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Abstract

Few results have been obtained on the packing spheres constant or exact formula for separable Orlicz function spaces

(Yang, 2002, P.895-899, Ye, 1987, P.487-493). In this paper, by using the continuity of ideal space norm, we firstly

proved that simple function class is dense in L∗
Φ

function space. This is a necessary condition of interpolation theorem.

Hence, the exact value of packing sphere for a class of sparable Orlicz function spaces (with two kinds of norm) is

obtained. Secondly, for the space L∗
Φ

[0, 1] discussed in (Yang, 2002, P.895-899), we propose the following conjecture: the

L∗
Φ

[0, 1] space is actually the Lp[0, 1] space, therefore, the results obtained there is actually the proved results in Lp space.
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1. Preliminary material

It is well known that only finite number of sphere can be packed in a finite dimensional space if the spheres have the same

radius but uncrossed, no matter how small is the radius. However, for infinite dimensional Banach space X, there exist

a constant Λ(X) such that infinite number of disjoint spheres can be packed in a unit sphere B(X) if the radius less than

Λ(X). Whereas, only finite number of disjoint sphere can be packed in sphere B(X) if the radius larger than Λ(X). This

constant is referred to as packing sphere constant. From the 50s last century, researchers begin to investigate the packing

spheres problem in Banach space. In 1970, Kottman (1970) finally determined the range of packing sphere value Λ(X)

is [ 1
3
, 1

2
] for general normed linear spaces. In 1932, Orlicz introduced Orlicz space, from then people begin to study the

packing sphere problem for this specific Banach space (Ye, 1987, P.487-493). In (Rao, 1997, P.235-251, Wang, 1990,

P.197-203, Ye, 1991, P.203-216, Han, 2002, P.1155-1158, Wang, 1987, P.508-513), the authors investigated the packing

sphere problem for a class of separable Orlicz function spaces, and obtained the exact packing spheres value; moreover,

they also proposed their points of view for the space L∗
Φ

[0, 1] studied in (Yang, 2002, P.895-899).

In this paper, by using the continuity of ideal space norm (Matin, 1997), we firstly proved that simple function class

is dense in L∗
Φ

function space. This is a necessary condition of interpolation theorem. For the functions satisfying the

following conditions:

(i). Their index function F(u) = u ϕ(u)

Φ(u)
is not decrease;

(ii). limu→0
ϕ(u)

u = 0, limu→∞
ϕ(u)

u = ∞.

From the above two points, we prove that the interpolation function Φs(u) constructed from Φ(u) is N-function. By using

this property, we can construct the interpolation inequality for subspace L∗
Φ

, and hence obtain the exact value of packing

spheres for Orlicz function subspace satisfying this properties. In the last section, we propose a conjecture for paper

(Yang, 2002, P.895-899).

Subsequently, we outline some useful definitions and theorems.

Definition 1.1. The packing sphere constant Λ(X) for Banach space is defined by

Λ(X) = sup{r > 0 : ∃{xi} ⊂ B(X), � ||xi|| ≤ 1 − r, ||xi − x j|| ≥ 2r, i, j = 1, 2, . . . , i � j},

where B(X) is the unit ball in Banach space X.
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Definition 1.2. The Kottman constant for infinite dimensional Banach space X is defined by

K(X) = sup{in f ||xi − x j|| : {xi} ⊂ S (X), i, j = 1, 2, . . . , i � j}

where S (X) is the unit spheres in Banach space X.

Definition 1.3. Mapping Φ: R → R+ is referred to as N-function, if it satisfies the following conditions,

(i). Φ(x) is even continuious convex function;

(ii). Φ(x) = 0 ⇔ x = 0;

(iii). limx→0
Φ(x)

x = 0, limx→∞ Φ(x)
x = ∞.

Property 1.4 (Wu, 1986). Φ(x) is a N-function if and only if there exist nonnegative real function defined in [0,∞) such

that

(1). ϕ(t) is right continous and nondecrease;

(2). ϕ(t) = 0 ⇔ t = 0;

(3). ϕ(∞) = ∞ and Φ(x) =
∫ |x|

0
ϕ(t)dt, where ϕ(x) is called the right derivative function of Φ(x).

Property 1.5. Suppose Φ(x) is a N-function, φ(s) is the right inverse function of its right derivative function ϕ(x), then

Ψ(y) =
∫ |y|

0
φ(s)ds is the complementary N-function of Φ(x).

Property 1.6. (Rao, 2002) Suppose Ψ(y) is a N-function, and Ψ(y) is the complementary N-function of Φ(x). If there

exsit k > 2 and u0 > 0 such that

Φ(2u) ≤ kΦ(u) when u ≥ u0

then we call Φ ∈ Δ2(∞).

Property 1.7. SupposeΨ(y) is a N-function, (Ω,Σ, μ) is finite complete nonnegative measurable space, then we can define

measurable function set Eφ = {u(t) : ∀a > 0, ρΦ(au) < ∞}, Lφ = {u(t) : ρΦ(u) < ∞}, L∗
φ = {u(t) : ∃a > 0, ρΦ(au) < ∞},

where ρΦ(u) =
∫
Φ
Φ(u)du.

Property 1.8. EΦ ⊂ LΦ ⊂ L∗
Φ

, and EΦ = LΦ = L∗
Φ

whenever Φ ∈ Δ2(∞).

Definition 1.9. For any u ∈ L∗
Φ

, define ||u||Φ = supρΨ(ν)≤1 | ∫
Φ

uνdu| and ||u||(Φ) = in f {k > 0 : ρΦ( u
k )du ≤ 1}, then || · ||Φ and

|| · ||(Φ) are all norms, they are named as Orlicz-norm and Luxemburg-norm respectively. Spaces (L∗
Φ
, || · ||Φ) and (L∗

Φ
, || · ||(Φ))

are called as Orlica function spaces. We note down briefly as L∗
Φ

and L∗
(Φ).

Remark. We note down them as L∗
Φ

if no norm is related.

Definition 1.10. Suppose Φ(u) =
∫ |u|

0
ϕ(t)dt and Ψ(u) =

∫ |u|
0
φ(t)dt is a pair of complementary N-functions, then we can

define the following quantitative index functions:

AΦ = limt→∞ in f tϕ(t)
Φ(t) , ĀΦ = in ft>0

tϕ(t)
Φ(t) ,

BΦ = limt→∞ sup tϕ(t)
Φ(t) , B̄Φ = supt>0

tϕ(t)
Φ(t) ,

αΦ = limu→∞ in f Φ
−1(u)

Φ−1(2u)
, βΦ = limu→∞ sup Φ

−1(u)

Φ−1(2u)
,

αΦ(n) = limu→∞ in f Φ
−1(u)

Φ−1(nu)
, βΦ(n) = limu→∞ sup Φ

−1(u)

Φ−1(nu)
,

where n ≥ 2.

Definition 1.11. Suppose (T,Σ, μ) is a measurable space, and S is the set of measurable function defined in this space.

Suppose X ⊂ S is a normed linear space of measurable function, then we call X a semi-ideal space, if ∀x ∈ X, y ∈ S that

satisfy |y(s)| ≤ |x(s)|, we have

y ∈ S , and ||y|| ≤ ||x||
where || · || is a norm defined in X. If X is complete, then we call X an ideal space.

Definition 1.12 (Matin, 1997): For the norm || · || defined in the semi-ideal space, if ||x|| → 0 whenever x → 0, then we

call norm || · || is continous.

Property 1.13 (Wang, 2002, P.9-13). Suppose Φ(u) and Ψ(u) is a pair of complementary N-functions, then we have

n
−1
AΦ ≤ αΦ(n) ≤ βΦ(n) ≤ n

−1
BΦ and nαΦ(n)βΨ(n) = 1 = αΨ(n)βΦ(n)

for n ≥ 2.
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Property 1.14 (Ren, 1986, P.29-30). For any Orlicz-normed Orlicz function spaces LΦ[0, 1]∗, its packing sphere estima-

tion is given by
1

1 + βΦ(n)
≤ ΛΦ ≤ 1

2
.

Property 1.15 (Wu, 1986). For any Orlicz function spaces L(Φ)[0, 1]∗, its packing sphere estimation is given by

1

1 + 2αΦ
≤ ΛΦ ≤ 1

2
.

Theorem 1.16 (Wu, 1986). The norm of eigenfuction χΦ(x) defined in Orlicz space is given by

||χΩ||Φ = Ψ−1(
1

μ(Ω)
)μ(Ω) and ||χΩ||(Φ) =

1

Φ−1(1/μ(Ω))

where Ω is a finit nonnegative measurable set.

Theorem 1.17 (Wu, 1983). Suppose Φ and Ψ are complementary N-function, then Φ ∈ Δx(∞) if and only if ∀l > 1,∃0 <
δ < 1 ∀u ≥ u0 we have

Φ((1 + δ)u) ≤ Φ(u).

Theorem 1.18 (Wu, 1986). Orlicz function space L∗
Φ

is separable ⇔ Φ ∈ Δ2(∞).

Theorem 1.19 (Yan, 2001, P.1-5). Suppose Φ1 and Φ2 are a pair of N-function, then Φ(u) = Φ1(Φ2(u)) is also a N-

function.

Property 1.20 (Yan, 2001, P.1-5). Suppose Φ0 is a N-function, Φ(u) =
∫ |u|

0
Φ0(t)dt, then BΦ = limu→∞sup uϕ(u)

Φ(u)
= BΦ0

+ 1.

Theorem 1.21 (Cleaver, 1976, P.325-335, Rao, 1966, P.543-568). Suppose Φ is a N-function, simple function class is

dense in Orlicz function space L∗
Φ

and Φ0(u) = u2, (u > 0). For 0 ≤ s ≤ 1, let

Φ−1
s = (Φ−1)1−s(Φ−1

0 )s

with Φ−1 is the inverse function of Φ (and correspondingly Φ−1
0 ). Then for a group of positive numbers c1, . . . , cn and any

function group u1, . . . , un we have

n∑
i, j=1

cic j||ui − u j||2/(2−s)
Φs

≤ 2c2(1−s)(2−s)
n∑

i=1

ci||ui||2/(2−s)
Φs

where c = max1≤i≤n(1 − ci).

Theorem 1.22. If X is an infinit dimensional Banach space, then we have

Λ(X) =
K(X)

2 + K(X)
and

1

3
≤ Λ(X) ≤ 1

2
.

2. The upper bound of packing sphere value and lemmas for interpolation inequalities.

Proposition 2.1. Suppose Φ is a N-function, for n ≥ 2 we have

BΦ ≤ ∞ ⇔ BΦ(n) < 1 ⇔ Φ ∈ Δ2(∞) ⇔ BΦ ≤ ∞
which is equivalent to Orlicz function space L∗

Φ
is separable.

Proof. (1). When BΦ < ∞, from Property 1.13 we have βΦ(n) ≤ n
−1
B ≤ 1.

(2). When BΦ(n) ≥ ∞, if Φ∈̄Δ2(∞) from Theorem 1.17 we have ∃(vi) ↑ ∞ such that

Φ((1 +
1

i
)vi) > niΦ(vi) > nΦ(vi)

with (i ≥ 1). Let ui = Φ(vi), then we have 1
1+1/i <

Φ−1(ui)

Φ−1(nui)
< 1. So limi→∞ Φ−1(ui)

Φ−1(nui)
= 1, which implies βΦ(n) = 1.

Contradiction occurs.

(3). If Φ ∈ Δ2(∞), i.e. ∃ 2 < k < ∞, ∃ t0 > 0, ∀ t > t0 we have Φ(2t) ≤ kΦ(t). Therefore,

tϕ(t) ≤
∫ 2t

t
ϕ(u)du = Φ(2t) ≤ tΦ(t),
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from which we have tΦ(t)
Φ(2t) ≤ k < ∞, i.e. BΦ = limt→∞

tϕ(t)
Φ(2t) < ∞.

(4). From Theorem 1.18, we know Orlicz function space L∗
Φ

is separable ⇔ Φ ∈ Δ2(∞).

From the above (1),(2),(3),(4), the Proposition holds.

Proposition 2.2. Φ ∈ Δ2(∞) ⇔ simple function class is dense in L∗
Φ

.

Proof. Firstly we prove that if Φ ∈ Δ2(∞), then the two norms || · ||Φ and || · ||(Φ) are continous in function space L∗
Φ

. As two

norms are equivalent, we just need to prove that || · ||(Φ) is continous, a.e. ∀un ∈ L∗
(Φ), if un(t) ↓ 0, a.e. ||un||Φ → ∞. Next,

we will use reduction to absurdity. Otherwise, ∃δ > 0, ∃ {unk }∞k=1
such that unk (t) ↓ 0. a.e. ||unk ||(Φ) > δ or || unk

δ
||(Φ) > 1.

Hence

ρΦ(
unk

δ
) =

∫
Ω

Φ(
unk

δ
)du > 1.

FromΦ ∈ Δ2(∞), we have
unk
δ

∈ L∗
Φ

when k > 1. Here L∗
Φ
= EΦ. From un(k) ↓ 0 we have

∫
Ω
Φ((

unk
δ

)du ≤ ∫
Ω
Φ((

unk
δ

)du ≤ ∞
with k ≥ 1, and limk→∞Φ(

unk
δ

) = 0. From L-convergent Theorem, we have limk→∞
∫
Ω
Φ(

unk
δ

) = 0 which is contradict with

ρΦ(
unk
δ

) =
∫
Ω
Φ(

unk
δ

)du > 1. Thus ||un||(Φ) → 0.

Subsequently, we will prove that if simple function class is dense in L∗
Φ

, then L∗
Φ

is seperable, thus from Proposition 2.1

we have Φ ∈ Δ2(∞).

Otherwise, ∀u(t) ∈ L∗
Φ

, suppose u(t) > 0, a.e. take the trunction function of u(t) as follows,

un(t) =
{

u(t), u(t) ≤ n,
0, u(t) > n.

Then we have un(t) ↑ u(t). For nonnegative measurable function un(t), there exist simple function series {ϕn,k(t)}k such

that ϕn,kn (t) ↑ un(t), a.e. (k → ∞). Subsequently, we will show that there exist a subseries of ϕn,kn (t) ⊂ ϕn,k(t) such that

ϕn,kn (t) → u(t), a.e. (k → ∞). For fixed n, ϕn,kn (t) ↑ u(t) a.e. (k → ∞). We know that there exist kn > 0 such that for

almost all t we have 0 < un(t) − ϕn,kn (t) < 1
n . Therefore, we have

0 < u(t) − ϕn,kn (t) = u(t) − un(t) + un(t) − ϕn,kn (t) < u(t) − un(t) +
1

n
.

As un(t) ↑ u(t) a.e., so we have

||u(t) − ϕn,kn (t)||(Φ) → 0.

Hence, simple function class is dense in L∗
Φ

. �

Lemma 2.3. BΦ < ∞⇔simple function class is dense in L∗
Φ

.

Proof. From Proposition 2.1.7 and Proposition 2.1.12 we can derive the result.

Lemma 2.4. For function space L∗
Φ

[0, 1] normalized by Orlicz norm, its packing sphere value can be estimated by

following bound max{ 1
n+αΦ(n)

, 1
1+β−1

Φ
(n)

} ≤ ΛΦ.

Proof. From Property 1.13 and Property 1.14, we can get the above result.

Lemma 2.4. For function space L∗
Φ

[0, 1] normalized by Luxemburg norm, its packing sphere value can be bounded by

max{ 1
n+αΦ(n)

, 1
1+β−1

Φ
(n)
, 1

1+infn≥1
Φ−1(nu)

Φ−1(u)

} ≤ Λ(Φ).

Proof. (1). 1
n+αΦ(n)

≤ Λ(Φ).

From property 1.15 we have 1
2+αΦ(2)

≤ Λ(Φ); also from the definition of αΦ(n) we have nαΦ(n) ≥ 2αΦ(2). So (1) holds.

(2). 1
1+β−1

Φ
(n)

≤ Λ(Φ). We just need to prove the case with n = 2.

From the definition of β(Φ), we have ∃vn ↑ ∞, � Φ−1(vn)

Φ−1(2vn)
→ βΦ, (n → ∞), i.e. ∀ε > 0,∃N ≥ 1 such that Φ

−1(vn)

Φ−1(2vn)
> βΦ − ε

2
.

Let u0 = vn, and divid interval [0, 1
u0

] into dis-intersect measurable sets {Ek,i}2i

k=1
with (i ≥ 1), and Ek,i = [ k−1

2iu0
, k

2iu0
]

1 ≥ k ≤ 2i. Thus we have ∪2i

k=1
Ek,i = [0, 1

u0
) = E. Let Ri =

∑2i

1 (−1)k+1χEk,i and ui = Φ
−1u0Ri with i ≥ 1. From Theorem

1.16 we have ||ui||(Φ) = Φ
−1(u0)||χE ||(Φ) = 1 and ||ui − u j||(Φ) = 2Φ−1(u0)||χE ||(Φ) =

2Φ−1(u0)

Φ−1(2u0)
> 2βΦ − ε (i � j). So Kottman

costant KΦ ≥ 2βΦ. Thus the result is true.

(3). 1

1+infn≥1
Φ−1(nu)

Φ−1(u)

≤ Λ(Φ), we just need to prove that 1

1+infn≥1
Φ−1(2u)

Φ−1(u)

≤ Λ(Φ). For all u ≥ 1, let Ek,i = [ k−1
2iu ,

k
2iu ] ⊂ [0, 1],

1 ≤ k ≤ 2i with (i ≥ 1). We also have ∪2i

k=1
Ek,i = [0, 1

u ) = E. Let Ri =
∑2i

1 (−1)k+1χEk,i and ui = Φ
−1u0Ri with i ≥ 1. From

Theorem 1.16 we have ||ui||(Φ) = 1 and ||ui − u j||(Φ) =
2Φ−1(u)

Φ−1(2u)
> 2βΦ − ε (i � j). So Kottman costant KΦ ≥ 2 supu≥1

2Φ−1(u)

Φ−1(2u)
.

Thus the result is true.
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In order to construct the Orlicz function space interpolation inequality, we need to prove the following lemma.

Lemma 2.6. Suppose Φ is a N-function, and Φ ∈ Δ2(∞), i.e. BΦ = limu→∞ sup uϕ(u)

Φ(u)
= p < ∞ with (u > 0). Let F(u) =

tϕ(u)

Φ(u)
, Φ0(u) = u2 is monotonous nondecrease, then limu→0

ϕ(u)

u = 0 and limu→∞
ϕ(u)

u = ∞. For 1 ≥ l < p < 2, let s = 2(p−l)
p(2−l)

(correspondingly For 2 < p < l < ∞, let s = 2(l−p)

p(l−2)
). Construct function M such that Φ−1

s = Φ
−1 = [M−1]1−s[Φ−1

0 ]s. Then

interpolation function M is a N-function.

Proof. We just need to prove the case with 1 ≤ p < 2. From the formula of u we have 0 < s < 1. Let

ω = Φ−1(u), v = u
−s

2(1−s) [Φ−1(u)]
1

1−s . (1)

Then from Φ−1 = [M−1]1−s[Φ−1
0 ]s, we have M(v) = u = Φ(ω). If ω = R(v) is a N-function, then from Theorem 1.19 we

have M is also a N-function. Subsequently, we will prove that R(v) is a N-function. In order to prove this fact, we have to

prove

(a). limv→0
ϕ(v)

v = 0 and

(b). limv→∞
ϕ(v)

v = ∞. Actually, from (1) we have

v1−s =
ω

[Φ(ω)]s/2 ,
R(v)

v
=
ω

v
= [
Φ(ω)

ω2
]

s
2(1−s) . (2)

For (a), we have v1−s = ω
[Φ(ω)]s/2 → 0 as v → 0. From the property of N-function, we have either ω → 0 or ω → ∞.

Subsequently, we will show that the later case is impossible. Otherwise, from L’Hospital criterion, we have

lim
u→∞

lnϕ(u)

lnu
= lim

u→∞
uϕ(u)

Φ(u)
= p. (3)

Hence, ∀ε > 0, ∃u0 > 0, ∀u > u0 we have
lnϕ(u)

lnu < p + ε. So Φ(u) < up+τ, Φ(u)

us/2 < u
2(p−2)

p−l +ε. As
p−2

p−l < 0, so we have

limω→∞ Φ(ω)

ωs/2 ≤ limω→∞ ω
2(p−2)

p−l = 0, which results v1−s = ω
[Φ(ω)]s/2 → ∞, contradiction occurs. Thus ω→ 0 as v → 0. From

(2) we have limv→∞ R(v)
v = limω→0[Φ(ω)

ω2 ]
s

2(1−s) = limω→0[
ϕ(ω)

2ω
]

s
2(1−s) = 0.

For (b). we just need to prove that ω → ∞ as v → ∞. Otherwise, ω → 0, let’s consider f (u) = Φ(u)

u2/5 with (u > 0).

It’s derivation is given by f ′(u) = u− 2+s
s [ϕ(u)u − 2

sΦ(u)]. As limu→∞ F(u) = p < s
2

with (1 ≤ l < p < 2) , and F(u) is

monotonously non-decrease. So we have limu→0 F(u) ≤ limu→∞ F(u) = p < s
2
. Therefore, ϕ(u)u − 2

sΦ(u) < 0. So f (u)

is strictly monotounously decrease with (u > 0). Also we have limu→∞ f (u) = limu→∞ Φ(u)

u2/5 = 0. Hence limω→0 f (ω) = ∞
(as there are only two cases limω→0 f (ω) = ∞ or 0). From the above results we have v

2(1−s)
s → 0 as (ω → 0). This is

contradict with v → ∞. Thus the theorem is true.

From Lemma 2.6 and Property 1.20, we have the following results

Corollary 2.7. The right derivation of N-function Φ(u) is ϕ(u) is also a N-function. If F(u) =
uϕ(u)

Φ(u)
is monotonously

non-decrease, and limu→∞ F(u) = p < ∞, then p ≥ 2 and the interpolation function M is a N-function.

3. Interpolation inequalities of Orlicz function space and packing sphere constant

We can construct the following interpolation inequalities.

Theorem 2.8. Suppose Φ is a N-function, and Φ ∈ Δ2(∞), i.e. BΦ = limu→∞ sup
uϕ(u)

Φ(u)
= p < ∞. (u > 0, ϕ(t) is the right

derivation of Φ(t)). Let F(u) =
uϕ(u)

Φ(u)
, if F(u) is monotonously non-decrease and limu→0

ϕ(u)

u = 0, limu→∞
ϕ(u)

u = ∞. Then

for positive numbers c1, . . . , cn that satisfy
∑n

i=1 ci = 1 and function set u1, . . . , un ∈ L∗
Φ

, we have

n∑
i, j=1

cic j||ui − u j||pΦ ≤ 2c2−p
n∑

i=1

ci||ui||pΦ, 1 ≤ p < 2 (4)

n∑
i, j=1

cic j||ui − u j||qΦ ≤ 2c2−q
n∑

i=1

ci||ui||qΦ, 2 ≤ q < ∞ (5)

where c = max1≤i≤n(1 − ci), and p, q are conjugate number.

Proof. For any 1 ≤ l < p < 2, let s = 2(p−l)
p(2−l) , then 0 < s < 1.

LetΦ0(u) = u2, we can construct function M(u) such that M−1(u) = u− s
2(1−s) [ 1

Φ(u)
]−1. ThenΦ(u)−1 = [M−1(u)]1−s[Φ0(u)−1]s.

Let Φ−1 = [M−1]1−s[Φ−1
0 ]s, from Lemma 2.6 we know M is a N-function. From Theorem 1.21 we have

∑n
i, j=1 cic j||ui −

u j||
s

2−s
Φ

≤ 2c
2(1−s)

2−s
∑n

i=1 ci||ui||
2

2−s
Φ
. Put s = 2(p−l)

p(2−l) into the above formula and let l → 1, then (4) holds.
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For 2 < p < ∞, we have 1 < q < 2. So by the same procedure, we can prove that (5) is right.

Remarks. (i). For 1 ≤ p < 2, the condition limu→∞ F(u) = p can weakened as limu→∞ sup F(u) = p. The results are still

true.

(ii). The right derivation of N-function Φ(u), i.e. ϕ(u) is also a N-function. F(u) =
uϕ(u)

Φ(u)
is monotonously non-decrease.

limu→∞ F(u) = p < ∞. The above results are also right.

(iii). From Proposition 2.2, under the condition Φ ∈ Δ2(∞), the results of Theorem 1.21 can be generalized into the

function space L∗
(Φ) normalized by Luxemburg norm.

The above results are true in the meaning of two kinds of norm. Therefore, we can compute the exact packing sphere

value for the separable Orlicz function space L∗
(Φ)(Ω), with Ω = [0, 1] or R+.

Theorem 2.9. Suppose Φ is a N-function, let F(u) =
uϕ(u)

Φ(u)
, BΦ = limu→∞ sup F(u) = p < ∞, (u > 0, ϕ(t) is the right

derivation of Φ(t)). If F(u) is monotonously non-decrease, and limu→0
ϕ(u)

u = 0, limu→∞
ϕ(u)

u = ∞. Then the packing

sphere value of Orlicz function space L∗
Φ

(Ω) (with Ω = [0, 1] ) is given by

Λ =

⎧⎪⎪⎨⎪⎪⎩
1

1+2
1− 1

p
1 ≤ p ≤ 2,

1

1+2
1
p

2 < p < ∞.

Proof. Based on Lemma 2.3 and Proposition 2.1, from BΦ < ∞ we have L∗
Φ

(Ω) is separable.

From Property 1.13 and Property 1.15 we have αΦ ≤ βΦ ≤ 2− 1
p ⇒ 1

1+2
1− 1

p
≤ 1

1+2αΦ
≤ Λ.

We will discuss two cases:

(a). 1 ≤ p < 2.

From Theorem 2.8, take ci =
1
n (i = 1, . . . , n), then ∀ui(t) ∈ L∗

Φ
we have

n∑
i, j=1

1

n2
||ui − u j||pΦ ≤ 2(1 − 1

n
)2−p 1

n

n∑
i=1

ci||ui||pΦ. (6)

Let us consider Kottman constant K = sup{inf ||ui − u j|| : ||ui||Φ = 1, i, j = 1, 2, . . . , n, i � j}, and take ui(t) ∈ L∗
Φ

with

||ui(t)|| = 1 and ||ui − u j|| ≥ r, (i, j = 1, 2, . . . , n, i � j). From (6) we have
∑n

i, j=1
1
n2 rp ≤ 2(1 − 1

n )2−p 1
n n with i � j. From this

inequality we have r ≤ 2
1
n (1 − 1

n )
1−p

p . Let n → ∞ then we have r ≤ 2
1
p . Thus Kottman constant K satisfies K ≤ 2

1
p . Based

on Theorem 1.22 we also have 1

1+2
1− 1

p
≥ Λ. Therefore, 1

1+2
1− 1

p
= Λ holds. Subsequantly let consider the second case that

(b). 2 < p < ∞.

As AΦ = BΦ, from Property 1.13 we have αΦ = βΦ = 2− 1
p . Then from Lemma 2.4, Lemma 2.5 and Theorem 1.22 we can

derive max{2 1
p , 21− 1

p } ≤ K. By repeating the prove process of (a), we have K ≤ 21− 1
p . So the Kottman constant is K = 2

1
p .

Therefore, 1

1+2
1
p
= Λ holds.

Remarks.

(1). From the above process we can see that in the case of 1 ≤ p < 2, the condition limu→∞ F(u) = p can be weaken as

limu→∞ sup F(u) = p. The results are still true. Of course the results are also true for the stronger condition that the right

derivation of Φ(u), i.e. ϕ(u) is a N-function.

(2). For Ω = R+, we just need to change BΦ = limu→∞ F(u) = p < ∞ into B̄Φ = supu>0 F(u) = p < ∞, all the resuts are

ture. The proof is omitted here.

4. A Conjecture on the results in Reference (Yang, 2002, P.895-899)

The relative results in (Yang, 2002, P.895-899) are outlined in the following Definition 4.1 and Theorem 4.2.

Definition 4.1 (Yang, 2002, P.895-899): Suppose Φ is a N-function, if limu→∞ lnΦ(u)
ln u = p < ∞, then Φ is called to satisfy

Φ� condition, we note it briefly as Φ ∈ Φ�.

Theorem 4.2 (Yang, 2002, P.895-899). Suppose Φ ∈ Φ� is a N-function, limu→∞ lnΦ(u)
ln u = p > 1, then the packing sphere

constant of Orlicz function space L∗
Φ

[0, 1] is given by

ΛΦ =

⎧⎪⎪⎨⎪⎪⎩
1

1+2
1− 1

p
1 ≤ p ≤ 2,

1

1+2
1
p

2 ≥ p < ∞.
Obviously, the results are true for Lp is space (Rao, 2002). We conjecture that the function space L∗

Φ
[0, 1] constitue by

N-function Φ is actually Lp[0, 1]. Firstly, we have the following Theorem
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Theorem 4.3 Suppose N-function Φ satisfies 1 < limu→∞ lnΦ(u)
ln u = p < ∞, then for the Orlicz function space

L∗
Φ = {u(t) : ∃a > 0,

∫ 1

0

Φ(au(t))dt < ∞}

constitute by Φ, we have

Lp+ 1
n
⊂ L∗

Φ ⊂ Lp− 1
n
,

for n ≥ 1 and Lp = {u(t) :
∫ 1

0
|u(t)|pdt < ∞}.

Proof. Firstly, we prove LΦ ⊂ Lp− 1
n
.

By L’Hospital criterion, we have 1 < limu→∞ lnΦ(u)
ln u = p < ∞, so limu→∞

uϕ(u)

Φ(u)
= p < ∞. From Proposition 2.1 we have

Φ ∈ Δ2(∞). Therefore, from Property 1.8 we have L∗
Φ
= LΦ = {u(t) :

∫ 1

0
u(t))dt < ∞}. Also, for any u(t) ∈ L∗

Φ
, we have∫ 1

0

Φ(u(t))dt < ∞. (7)

From limu→∞ lnΦ(u)
ln u = p, we know that for n > 0, there exist 0 < kn < ∞, ∀t ∈ [0, 1], if u(t) > kn, then p+ 1

n >
lnΦ(u)

ln u > p− 1
n ,

i.e.

|u(t)|p− 1
n < Φ(u(t)) < |u(t)|p+ 1

n . (8)

Let E1 = {t ∈ [0, 1], |u(t)| > kn}, E2 = {t ∈ [0, 1], |u(t)| ≤ kn}, then from (7) and (8) we have
∫ 1

0
|u(t)|p− 1

n dt <
∫

E1
|u(t)|p− 1

n dt+∫
E2

|u(t)|p− 1
n dt ≤ ∫E1

Φ(u(t))dt + k
p− 1

n
n u(E2) ≤ ∫ 1

0
Φ(u(t))dt + k

p− 1
n

n < ∞, i.e.
∫ 1

0
|u(t)|p− 1

n dt < ∞ for all u(t) ∈ Lp− 1
n
. Next,

we will show that Lp+ 1
n
⊂ L∗

Φ
. For all u(t) ∈ Lp+ 1

n
, we have

∫ 1

0
|u(t)|p+ 1

n dt < ∞. Therefore, from the right inequality of (3)

and the monotonous property of Φ we have
∫ 1

0
Φ(u(t))dt =

∫
E1
Φ(u(t))dt +

∫
E2
Φ(u(t))dt ≤ ∫E1

|u(t)|p+ 1
n dt +

∫
E2
Φ(kn)dt ≤∫

E1
|u(t)|p+ 1

n dt + Φ(kn) < ∞, so u(t) ∈ L∗
Φ

. We can make a further conjecture as follows,

Conjecture: The function space L∗
Φ

used in Theorem 4.2 is Lp space.
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