times [\frac{1}{2}, 1] - \{a\}$: $\frac{1}{2} \le v \le \frac{3-2u}{4}\}$, $\Lambda_2 = (([\frac{1}{2}, \frac{3}{4}] \times [\frac{1}{2}, 1]) \cup ([\frac{1}{2}, 1] \times [\frac{1}{2}, \frac{3}{4}])) - \{a\}$, $\Lambda_3 = \{(u, v) \in [\frac{1}{2}, 1] \times [0, \frac{1}{2}] - \{a\}$: $v \le \frac{4-3u}{2}\}$, $\Omega_1 = \{(u, v) \in [0, \frac{1}{2}] \times [\frac{1}{2}, 1] - \{a\}$: $\frac{3-2u}{4} \le v\}$, $\Omega_2 = [\frac{3}{4}, 1] \times [\frac{3}{4}, 1]$, $\Omega_3 = \{(u, v) \in [\frac{1}{2}, 1] \times [0, \frac{1}{2}] - \{a\}$: $\frac{3-4u}{2} \le v\}$ and $\Omega_4 = [0, \frac{1}{2}] \times [0, \frac{1}{2}] - \{a\}$ where $a = (\frac{1}{2}, \frac{1}{2})$. Consider $\Gamma_1 = \{(u, v) \in \Delta: \frac{1}{2} - u \le v \le \frac{3}{4} - u\}$, $\Gamma_2 = \{(u, v) \in \Delta: \frac{3}{4} - u \le v \le \frac{3}{4} - u\}$, $\Gamma_2 = \{(u, v) \in \Delta: \frac{3}{4} - u \le v \le \frac{3}{4} - u\}$, $\Gamma_2 = \{(u, v) \in \Delta: \frac{3}{4} - u \le v \le \frac{3}{4} - u\}$, $\Gamma_2 = \{(u, v) \in \Delta: \frac{3}{4} - u \le v \le \frac{3}{4} - u\}$, $\Gamma_2 = \{(u, v) \in \Delta: \frac{3}{4} - u \le v \le \frac{3}{4} - u\}$, $\Gamma_2 = \{(u, v) \in \Delta: \frac{3}{4} - u \le v \le \frac{3}{4} - u\}$, $\Gamma_2 = \{(u, v) \in \Delta: \frac{3}{4} - u \le v \le \frac{3}{4} - u\}$, $\Gamma_2 = \{(u, v) \in \Delta: \frac{3}{4} - u \le v \le \frac{3}{4} - u\}$, $\Gamma_2 = \{(u, v) \in \Delta: \frac{3}{4} - u \le v \le \frac{3}{4} - u\}$, $\Gamma_2 = \{(u, v) \in \Delta: \frac{3}{4} - u \le v \le \frac{3}{4} - u\}$, $\Gamma_2 = \{(u, v) \in \Delta: \frac{3}{4} - u \le v \le \frac{3}{4} - u\}$, $\Gamma_2 = \{(u, v) \in \Delta: \frac{3}{4} - u \le v \le \frac{3}{4} - u\}$, $\Gamma_2 = \{(u, v) \in \Delta: \frac{3}{4} - u \le v \le \frac{3}{4} - u\}$, $\Gamma_2 = \{(u, v) \in \Delta: \frac{3}{4} - u \le v \le \frac{3}{4} - u\}$, $\Gamma_2 = \{(u, v) \in \Delta: \frac{3}{4} - u \le v \le \frac{3}{4} - u\}$, $\Gamma_2 = \{(u, v) \in \Delta: \frac{3}{4} - u \le v \le \frac{3}{4} - u\}$, $\Gamma_2 = \{(u, v)$

For each $k \in \{1, 2\}$, let $\mathcal{K}_k = \psi_{(k,3)}([\frac{1}{2}, \frac{3}{4}] \times [0, 1]), \mathcal{L}_k^1 = \psi_{(k,3)}([0, \frac{1}{2}] \times [0, 1])$ and $\mathcal{L}_k^2 = \psi_{(k,3)}([\frac{3}{4}, 1] \times [0, 1]).$ Define

 $\mathcal{K} = \psi_{(1,2)}(\Lambda) \cup \pi_1(\Gamma) \cup \pi_2(\Gamma) \cup \mathcal{K}_1 \cup \mathcal{K}_2$ and

$$\mathcal{L} = \psi_{(1,2)}(\Omega) \cup \pi_1(\Sigma) \cup \pi_2(\Sigma) \cup \mathcal{L}_1^1 \cup \mathcal{L}_2^1 \cup \mathcal{L}_1^2 \cup \mathcal{L}_2^2 \cup \mathcal{F}_2(I_3).$$

It is easy to see that \mathcal{K} and \mathcal{L} are closed subset of $\mathcal{F}_2(X) - \{\{p, q\}\}$. In order to prove that $\mathcal{F}_2(X) - \{\{p, q\}\} \subset \mathcal{K} \cup \mathcal{L}$, let $\{x, y\} \in \mathcal{F}_2(X) - \{\{p, q\}\}$. First, since $X = I_1 \cup I_2 \cup I_3$, $\mathcal{F}_2(X) = \mathcal{F}_2(I_1) \cup \mathcal{F}_2(I_2) \cup \mathcal{F}_2(I_3) \cup \langle I_1, I_2 \rangle \cup \langle I_1, I_3 \rangle \cup \langle I_2, I_3 \rangle$. Now, notice that $\mathcal{F}_2(I_1) = \pi_1(\Gamma \cup \Sigma)$, $\mathcal{F}_2(I_2) = \pi_2(\Gamma \cup \Sigma)$, $\mathcal{F}_2(I_3) \subset \mathcal{L}$, $\langle I_1, I_2 \rangle - \{\{p, q\}\} = \psi_{(1,2)}(\Gamma \cup \Omega)$, $\langle I_1, I_3 \rangle = \mathcal{K}_1 \cup \mathcal{L}_1^1 \cup \mathcal{L}_1^2$ and $\langle I_2, I_3 \rangle = \mathcal{K}_2 \cup \mathcal{L}_2^1 \cup \mathcal{L}_2^2$. Hence, $\{x, y\} \in \mathcal{K} \cup \mathcal{L}$. This proves that $\mathcal{F}_2(X) - \{\{p, q\}\} = \mathcal{K} \cup \mathcal{L}$.

To prove that \mathcal{K} and \mathcal{L} are connected, put $\mathfrak{C} = \{\Lambda_1, \Lambda_2, \Lambda_3, \Omega_1, \Omega_2, \Omega_3, \Omega_4\}, \mathfrak{D} = \{\Gamma_1, \Gamma_2, \Sigma_1, \Sigma_2, \Sigma_3\}, \mathfrak{F} = \{[\frac{1}{2}, \frac{3}{4}] \times [0, 1], [0, \frac{1}{2}] \times [0, 1], [\frac{3}{4}, 1] \times [0, 1]\}$ and $\mathfrak{G} = \mathfrak{C} \cup \mathfrak{D} \cup \mathfrak{F}$. It is easy to see that each element of \mathfrak{G} is connected. So, $\psi_{(1,2)}(\Theta), \pi_k(\Psi)$ and $\psi_{(k,3)}(\Upsilon)$ are connected for each $(\Theta, \Psi, \Upsilon, k) \in \mathfrak{C} \times \mathfrak{D} \times \mathfrak{F} \times \{1, 2\}$. Notice that $\{w, p\} \in \pi_1(\Gamma_1) \cap \psi_{(1,2)}(\Lambda_3) \cap \mathcal{K}_1, \{p, z\} \in \pi_1(\Gamma_2) \cap \psi_{(1,2)}(\Lambda_2) \cap \mathcal{K}_1, \{q, z\} \in \psi_{(1,2)}(\Lambda_2) \cap \pi_2(\Gamma_2) \cap \mathcal{K}_2$ and $\{w, q\} \in \psi_{(1,2)}(\Lambda_1) \cap \pi_2(\Gamma_1) \cap \mathcal{K}_2$. Then, \mathcal{K} is connected. Now, since $\{w\} \in \pi_1(\Sigma_1) \cap \pi_2(\Sigma_1) \cap \psi_{(1,2)}(\Omega_4) \cap \mathcal{L}_1^1 \cap \mathcal{L}_2^1 \cap \mathcal{F}_2(I_3), \{z\} \in \pi_1(\Sigma_3) \cap \pi_2(\Sigma_3) \cap \psi_{(1,2)}(\Omega_2) \cap \mathcal{L}_1^2 \cap \mathcal{L}_2^2 \cap \mathcal{F}_2(I_3)$ and $\{w, z\} \in \pi_1(\Sigma_2) \cap \pi_2(\Sigma_2) \cap \psi_{(1,2)}(\Omega_1) \cap \psi_{(1,2)}(\Omega_3) \cap \mathcal{L}_1^1 \cap \mathcal{L}_2^1 \cap \mathcal{L}_2^1 \cap \mathcal{L}_2^2 \cap \mathcal{F}_2(I_3), \mathcal{L}$ is connected.

Finally, we are going to show that $b_0(\mathcal{K} \cap \mathcal{L}) \ge 2$. Given $(n, m) \in \{1, 2\} \times \{1, 2, 3\}$, let $\Pi_{(n,m)} = \Gamma_n \cap \Sigma_m$. Define $\Upsilon_{(i,j)} = \Lambda_i \cap \Omega_j$ for each $(i, j) \in \{1, 2, 3\} \times \{1, 2, 3, 4\}$. For each $k \in \{1, 2\}$, consider $\mathcal{H}_k = \mathcal{L}_k^1 \cap \mathcal{K}_k$ and $\mathcal{J}_k = \mathcal{L}_k^2 \cap \mathcal{K}_k$. Let $C_1 = \pi_1(\Pi_{(1,1)}) \cup \psi_{(1,2)}(\Upsilon_{(3,4)}) \cup \mathcal{H}_1 \cup \pi_1(\Pi_{(2,2)}) \cup \psi_{(1,2)}(\Upsilon_{(2,1)}), C_2 = \pi_2(\Pi_{(1,1)}) \cup \psi_{(1,2)}(\Upsilon_{(1,4)}) \cup \mathcal{H}_2 \cup \pi_2(\Pi_{(2,2)}) \cup \psi_{(1,2)}(\Upsilon_{(2,3)})$ and $C_3 = \pi_1(\Pi_{(1,2)}) \cup \psi_{(1,2)}(\Upsilon_{(3,3)}) \cup \mathcal{J}_1 \cup \pi_1(\Pi_{(2,3)}) \cup \psi_{(1,2)}(\Upsilon_{(2,2)}) \cup \pi_2(\Pi_{(2,3)}) \cup \mathcal{J}_2 \cup \pi_2(\Pi_{(1,2)}) \cup \psi_{(1,2)}(\Upsilon_{(1,1)})$. We are going to prove that C_1, C_2 and C_3 are the components of $\mathcal{K} \cap \mathcal{L}$.

The following properties are easy to verify,

i) $\Pi_{(n,m)}$ is connected and $\pi_k(\Pi_{(n,m)}) = \pi_k(\Gamma_n) \cap \pi_k(\Sigma_m)$ for each $n, k \in \{1, 2\}$ and $m \in \{n, n+1\}$,

ii) if $\Upsilon_{(i,j)} \neq \emptyset$, then $\Upsilon_{(i,j)}$ is connected and $\psi_{(1,2)}(\Upsilon_{(i,j)}) = \psi_{(1,2)}(\Lambda_i) \cap \psi_{(1,2)}(\Omega_j)$,

iii) \mathcal{H}_k and J_k are connected for each $k \in \{1, 2\}$,

iv) $\{w, p\} \in \pi_1(\Pi_{(1,1)}) \cap \psi_{(1,2)}(\Upsilon_{(3,4)}) \cap \mathcal{H}_1,$

v) $\{p, z\} \in \mathcal{H}_1 \cap \pi_1(\Pi_{(2,2)}) \cap \psi_{(1,2)}(\Upsilon_{(2,1)}),$

vi) $\{w, q\} \in \pi_2(\Pi_{(1,1)}) \cap \psi_{(1,2)}(\Upsilon_{(1,4)}) \cap \mathcal{H}_2,$

vii) $\{q, z\} \in \mathcal{H}_2 \cap \pi_2(\Pi_{(2,2)}) \cap \psi_{(1,2)}(\Upsilon_{(2,3)}),$

viii) $\{w, \varphi_1(\frac{3}{4})\} \in \pi_1(\Pi_{(1,2)}) \cap \psi_{(1,2)}(\Upsilon_{(3,3)}) \cap \mathcal{J}_1,$

ix) $\{\varphi_1(\frac{3}{4}), z\} \in \mathcal{J}_1 \cap \pi_1(\Pi_{(2,3)}) \cap \psi_{(1,2)}(\Upsilon_{(2,2)}),$

 $\mathbf{x} \{ \varphi_2(\frac{3}{4}), z \} \in \psi_{(1,2)}(\Upsilon_{(2,2)}) \cap \pi_2(\Pi_{(2,3)}) \cap \mathcal{J}_2,$

xi) $\{w, \varphi_2(\frac{3}{4})\} \in \mathcal{J}_2 \cap \pi_2(\Pi_{(1,2)}) \cap \psi_{(1,2)}(\Upsilon_{(1,1)}),$

xii) $\Pi_{(n_1,m_1)} \cap \Pi_{(n_2,m_2)} = \emptyset$ for each $(n_1,m_1) \neq (n_2,m_2) \in \{1,2\} \times \{1,2,3\},$

xiii) $\Upsilon_{(i_1,j_1)} \cap \Upsilon_{(i_2,j_2)} = \emptyset$ for each $(i_1, j_1) \neq (i_2, j_2) \in \{1, 2, 3\} \times \{1, 2, 3, 4\},\$

xiv) $\mathcal{H}_k \cap \mathcal{J}_k = \emptyset$ for each $k \in \{1, 2\}$, and

 $\begin{aligned} \text{xv} & \mathcal{K} \cap \mathcal{L} = \bigcup \{ \pi_k(\Pi_{(n,m)}) \colon (k,n,m) \in \{1,2\} \times \{1,2\} \times \{1,2,3\} \} \cup \bigcup \{ \psi_{(1,2)}(\Upsilon_{(i,j)}) \colon (i,j) \in \{1,2,3\} \times \{1,2,3,4\} \} \cup \bigcup \{ \mathcal{H}_k \cup \mathcal{J}_k \colon k \in \{1,2\} \}. \end{aligned}$

The connectedness of C_1 , C_2 and C_3 follows from i)-xi). Using xii)-xiv), it can be proved that C_1 , C_2 and C_3 are mutually disjoint. Finally, from xv), it follows that $\mathcal{K} \cap \mathcal{L} = C_1 \cup C_2 \cup C_3$.

So, \mathcal{K} and \mathcal{L} satisfy the required properties.

Theorem 3.5 Let X be a cyclicly connected graph and $p, q \in X$. If $p \neq q$, then $\{p,q\}$ makes a hole with respect to multicoherence degree in $\mathcal{F}_2(X)$.

Proof. In the case that X is a simple closed curve, the result follows from Theorem 3.3. Now, suppose that X is not a simple closed curve. Since X is a graph, by (Borsuk & Ulam, 1931, (a), p. 877), $\mathcal{F}_2(X)$ is a locally connected space. Then, $\mathcal{F}_2(X) - \{\{p, q\}\}$ is a locally connected metric space. So, by (Eilenberg, 1936, Theorem 4, p. 162) and (Stone, 1950, Theorem 5, p. 472), it suffices to show that there exists a retract \mathcal{Z} of $\mathcal{F}_2(X) - \{\{p, q\}\}$ such that $r(\mathcal{Z}) > r(\mathcal{F}_2(X)) = 1$ (see Theorem 2.8). We consider two cases.

Case I. $X - \{p, q\}$ is not connected.

By Lemma 2.3, there exists a simple closed curve *S* in *X* containing *p* and *q* and a retraction $f: X \to S$ such that $f^{-1}(p) = \{p\}$ and $f^{-1}(q) = \{q\}$. Put $Z = \mathcal{F}_2(S) - \{\{p,q\}\}$. Since *S* is a cyclicly connected graph, $r(\mathcal{F}_2(S)) = 1$ (see Theorem 2.8). So, by Theorem 3.3, $r(Z) \ge 2$. Finally, define $\bar{f}: \mathcal{F}_2(X) - \{\{p,q\}\} \to Z$ as follows: for each $A \in \mathcal{F}_2(X) - \{\{p,q\}\}$, let $\bar{f}(A) = f(A)$. Using the fact that $f^{-1}(p) = \{p\}$ and $f^{-1}(q) = \{q\}$, it can be proved that \bar{f} is well defined. Since *f* is continuous, \bar{f} is continuous. Finally, notice that $\bar{f}(B) = B$ for each $B \in Z$. Thus, \bar{f} is a retraction.

Case II. $X - \{p, q\}$ is connected.

There exists a theta curve Y in X such that $p, q \in Y$ and a retraction $f: X \to Y$ satisfying $f^{-1}(p) = \{p\}$ and $f^{-1}(q) = \{q\}$ (see Lemma 2.4). Since $X - \{p, q\}$ is connected, $Y - \{p, q\}$ is also connected. Put $\mathcal{Z} = \mathcal{F}_2(Y) - \{\{p, q\}\}$. By Theorem 3.4, $r(\mathcal{Z}) \ge 2$ since $r(\mathcal{F}_2(Y)) = 1$ (see Theorem 2.8). Now, define $\overline{f}: \mathcal{F}_2(X) - \{\{p, q\}\} \to \mathcal{Z}$ by $\overline{f}(A) = f(A)$ for each $A \in \mathcal{F}_2(X) - \{\{p, q\}\}$. Notice that \overline{f} is well defined since $f^{-1}(p) = \{p\}$ and $f^{-1}(q) = \{q\}$. The continuity of \overline{f} follows from the fact that f is continuous. It is easy to verify that $\overline{f}(B) = B$ for each $B \in \mathcal{Z}$. Thus, \mathcal{Z} is a retract of $\mathcal{F}_2(X) - \{\{p, q\}\}$.

3.1 Classification

Theorem 3.6 Let X be a cyclicly connected graph and let $p, q \in X$. Then, $\{p, q\}$ makes a hole with respect to multicoherence degree in $\mathcal{F}_2(X)$ if and only if either p = q and $p \in R(X)$, or $p \neq q$.

Proof. From (Nadler, Jr., 1992, Theorem 9.10, p. 144; Kuratowski, 1968, Theorem 3, p. 278) and (Nadler, Jr., 1992, Corollary 9.6, p. 142), it follows that $E(X) = \emptyset$. Then, $p, q \in O(X) \cup R(X)$

Assume that $\{p, q\}$ makes a hole in $\mathcal{F}_2(X)$. Now, by Theorem 3.1, either p = q and $p \notin O(X)$, or $p \neq q$. So, eihter p = q and $p \in R(X)$ or $p \neq q$. This proves the necessity.

Finally, the sufficiency follows from Theorems 3.2 and 3.5.

References

Anaya, J. G. (2007). Making holes in hyperspaces. *Top. Appl.*, 154, 2000-2008. http://dx.doi.org/10.1016/j.topol.2006.09.017

Anaya, J. G. (2011). Making holes in the hyperspace of subcontinua of a Peano continuum. Top. Proc., 37, 1-15.

- Anaya, J. G., Maya, D., & Orozco-Zitli, F. (2010). Agujeros en el segundo producto simétrico de subcontinuos del continuo figura 8. *Ciencia Ergosum*, *17*(3), 307-312.
- Anaya, J. G., Maya, D., & Orozco-Zitli, F. (2012). Making holes in the second symmetric product of dendrites and some fans. *Ciencia Ergosum*, 19(1), 83-92.
- Borsuk, K., & Ulam, S. (1931). On symmetric products of topological spaces. *Bull. Amer. Math. Soc.*, 37, 875-882. http://dx.doi.org/10.1090/S0002-9904-1931-05290-3

Eilenberg, S. (1936). Sur les espaces multicohérents I. Fund. Math., 27(1), 153-190.

- Higuera, G., & Illanes, A. (2011). Induced mapping on symmetric product. Top. Proc., 37, 367-401.
- Illanes, A. (1985). Multicoherence in symmetric products. An. Inst. Mat. Univ. Nac. Autónoma México, 25, 11-24.

Kuratowski, K. (1968). Topology (Vol. II). New York, London and Warszawa: Academic Press and PWN.

- Martínez-Montejano, J. M. (2002). Non-confluence of natural map of products onto symmetric products. In *Continuum Theory (Denton, TX. 1999)* (Vol. 230, 229-236). Lecture Notes in Pure and Appl. Math., Dekker, New York. http://dx.doi.org/10.1201/9780203910245.ch16
- Michael, E. (1951). Topologies on space of subsets. *Trans. Amer. Math. Soc.*, 71, 152-182. http://dx.doi.org/10.1090/S0002-9947-1951-0042109-4
- Nadler, Jr., S. B. (1992). *Continuum Theory: An introduction*. Monographs and Textbooks in Pure and Applied Mathematics, 158. New York: Marcel Dekker, Inc.
- Stone, A. H. (1950). Incidence relations in multicoherence spaces II. *Canadian J. Math.*, 2, 461-480. http://dx.doi.org/10.4153/CJM-1950-044-5
- Whyburn, G. T. (1942). *Analytic Topology* (Vol. 28). Amer. Math. Soc. Colloq. Publ. (reprinted with corrections 1971).

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).