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Abstract

Based on the Newton-Cotes and Gaussian quadrature rules, we develop several new closed form approximations to the

mathematical constant e. For validating effectiveness of our approximations, a comparison of our results to the existing

approximations is also presented. Because of the level of mathematics, the presented work is easily embraceable in an

undergraduate class. Another aim of this work is to encourage students for formulating other better approximations by

using the suggested strategy.
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1. Introduction

The number e is one of the most fundamental numbers in mathematics. This number is also referred to as Euler’s number

or Napier’s constant. In this work, we develop several new closed form approximations to the mathematical constant e
through quadrature rules. Classically the number e is defined as

e def
= lim

n→∞

(
1 +

1

n

)n
(1)

Let us call this definition the Euler’s e (Ee).

First year undergraduate students are exposed to concepts of limits and quadrature. By using these concepts, we are

further refining the limit (1). Based on this work, teacher can ask students to formulate even better approximations to the

mathematical constant e.

Figure 1 presents a graph of the function 1/x. The area under the graph and between the vertical lines x = n and x = n+ 1

is given as

n+1∫
n

1

x
dx

For forming various closed form approximations to e, we use quadrature rule for approximating the integral. The exact

value of this integral is ln (1 + 1
n ).

2. Approximation through trapezoidal quadrature rule

The Trapezoidal quadrature rule is given as

n+1∫
n

1

x
dx =

h
2

[
f (x1) + f (x2)

]
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Here, h = 1, x1 = n and x2 = n + 1. Thus,

[ln x]n+1
n =

1

2

[
1

n
+

1

n + 1

]
ln

(
n + 1

n

)
=

1

n

⎡⎢⎢⎢⎢⎣n + 1
2

n + 1

⎤⎥⎥⎥⎥⎦
=

1

n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 1

1 +
0.5

n + 0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒ n

[
1 +

0.5

n + 0.5

]
ln

(
n + 1

n

)
= 1

ln

(
n + 1

n

)n ⎡⎢⎢⎢⎢⎢⎢⎢⎣1+ 0.5

n + 0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= ln e

⇒ e =
(

n + 1

n

)n ⎡⎢⎢⎢⎢⎢⎢⎢⎣1+ 0.5

n + 0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎦
The definition of e through the trapezoidal rule is given as

e def
= lim

n→∞

(
n + 1

n

)n ⎡⎢⎢⎢⎢⎢⎢⎢⎣1+ 0.5

n + 0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(2)

Let us call this definition, the Trapezoidal Euler’s e (TEE).

3. Approximation through Simpson’s quadrature rule

The Simpson’s 1
3

quadrature rule for approximating integral is given as

n+1∫
n

1

x
dx =

h
3

[
f (x0) + 4 f (x1) + f (x2)

]
Here, h = 1

2
, x0 = n, x1 =

2n+1
2

and x2 = n + 1

n+1∫
n

1

x
dx =

1

6

[
1

n
+

8

2n + 1
+

1

n + 1

]

ln

(
n + 1

n

)
=

1

n
(
1 +

6 n + 5

12 n2 + 12 n + 1

)
⇒ n

(
1 +

6 n + 5

12 n2 + 12 n + 1

)
ln

(
1 +

1

n

)
= 1

ln

(
1 +

1

n

)n [1+ 6 n+5

12 n2+12 n+1

]
= ln e

⇒ e =
(
1 +

1

n

)n [1+( 6 n+5

12 n2+12 n+1

)]

The definition of e through the Simpson’s quadrature rule is

e def
= lim

n→∞

(
1 +

1

n

)n [1+( 6 n+5

12 n2+12 n+1

)]
(3)

Let us call this definition, the 1
3

Simpson Euler’s e ( 1
3
SEE)
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4. Approximation through Simpson’s 3
8

quadrature rule

Approximation of the integral through Simpson’s 3
8

quadrature rule is

n+1∫
n

1

x
dx =

3 h
8

[
f (x0) + 3 f (x1) + 3 f (x2) + f (x3)

]
Here, h = 1

3
, x0 = n, x1 =

3n+1
3

, x2 =
3n+2

3
and x3 = n + 1

n+1∫
n

1

x
dx =

1

n

[
36 n3 + 54 n2 + 20 n + 1(

36 n3 + 54 n2 + 20 n + 1
)
+ 18 n2 + 24 n + 7

]

ln

(
1 +

1

n

)
=

1

n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1

1 +

(
18 n2 + 24 n + 7

36 n3 + 54 n2 + 20 n + 1

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒ n
[
1 +

(
18 n2 + 24 n + 7

36 n3 + 54 n2 + 20 n + 1

)]
ln

(
1 +

1

n

)
= 1

ln

(
1 +

1

n

)n [1+( 18 n2+24 n+7

36 n3+54 n2+20 n+1

)]
= ln e

⇒ e =
(
1 +

1

n

)n [1+( 18 n2+24 n+7

36 n3+54 n2+20 n+1

)]

The definition of e through the Simpson’s 3
8

quadrature rule is

e def
= lim

n→∞

(
1 +

1

n

)n [1+( 18 n2+24 n+7

36 n3+54 n2+20 n+1

)]
(4)

Let us call this definition, the 3
8

Simpson Euler’s e ( 3
8
SEE).

5. Approximating e through Boole’s quadrature rule

The Boole’s quadrature rule is given as follows

n+1∫
n

1

x
dx =

2 h
45

[
7 f (x0) + 32 f (x1) + 12 f (x2) + 32 f (x3) + 7 f (x4)

]
Here, h = 1

4
, x0 = n, x1 =

4n+1
4

, x2 =
4n+2

4
, x3 =

4n+3
4

and x4 = n + 1

ln

(
1 +

1

n

)
=

2

4 × 45

[
7

n
+

32 × 4

4n + 1
+

12 × 4

4n + 2
+

32 × 4

4n + 3
+

7

n + 1

]

=
1

n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1

1 +

(
480 n3 + 880 n2 + 490 n + 83

960 n4 + 1920 n3 + 1220 n2 + 260 n + 7

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n
[
1 +

(
480 n3 + 880 n2 + 490 n + 83

960 n4 + 1920 n3 + 1220 n2 + 260 n + 7

)]
ln

(
1 +

1

n

)
= 1

ln

(
1 +

1

n

)n [1+( 480 n3+880 n2+490 n+83

960 n4+1920 n3+1220 n2+260 n+7

)]
= ln e

⇒ e =
(
1 +

1

n

)n [1+( 480 n3+880 n2+490 n+83

960 n4+1920 n3+1220 n2+260 n+7

)]
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The definition of e through the Boole’s quadrature rule is

e def
= lim

n→∞

(
1 +

1

n

)n [1+( 480 n3+880 n2+490 n+83

960 n4+1920 n3+1220 n2+260 n+7

)]
(5)

Let us call this definition, the Boole Euler’s e (BEE).

6. Approximating e through Gauss-Legendre 2 point quadrature

The two point Gauss-Legendre Quadrature is given as

n+1∫
n

1

x
dx = k

[
w1 f (x1) + w2 f (x2)

]

Here, k = n+1−n
2
= 1

2
, x1 =

2n+1
2
+ 1

2
√

3
and x3 =

2n+1
2

− 1

2
√

3
. Weights are w1 = 1 and w2 = 1.

n+1∫
n

1

x
dx =

1

2

⎡⎢⎢⎢⎢⎣ 2
√

3

(2n + 1)
√

3 + 1
+

2
√

3

(2n + 1)
√

3 − 1

⎤⎥⎥⎥⎥⎦
ln

(
1 +

1

n

)
=

6 n + 3

6 n2 + 6 n + 1

6 n2 + 6 n + 1

6 n + 3
ln

(
1 +

1

n

)
= 1

ln

(
1 +

1

n

) 6 n2+6 n+1
6 n+3

= ln e

⇒ e =
(
1 +

1

n

) 6 n2+6 n+1
6 n+3

e =
(
1 +

1

n

)n [1+( 3+ 1
n

6 n+3

)]

The definition of e through the two point Gauss-Legendre quadrature rule is

e def
= lim

n→∞

(
1 +

1

n

)n [1+( 3+ 1
n

6 n+3

)]
(6)

Let us call this definition, the two point Gauss-Legendre Euler’s e (2P-GLEE).

7. Approximating e through Gauss-Legendre 3 point quadrature

Three point Gauss-Legendre quadrature rule is given as

n+1∫
n

1

x
dx = k

[
w1 f (x1) + w2 f (x2) + w3 f (x3)

]
The weights wi and points xi are given as

w1 =
8

9
x1 =

2 n + 1

2

w2 =
5

9
x2 =

(2 n + 1)
√

5 +
√

3

2
√

5

w3 =
5

9
x3 =

(2 n + 1)
√

5 − √
3

2
√

5
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Thus,

ln

(
1 +

1

n

)
=

1

9

⎡⎢⎢⎢⎢⎢⎢⎣6 60 n2 + 60 n + 11

(2 n + 1)
(
2

√
5n +

√
5 +

√
3
) (

2
√

5n +
√

5 − √
3
) ⎤⎥⎥⎥⎥⎥⎥⎦

ln

(
1 +

1

n

)
=

[
(60 n2 + 60 n + 11)

60 n3 + 90 n2 + 36 n + 3

]

=
1

n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1

1 +

⎛⎜⎜⎜⎜⎜⎝ 30 n + 25 + 3
n

60 n2 + 60 n + 11

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n

⎡⎢⎢⎢⎢⎢⎣1 + ⎛⎜⎜⎜⎜⎜⎝ 30 n + 25 + 3
n

60 n2 + 60 n + 11

⎞⎟⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎥⎦ ln

(
1 +

1

n

)
= 1

ln

(
1 +

1

n

)n [1+( 30 n+25+ 3
n

60 n2+60 n+11

)]
= ln e

⇒ e =
(
1 +

1

n

)n[1+ 30 n+25+ 3
n

60 n2+60 n+11

]

The definition of e through the three point Gauss-Legendre quadrature rule is

e def
= lim

n→∞

(
1 +

1

n

)n[1+ 30 n+25+ 3
n

60 n2+60 n+11

]
(7)

Let us call this definition, the three point Gauss-Legendre Euler’s e (3P-GLEE). The English meaning of the word

“GLEE”is brightness. Through numerical work, we will see that it is indeed a very bright approximation to the fun-

damental constant e. For n = 100, the 3P-GLEE gives us “2.71828182845904617759”, and which is e accurate to fifteen

decimal places. If we replace n by 2n as done by Knox (1999) and Brothers (1998) in their approximation formulae, then

3P-GLEE gives exact e for n = 1109.

8. Approximating e through Gauss-Legendre 4 point quadrature

The four point Gauss-Legendre quadrature rule is given as

n+1∫
n

1

x
dx = k

[
w1 f (x1) + w2 f (x2) + w3 f (x3) + w4 f (x4)

]
Here, k = 1

2
. Weights wi and points xi are given as

w1 =
18 +

√
30

36
x1 =

(2n + 1)
√

7 +

√
(3 − 2

√
6
5
)

2
√

7

w2 =
18 +

√
30

36
x2 =

(2n + 1)
√

7 −
√

(3 − 2
√

6
5
)

2
√

7

w3 =
18 − √

30

36
x3 =

(2n + 1)
√

7 +

√
(3 + 2

√
6
5
)

2
√

7

w4 =
18 − √

30

36
x4 =

(2n + 1)
√

7 −
√

(3 − 2
√

6
5
)

2
√

7
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Thus,

ln

(
1 +

1

n

)
=

420 n3 + 630 n2 + 260 n + 25

420 n4 + 840 n3 + 540 n2 + 120 n + 6

=
1

n

⎡⎢⎢⎢⎢⎢⎣ 420 n3 + 630 n2 + 260 n + 25

420 n3 + 840 n2 + 540 n + 120 + 6
n

⎤⎥⎥⎥⎥⎥⎦
=

1

n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 1

1 +
210 n2 + 280 n + 95 + 6 n−1

420 n3 + 630 n2 + 260 n + 25

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Thus,

n
[
1 +

210 n2 + 280 n + 95 + 6 n−1

420 n3 + 630 n2 + 260 n + 25

]
ln

(
1 +

1

n

)
= 1

ln

(
1 +

1

n

)n⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣1+ 210 n2 + 280 n + 95 + 6 n−1

420 n3 + 630 n2 + 260 n + 25

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ln e

The definition of e through the four point Gauss-Legendre quadrature rule is

e def
= lim

n→∞

(
1 +

1

n

)n[1+ 210 n2+280 n+95+6 n−1

420 n3+630 n2+260 n+25

]
(8)

Let us call this definition, the four point Gauss-Legendre Euler’s e (4P-GLEE). For n = 100, the 4P-GLEE gives us

“2.718281828459045235366210”and which is e accurate to twenty one decimal places. If we replace n by 2n as done by

Knox (1999) and Brothers (1998) in their approximation formulae, then 4P-GLEE gives exact e for n = 832.

9. Approximating e through Gauss-Legendre 5 point quadrature

The five point Gauss-Legendre quadrature rule is given as:

n+1∫
n

1

x
dx = k

[
w1 f (x1) + w2 f (x2) + w3 f (x3) + w4 f (x4) + w5 f (x5)

]
Here, k = 1

2
. Weights wi and points xi are given as

w1 =
128

225
x1 = n +

1

2

w2 =
161

450
+

13

900

√
70 x2 = n +

1

2
+

1

42

√
245 − 14

√
70

w3 =
161

450
+

13

900

√
70 x3 = n +

1

2
− 1

42

√
245 − 14

√
70

w4 =
161

450
+

13

900

√
70 x4 = n +

1

2
+

1

42

√
245 + 14

√
70

w5 =
161

450
− 13

900

√
70 x5 = n +

1

2
− 1

42

√
245 + 14

√
70

ln

(
1 +

1

n

)
=

7560 n4 + 15120 n3 + 9870 n2 + 2310 n + 137

7560 n5 + 18900 n4 + 16800 n3 + 6300 n2 + 900 n + 30

=
1

n

[
7560 n4 + 15120 n3 + 9870 n2 + 2310 n + 137

7560 n4 + 18900 n3 + 16800 n2 + 6300 n + 900 + 30 n−1

]

=
1

n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1

1 +
3780 n3 + 6930 n2 + 3990 n + 763 + 30 n−1

7560 n4 + 15120 n3 + 9870 n2 + 2310 n + 137

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
8 � www.ccsenet.org
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Thus,

n
[
1 +

3780 n3 + 6930 n2 + 3990 n + 763 + 30 n−1

7560 n4 + 15120 n3 + 9870 n2 + 2310 n + 137

]
ln

(
1 +

1

n

)
= ln e

ln

(
1 +

1

n

)n ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣1+ 3780 n3 + 6930 n2 + 3990 n + 763 + 30 n−1

7560 n4 + 15120 n3 + 9870 n2 + 2310 n + 137

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ln e

The definition of e through the five point Gauss-Legendre quadrature rule is

e def
= lim

n→∞

(
1 +

1

n

)n [1+ 3780 n3+6930 n2+3990 n+763+30 n−1

7560 n4+15120 n3+9870 n2+2310 n+137

]
(9)

Let us call this definition, the five point Gauss-Legendre Euler’s e (5P-GLEE). For n = 100, the 5P-GLEE gives us

“2.718281828459045235360287508375”, and which is e accurate to twenty five decimal places. On the other hand, the

classical definition (1) gives e accurate only to two decimal places.

Approximation by various “GLEE”formulae and Euler’s e (Ee) equation (??) for n = 100.

e =

4P-GLEE︷����������������������������������︸︸����������������������������������︷
2.7︸︷︷︸
Ee

1828182845904︸�����������������������︷︷�����������������������︸
3P-GLEE

523536 0287

︸�����������������������������������������︷︷�����������������������������������������︸
5P-GLEE

47135266249775724709369996

If we replace n by 2n as done by Knox (1999) and Brothers (1998), then 5P-GLEE gives exact e for n = 666.

After introducing students to the standard definition of the number e given by equation (1). When we presented our new

definitions and their derivations in the class, the students has shown considerable interest. Students find it very appealing

that simple techniques gives us the closed form approximation which improves accuracy from two digits to twenty five

digits.

10. Numerical Work

For performing computations to high accuracy, we are using the C++ library ARPREC (D. H. Bailey, 2002). Let us now

briefly mention existing relations for representing mathematical constant e. Knox (1999) and Brothers (1998) have also

developed some very nice closed form approximations to the mathematical constant e. The Table (1) displays closed form

formulae developed in Knox (1999) and Brothers (1998). Reader can observe that the formulae B1, B2, B3, B4, B5, B6
and B7 are not defined for n = 1. On the other hand, formulae (2), (3), (4), (5), (6), (7), (8) and (9) are defined for n = 1.

Let us now compare our formulae with the formulae presented in the Table 1. For n = 100, Table 2 presents error in

approximating e through different closed form approximations. Here, error is equal to the exact value of the mathematical

constant e minus the value given by different approximations.

From the Table 2, it can be inferred that the approximations developed by us are more accurate. It is also obvious that our

formulae are computationally efficient. For example, in the Table 1 the formula B7 gives most accurate approximation.

The reader can see that for evaluating B7, we need to evaluate B6 and B5. And, for computing B6, we need to compute

B3 and B4. And for computing B4, we need to compute ACM and B2. And so on.

In the different definitions of the constant e through formulae (2), (3), (4), (5), (6), (7), (8) and (9). It can be seen that for

large values of n, all of these formulae behaves as:

e = lim
n→∞

(
1 +

1

n

)n+0.5

(10)

Let us call this definition, the Gauss e (GE). The reader can observe that the GE is modestly different than the classical

definition (1). To see why this definition of e is more accurate than the classical definition of e. Let us compute e from

these two definitions for n = 1000. From the classical definition, we get e = 2,716 923 93. Which is accurate only till 3

decimal places. While from GE we get e = 2,718 282 05. And, which is e accurate till 6 decimal places. It is indeed a

substantial improvement over classical result. We are just changing the classical definition slightly.

Let us now observe an interesting connection between the formula MIM (see Table 1) and our formulae GE (10). For

n = 1000, MIM gives e = 2,718 282 734 6. While from GE we get e = 2,718 282 05. Both of these values are accurate

till 6 decimal places. Thus, both of these formulae are giving same order of accuracy. This lead us to believe that they

must be the same formulae. The readers are encouraged to see it for themselves. Replacing n by ( n
2
− 0.5) in GE (10), we

� www.ccsenet.org/jmr 9
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get MIM. These formulae are derived from different methods. The MIM is derived in Knox (1999) and Brothers (1998)

by infinite series expansion. While, we obtained GE (10) from quadrature rules.

11. Conclusions

We have developed several closed form approximations to the mathematical constant e. Numerical comparison study

validate the effectiveness of our results over the existing closed form approximations. The other main aim of this work

is to encourage undergraduate students for developing new approximations. The strategy presented in this paper is easily

adoptable in an undergraduate class. Based on the work presented in this paper, teachers can ask students to further

develop new approximations by using various other quadratures. Through our teaching experience we found our work is

encouraging students to formulate even better approximations to the constant e.
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Table 1. Different closed form approximations to the number e from Knox (1999) and Brothers (1998).

Formulae Name

e = lim
n→∞

(
1 +

1

n

)n (
1 +

1

2n

)
ACM

e = lim
n→∞

(
n + 1

n − 1

) n
2

MIM

e = lim
n→∞ (1 + n)

11n
6 (n − 1)

5n
6

(
2n + 1

2nn+1

) 8
3

ACMMIM

e = lim
n→∞ (1 + n)

(
1 +

1

n

)n
− (n − 1)

(
1 − 1

n

)−n

B1

e = lim
n→∞

2 nn

(2n − 1)(n − 1)n−1
B2

e = lim
n→∞

8

7
(B1) − 1

7
(MIM) B5

e = lim
n→∞

(1 + n)1+n

2nn +
nn

(2n − 1)(n − 1)n−1
− nn

2(n − 1)n−1
B3

e = lim
n→∞

1

6
(ACM) +

5

6
(B2) B4

e = lim
n→∞

10

7
(B3) − 3

7
(B4) B6

e = lim
n→∞

656

75
(B6) − 581

75
(B5) B7

Table 2. Error (exact-formulae) by different closed form approximations for n = 100.

Formulae Error Formulae Error

ACM −5,607 · 10−5 2P-GLEE −1,480 · 10−10

MIM −9,062 · 10−5 3P-GLEE −9,422 · 10−16

ACMMIM 1,507 · 10−6 4P-GLEE −5,923 · 10−21

B6 3,902 · 10−10 5P-GLEE −3,702 · 10−26

B7 −1,385 · 10−10
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Figure 1. Graph of f (x) = 1
x . The shaded area is equal to ln (1 + 1

n ).
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