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Abstract

In this paper, the Marcinkiewicz type theorem is extended to the case of exchangeable random variables. As a generaliza-

tion, we also obtain two strong laws of large numbers on the weighted sum of exchangeable random variables
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1. Introduction

If the replacement the joint distribution of X1, . . . , Xn is unchanged, that is, for each replacement π of 1, 2, . . . n, the

joint distribution of X1, . . . , Xn is the same with that of Xπ(1), . . . , Xπ(n); then the random variable finite series X1, . . . ,

Xn is known as the exchangeable. Obviously, the independent identical distribution random variables is the simplest

exchangeable random variables. The concept of exchangeable random variables is the first proposed by De Finetti 1930.

The most famous property of exchangeable random variables is its basic structured theorem, called De Finetti theorem;

that is, the infinite series of exchangeable random variables is independent identical distribution, if its tail is σ algebra.

The aim of this paper is generalize the independent identical distribution variables Bai, 2000, P.105-112 and Sung, 2001,

P.413-419 to the exchangeable random variables. As the selection method for truncated random variables is different

when deal with random variables, so the prove method is more simple than that of Bai, 2000, P.105-112 and Sung, 2001,

P.413-419.

Definition Wu, 2006, P.132-133. The positive valued function l(x) defined on [,∞) is called slowly changed, if for any

c > 0, we have limx∞ l(cx)
l(x)

.

Suppose {ani, 1 ≤ i ≤ n, n ≥ 1} is real positive series that satisfy Aαα,n
1
n
∑n

i=1 |ani|α, and

Aα = lim
n→∞ sup Aα, n < ∞. (1)

Lemma Wu, 2006, P.132-133. Suppose {Xn, n ≥ 1} are exchangeable random variables, that satisfy

Cov( f1(X1), f2(X2)) ≤ 0.

Let A1, . . . , Am be the disjoint non-empty subset of {1, 2, . . . , n}, with m ≥ 2. Suppose fi, i = 1, 2, . . .m is a non-increase

(non-decrease) function, then

(1). If fi ≥ 0, i = 1, . . . ,m then

E
n∏

i=1

f (Xj, j ∈ Ai) ≤
n∏

i=1

E f (Xj, j ∈ Ai).

(2). Particularly, for any xi ∈ R, i = 1, . . . ,m, we have

P(X1 < x1, . . . , Xm < xm) ≤
n∏

i=1

P(Xi < xi).

Subsequently, we will outline several lemmas, which will be used in the proof of the main theorems. If necessary, we will

also give the proof.
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Lemma 2. Suppose X1, . . . , Xn are exchangeable random variables, that satisfy

Cov( f1(X1), f2(X2)) ≤ 0

and EXk = 0, σ2
k = EX2

k < ∞ (k = 1, 2, . . . , n). Suppose there exists a positive constant H such that

|EXm
k | ≤ m!

2
σ2

k Hm−2, k = 1, . . . , n,

then we have

P(

n∑
i=1

Xi ≥ x) ≤ exp(−x2/4

n∑
i=1

σ2
i ) 0 ≤ x ≤

n∑
i=1

σ2
k

H
,

P(

n∑
i=1

Xi ≤ −x) ≤ exp(−x2/4

n∑
i=1

σ2
i ) 0 ≤ x ≤

n∑
i=1

σ2
k

H
.

Proof. Based on Theorem 2.5 in Taylor, 2002, P.643-656 and Lemma 1 in Sung, 2001, P.413-419, this Lemma is easy to

prove.

Lemma 3. Suppose {Xn, n ≥ 1} are the exchangeable random variables and there exist h > 0, r > 0 such that

E[exp(h(x)r)] < ∞. (2)

Let {Xni, 1 ≤ i ≤ n, n ≥ 1} are the exchangeable random variables that satisfy

Cov( f1(Xn1), f2(Xn2)) ≤ 0

with EXni = 0, 1 ≤ i ≤ n, n ≥ 1; and {ani}, 1 ≤ i ≤ n, n ≥ 1 are real constant array that satisfy

(i). There exist β with 0 < β ≤ r and {un, n ≥ 1} with limn→∞ un = 0 such that

|aniXni| ≤ un|Xi|β
logn

, a.s.

(ii). There exists δ > 0 and array {vn} that satisfy limn→∞ vn = 0 such that

X2
ni

n∑
i=1

a2
ni ≤ vn|Xi|δ

logn
, a.s.

then
n∑

i=1

aniXni → 0

a.s. n → ∞.

Proof. Based on Theorem 2.5 in Taylor, 2002, P.643-656 and Theorem 18 in Petrov, 1991,83-84, the lemma is easy to

prove.

Lemma 3. Suppose {Xn, n ≥ 1} are the exchangeable random variables and there exist h > 0, r > 0 such that

E[exp(h(x)r)] < ∞,
{Xni, 1 ≤ i ≤ n, n ≥ 1} are the exchangeable random variables that satisfy

Cov( f1(Xn1), f2(Xn2)) ≤ 0

with EXni = 0, 1 ≤ i ≤ n, n ≥ 1; and {ani}, 1 ≤ i ≤ n, n ≥ 1 are real constant array that satisfy

(1). E[exp(h(x)r)] < ∞.
(2). There exist β with 0 < β ≤ r and constant c > 0 such that

|aniXni| ≤ c|Xi|β
logn

, a.s.

(3). There exists δ > 0 and array {vn} that satisfy limn→∞ vn = 0 such that

X2
ni

n∑
i=1

a2
ni ≤ vn|Xi|δ

logn
, a.s.
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then
n∑

i=1

aniXni → 0

a.s. n → ∞.

2. The main results and proof

Theorem 1. Suppose {X, Xn, n ≥ 1} are the exchangeable random variables that satisfy

Cov( f1(X1), f2(X2)) ≤ 0.

Suppose fi, i = 1, 2 are functions satisfy the above rule and non-decrease with X1 and X2, EX1, αp > 1, p < 2,

l(x) > 0 is monotonous non-decrease function when x → +∞, {ani}, 1 ≤ i ≤ n, n ≥ 1 are real constant array with

Aαα,n = n−1∑n
i=1 |ani|2. Further, suppose

Aα = lim
n→ Aα, n ≤ ∞;

and

E|X|β ≤ ∞;

and

EX = 0;

with 1 < α, β < ∞, 1 < p < 2 and 1
p =

1
α
+ 1
β
. Then we have

1

n1/p

n∑
i=1

aniXi → ∞a.s.n → ∞. (3)

Proof. Without loss of generality, for any 1 ≤ i ≤ n, n ≥ 1, suppose ani > 0. As {X, Xn, n ≥ 1} are the exchangeable

random variables, and an1X1, . . . , annXn also satisfy

Cov( f1(an1X1), f2(an2X2)) ≤ 0

and 1 < α, β < ∞, 1 < p < 2, and 1
p =

1
α
+ 1
β
. Then p < α ∧ β ∧ 2. From Yang, 2000, P.218-223 and (1) we have

E|n−1/p
n∑

i=1

aniXi|α∧β∧2 ≤ Cnα∧β∧2/p
n∑

i=1

|ani|α∧β∧2EXα∧β∧2 ≤ Cnα∧β∧2/p+1Aα∧β∧2

α∧β∧2,n → 0, n → ∞.

Therefore, n−1/p∑n
i=1 aniXi → 0, n → ∞. From the symmetrized inequality proved in Lemma 14 in Petrov, 1991, P.83-84,

we know that, in order to prove n−1/p∑n
i=1 aniXi → 0, n → ∞, we just need to prove

n−1/paniXS
i → 0, a.s. n → ∞,

where XS
i is the symmetrized form of Xi. From Lemma 3 in Chi, 1997, P.199-203. we have the symmetrized series of

Cov( f1(X1), f2(X2)) ≤ 0

also satisfy the inequality, i.e.

Cov( f1(XS
1 ), f2(XS

2 )) ≤ 0.

Without loss of generality, we assume that {Xn, n ≥ 1} are the symmetrized exchangeable random variables that satisfy

Cov( f1(X1), f2(X2)) ≤ 0 for all 1 ≤ i ≤ n, n ≥ 1. Letting

X
′
I = XiI(|Xi| ≤ n1/β) + n1/βI(Xi > β) − n1/βI(Xi < −n1/β),

X
′
I = XiI(|Xi| > n1/β) − n1/βI(Xi > β) + n1/βI(Xi < −n1/β),

X̄n
i = XiI(|Xi| > n1/β),

a
′
ni = aniI(|ani| ≤ n1/α),

a
′′
ni = ani − a

′
ni = aniI(|ani| > n1/α).

Then we have
n∑

i=1

aniXi =

n∑
i=1

a
′
niX

′
i =

n∑
i=1

an
niX

′
i +

n∑
i=1

aniXn
i . (4)

106 � www.ccsenet.org



Journal of Mathematics Research September, 2009

As 1
p =

1
α
+ 1
β
, β = α

α−1
{1+ β(1 − 1

p )}, |X̄i|′′ < |X̄i|′′ αβα−1 n−(1− 1
p ), and E|X|β < ∞, which is equivalent to

∑∞
n=1 P(|X|β > n) < ∞.

From Borel-Cantelli Lemma, we have P(|X|β > n, i.o.) < ∞ = 0, hence

1

n

n∑
i=1

|X̄′′
i |β → 0, a.s.(n → ∞).

From Hölder inequality, |X′
i | ≤ |X̄′′

i | and |X̄′′
i | ≤ |X̄′′

i |β(α−1)/αn−(1− 1
p ) and

1

n

n∑
i=1

|X̄′′
i |β → 0, a.s.(n → ∞)

then we have

n−1/p|
n∑

i=1

aniX̄
′′
i | ≤ n−1/p

n∑
i=1

|ani||X̄′′
i | ≤ n−1

n∑
i=1

|ani||X′′
i |β(α−1)/α ≤ Aα,n(

1

n

n∑
i=1

|X′′
i |β)(α−1)/α, a.s.n → ∞.

Therefore, we have

n−1/p
n∑

i=1

aniX̄
′′
i ≤ n−1/p → 0, a.s. n → ∞. (5)

As 1 < p < 2, and 1
p =

1
α
+ 1
β
, and α ∨ β < 2, so

1 +
(2 − α)+

α
+

(2 − β)+
β

=

{
2
α∧β , α ∧ β < 2,

1 α ∧ β ≥ 2,

Therefore, we have
n∑

i=1

E(a
′
niX

′
i )

2 ≤ CnAα∧2
α∧2,nn

(2−α)+

α +
(2−β)+
β ||X||β∧2

β∧2
= O(max{n2/α, n, n2/β}).

Moreover, for any 1 ≤ i ≤ n, n ≥ 1, we have |n−1/na
′
niX

′
i | ≤ n1/αn1/βn−1/p, and max{n2/α, n, n2/β = O(n2/plog−2n). From

Lemma 2, for sufficient small ε and sufficient large n, we have

P(n1/p
n∑

i=1

a
′
niX

′
i > ε) ≤ exp(

−ε2

4n−2/pO(max{n2/α, n, n2/β}) ) ≤ exp(−ε2(logn)2).

By the same procedures, we can also prove that

P(n−1/p
n∑

i=1

a
′
niX

′
i < −ε) ≤ exp(−ε2(logn)2).

Therefore,
n∑

i=1

P(n−1/p
n∑

i=1

a
′
niX

′
i > ε) < ∞.

From the above inequality, we have

n−1/p
n∑

i=1

a
′
niX

′
i → 0, a.s. n → ∞. (6)

Also, based on α > 1 and 1
p =

1
α
+ 1
β
, we have

n−1/p|
n∑

i=1

a
′′
niX

′
i | ≤ n−1/pn1/β

n∑
i=1

aniI(a|ni| > n1/α) ≤ n−1/p+1/βn(1−alpha)/α

n∑
i=1

|ani|α = Aαα,n. (7)

Then from (4),(5),(6),(7), we have

lim
n→∞ sup n−1/p|

n∑
i=1

aniXi| ≤ Aαα a.s. n → ∞.

By replacing Xi with tXi, we have

lim
n→∞ sup n−1/p|

n∑
i=1

aniXi| ≤ Aαα
t

a.s. n → ∞.
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Let t → ∞, we have n−1/p∑n
i=1 aniXi → ∞ a.s. n → ∞, i.e. the inequality (3) is true.
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