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Abstract

In this work we investigate the existence and the uniqueness of solution for a nonlinear differential equation of

parabolic type on the lateral boundary Σ of a cylinder Q, cf. (1). An important part of our study is to transform this

initial value problem into another one whose differential operator equation is of the type

ut + a
(∫
Γ

udx
)
Au − ΔΓu + u2k+1 = f on Σ,

cf. (9), where k is a positive integer. The operatorA acts in Sobolev spaces on Γ, boundary of Ω. The initial value

problem (9) will be studied in Section 4. Thus, we obtain the existence and the uniqueness of weak solution for

(9).

Keywords: parabolic equation, manifolds, Wentzell boundary condition

1. Introduction

We consider Ω a bounded open set of Rn (n ≥ 2) with C∞ boundary Γ. By ν we denote the outward normal unit

vector field defined on Γ. For each T > 0, Q = Ω × ]0,T [ denotes a cylindrical domain whose lateral boundary

will be represented by Σ = Γ × ]0,T [.

Our main objective is to investigate existence and uniqueness of solution for the following problem:∣∣∣∣∣∣∣∣∣∣∣

Δw = 0 in Q

wt + a
(∫
Γ

wdΓ
)
∂w
∂ν
− ΔΓw + w2k+1 = f on Σ

w (x, 0) = w0 (x) on Γ,

(1)

where k is a positive integer, the derivatives are in the sense of the theory of distributions,
∂w
∂ν

is the normal

derivative of w, by ΔΓ we denote the Laplace Beltrami operator on Γ, the Laplace operator Δ acts only on space

variables and w = w (x, t), x ∈ Ω, 0 < t < T . This work was motivated by J. L. Lions who has considered, in 1969,

the existence and uniqueness of solution for nonlinear problems on manifolds whose unknown function satisfies

the Laplace equation in Ω and a nonlinear evolution equation on its lateral boundary Σ.

The nonlinearity of the type a
(∫
Γ

wdΓ
)

was motivated by the study of problems of diffusion of population cf.

Chipot (2000, Chapters 1 and 12) and also Menezes (2006).

Similar problems on manifolds, also motivated by Lions (1969), can be seen in Antunes, Araruna, and Medeiros

(2002), Antunes, Lopez, Silva, and Araújo (2013) and Cavalcanti and Domingos Cavalcanti (2004). See also

similar questions in Coclite, G. R. Goldstein, and J. A. Goldstein (2008), Vázquez and Vitillaro (2009) and

Wentzell(1939) which, we think, was the initial motivation for this type of questions.

Our paper is organized as follows: in section 2, we establish the appropriate notation and the functional setting
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to the treatment of our problem. In section 3 we develop a classical formalism in order to investigate (1) as a

differential operator equation whose operatorA acts on Sobolev spaces defined on the manifold Γ. In this way the

Equation (1)2 is formulated as a differential operator equation of the type

ut + a
(∫
Γ

udx
)
Au − ΔΓu + u2k+1 = f ,

for which we can apply a known methodology for the initial value problem (9). In section 4, we investigate the

initial value problem (9) by approximate method and we succeed to prove existence and uniqueness for weak

solutions.

2. Preliminaries

We represent by Hs (Ω) and Hs (Γ), the Sobolev spaces of order s ∈ R onΩ and Γ, see (Frota, Medeiros, & Vicente,

2011; Hebey, 1999; Lions, 1969). When s = 0, H0 (Ω) and H0 (Γ) are denoted by L2 (Ω) and L2 (Γ), the Lebesgue

spaces of square integrable functions on Ω and Γ. We denote by |·|p and |·|p,Γ, 1 ≤ p < ∞, the norms of Lp (Ω) and

Lp (Γ), the usual Lebesgue Lp spaces. We also denote by (·, ·) and (·, ·)Γ the scalar product in L2 (Ω) and L2 (Γ). Set

also ((·, ·))Hs(Γ) and ‖u‖Hs(Γ) the inner product and norm in the Hilbert spaces Hs (Γ).

By ∇Γ we denote the gradient tangent on the manifold Γ and by ΔΓ the Laplace Beltrami operator, defined on a

real function u on Γ as the divergence of the ∇Γu. For details, see (Frota, Medeiros, & Vicente, 2011; Hebey, 1999;

Lions & Magenes, 1968; Vázquez & Vitillaro, 2009; Vicente, 2010).

For u, v ∈ C∞ (Γ), the space of C∞ real function defined on Γ, we have the following integral relation between ΔΓ
and ∇Γ:

−
∫
Γ

(ΔΓu) v dΓ =
∫
Γ

∇Γu.∇ΓvdΓ. (2)

Let us consider C∞ (Γ) with the scalar products:

((u, v))H1(Γ) =

∫
Γ

uv dΓ +
∫
Γ

∇Γu.∇Γv dΓ, (3)

with induced norm ‖u‖2H1(Γ)
= ((u, u))H1(Γ) and

((u, v))H2(Γ) =

∫
Γ

uv dΓ +
∫
Γ

ΔΓuΔΓv dΓ, (4)

with induced norm ‖u‖2H2(Γ)
= ((u, u))H2(Γ).

Observe that C∞ (Γ) with scalar products (3) and (4) is a pre-Hilbert space. The completions of C∞ (Γ) with respect

to the norms induced by (3) and (4) are represented by H1 (Γ) and H2 (Γ), respectively. Then, the Equation (2) can

be extended to the case where u ∈ H2(Γ) and v ∈ H1(Γ).

We have H2 (Γ) ↪→ H1 (Γ), consequence of (2) and the embedding is compact, see (Hebey, 1999). Observe that ↪→
means continuous embedding.

In the present paper we need the embedding of Hs (Γ) into L4k+2 (Γ), for s ≥ 2 and k a positive integer. In fact, by

Sobolev embedding theorem, cf. Lions (2003) or Lions and Magenes (1968), if s ≥ 2 such that s >
k (n − 1)

(2k + 1)
, we

have

Hs (Γ) ↪→ L4k+2 (Γ) ↪→ L2 (Γ) . (5)

Finally, we suppose a (s), s ∈ R, real continuous function, with bounded derivative and

a (s) ≥ a0 > 0, for all s ∈ R. (6)

3. Formulation of the Problem (1) on Σ

In (Antunes, Lopez, Silva, & Araújo 2013), we defined an operator A ∈ L
(
H1/2 (Γ) ,H−1/2 (Γ)

)
which is a com-

position of the traces γ0, γ1, these are, roughly speaking, respectively,
∂w
∂ν

and w restricted to Γ. To avoid duality

pairing in the process of approximation we define, in the present argument, an operatorA: H1 (Ω) −→ L2 (Γ) and

we obtain scalar product instead of duality.
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We have the Dirichlet problem: ∣∣∣∣∣∣∣
−Δw = 0, in Ω

w = u on Γ.
(7)

If u ∈ H1 (Γ) it has a unique solution w ∈ H3/2 (Ω). We have γ0: H3/2 (Ω) −→ H1 (Γ) and γ1: H3/2 (Ω) −→ L2 (Γ),

the mapping γ0, γ1 are continuous. The composition γ1 ◦ γ−1
0 is a bounded linear mapping from H1 (Γ) to L2 (Γ).

We define A: H1 (Γ) −→ L2 (Γ) by A = γ1 ◦ γ−1
0 . This bounded operator will be the ”substitute” of the normal

derivative in (1).

Moreover, we have, from (7)

(Au, u) = (γ1w, γ0w)Γ =

∫
Ω

|∇w|2 dx ≥ 0. (8)

We formulate now the problem (1) on Σ. In fact, we define

w (t)|Γ = u (t) and
∂w
∂ν

(t)
∣∣∣∣∣
Γ

= Au (t) .

Thus, the problem (1) can be rewritten as follows:∣∣∣∣∣∣∣∣∣∣
ut + a

(∫
Γ

udΓ
)
Au − ΔΓu + u2k+1 = f on Σ

u (x, 0) = u0 (x) on Γ.

(9)

From now on, our objective will be to prove existence and uniqueness of solutions for the problem (9).

4. Main Results

In this section we formulate and prove existence and uniqueness of weak solutions for the mixed problem (9) on

Σ.

Theorem 1 Let us suppose that u0 ∈ H1 (Γ)∩ L2k+2 (Γ), f ∈ L2
(
0,T ; L2 (Γ)

)
andA ∈ L

(
H1 (Γ) , L2 (Γ)

)
as defined

above. Then, there exists u: Σ −→ R, in the class:

u ∈ L2
(
0,T ; H2 (Γ)

)
∩ L∞

(
0,T ; H1 (Γ) ∩ L2k+2 (Γ)

)
,

u
′ ∈ L2

(
0,T ; L2 (Γ)

)
,

which is the unique weak solution of the initial value problem (9).

Proof. We recall that A ∈ L
(
H1 (Γ) , L2 (Γ)

)
is defined by A = γ1 ◦ γ−1

0 with γ0, γ1 the traces operators of order

zero and one.

About the operator ΔΓ, we obtain its spectral resolution and we realize it as an operator from H2 (Γ) in L2 (Γ). For

this argument we call attention to the reader to see (Lions & Magenes, 1968, p. 42). In fact, we deduce that the

domain of −ΔΓ is H2 (Γ) and its range is L2 (Γ). We have the spectral resolution:

−ΔΓwj = λ jw j, j = 1, 2, ...

where the eigenvectors wj are normalized in L2 (Γ) and complete in H2 (Γ).

We consider in H2 (Γ) the complete orthonormal basis
{
wj

}
j∈N of eigenvectors of −ΔΓ and we define Vm =

[w1, ...,wm] ⊂ H2 (Γ), the subspace generated by the m first eigenvectors of −ΔΓ.
Furthermore, Vm ⊂ Hs(Γ), for all s > 0 (see Lions & Magenes, 1968, Chapter 1, Remark 7.5).

For each m ∈ N, we look for a function um (t) =
m∑

j=1

g jm (t) wj in Vm, such that um (t) is solution of the approximate

problem: ∣∣∣∣∣∣∣∣∣∣∣∣∣

(
u′m (t) , v

)
Γ + a

(∫
Γ

um (t) dΓ
)

(Aum (t) , v)Γ − (ΔΓum (t) , v)Γ +(
u2k+1

m (t) , v
)
Γ
= ( f (t) , v)Γ , for all v ∈ Vm,

um (0) = u0m −→ u0 in H1 (Γ) ∩ L2k+2 (Γ) .

(10)
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Observe that by section 2, we obtained Hs (Γ) ↪→ L4k+2 (Γ), consequentely, since um (t) ∈ H2 (Γ), it follows that

u2k+1 (t) ∈ L2 (Γ), making sense
(
u2k+1

m (t) , v
)
Γ

for v ∈ Vm. �
Observe that (10) is a nonlinear system of first order ordinary differential equation in g jm (t), the coordinates of the

approximations um (t). It has local solution defined in 0 ≤ t ≤ tm < T . By mean of estimates we extend these local

solutions to the interval [0, T ].

Estimate 1 Setting v = 2um (t) in (10), we have:

d
dt
|um (t)|22,Γ + 2a

(∫
Γ

um (t) dΓ
)

(Aum (t) , um (t))Γ − 2 (ΔΓum (t) , um (t))Γ + 2
(
u2k+1

m (t) , um (t)
)
Γ

= 2 ( f (t) , um (t))Γ

(11)

We observe that:

• From (8), we have (Aum (t) , um (t))Γ ≥ 0.

• − (ΔΓum (t) , um (t))Γ = (∇Γum (t) ,∇Γum (t))Γ = |∇Γum (t)|22,Γ, because um (t) ∈ H2 (Γ) is approximated by C∞ (Γ),

see (2).

•
(
u2k+1

m (t) , um (t)
)
Γ
= ‖um (t)‖2(k+1)

2(k+1),Γ
.

Going back to (11), employing the results above and the results (8), aboutA, and (6), about a (s), we obtain:

d
dt
|um (t)|22,Γ + 2 |∇Γum (t)|22,Γ + 2 |um (t)|2(k+1)

2(k+1),Γ
≤ | f (t)|22,Γ + |um (t)|22,Γ . (12)

From (12), applying Gronwall lemma we conclude the existence of a positive constant C1 depending only on

| f |L2(0,T ;L2(Γ)), |u0|L2(Γ) and T , such that:

|um (t)|2,Γ ≤ C1. (13)

Then, by the extension theorem for ordinary differential equation, the local solution um (t) has an extension to the

whole interval [0,T ]. We represent the extension by the same notation um (t). Thus, for the extension um (t) we

have (12) true for all t in [0,T ]. Consequentely, it makes sense to integrate (12) on [0, t) ⊂ [0,T ].

Integrating (12) on (0, t) ⊂ [0,T ], by the hypothesis of f , the convergence in (10)2 and the estimate in (13), we

obtain: ∫ t

0

|∇Γum (s)|22,Γ ds +
∫ t

0

|um (s)|2(k+1)
2(k+1),Γ

ds ≤ C2. (14)

Estimate 2 Setting v = 2u
′
m (t) in (10), we obtain, after some calculus, that

∣∣∣u′m (t)
∣∣∣2
2,Γ
+

d
dt
|∇Γum (t)|22,Γ +

1

k + 1

d
dt
|um (t)|2k+2

2k+2,(Γ) ≤ | f (t)|22,Γ + 2

∣∣∣∣∣∣a
(∫
Γ

um (t) dΓ
)∣∣∣∣∣∣ |Aum (t)|2,Γ

∣∣∣u′m (t)
∣∣∣
2,Γ
. (15)

Now we observe that ∣∣∣∣∣
∫
Γ

um (t) dΓ
∣∣∣∣∣ ≤
∫
Γ

|um (t)| dΓ ≤ C4 |um (t)|2,Γ , (16)

where C4 is a positive constant depending on the measure of Γ. By (16) and (13) we obtain

∣∣∣∣∣
∫
Γ

um (t) dΓ
∣∣∣∣∣ ≤ C5. (17)

From (17) and the continuity of the function a (s) it follows that

∣∣∣∣∣∣a
(∫
Γ

um (t) dΓ
)∣∣∣∣∣∣ ≤ C6. (18)

Returning with (18) in (15) we get

∣∣∣u′m (t)
∣∣∣2
2,Γ
+

d
dt
|∇Γum (t)|22,Γ +

1

k + 1

d
dt
|um (t)|2k+2

2k+2,(Γ) ≤ | f (t)|22,Γ + 2C6
2 |Aum (t)|22,Γ +

∣∣∣u′m (t)
∣∣∣2
2,Γ

2
.
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As the operatorA ∈ L
(
H1 (Γ) , L2 (Γ)

)
then the last inequality is transformed into

∣∣∣u′m (t)
∣∣∣2
2,Γ
+ 2

d
dt
|∇Γum (t)|22,Γ +

2

k + 1

d
dt
|um (t)|2k+2

2k+2,(Γ) ≤ 2 | f (t)|22,Γ +C7 ‖um (t)‖2H1(Γ)
. (19)

Integrating (19) from 0 to t,
∫ t

0

∣∣∣u′m (s)
∣∣∣2
2,Γ

ds + 2 |∇Γum (t)|22,Γ +
2

k + 1
|um (t)|2k+2

2k+2,(Γ)

≤ 2

∫ T

0

| f (t)|22,Γ dt +C7

∫ T

0

‖um (t)‖2H1(Γ)
dt + 2 |∇Γum (0)|22,Γ +

2

k + 1
|um (0)|2k+2

2k+2,(Γ) .

By the hypothesis of f , the convergence in (10)2 and the definition of the norm in Hs (Γ), observing (13) and (14),

we obtain:
1

2

∫ t

0

∣∣∣u′m (s)
∣∣∣2
2,Γ

ds + |∇Γum (t)|22,Γ +
1

k + 1
|um (t)|2k+2

2k+2,(Γ) ≤ C8. (20)

Thus,

(um)m∈N is bounded in L∞
(
0,T ; H1 (Γ)∩L2k+2(Γ)

)
. (21)

Estimate 3 Set v = −2ΔΓum (t) in (10), that makes sense because ΔΓVm ⊂ Vm, we have:

d
dt
|∇Γum (t)|22,Γ + 2 |ΔΓum (t)|22,Γ − 2

(
u2k+1

m (t) ,ΔΓum (t)
)
Γ

= 2a
(∫
Γ

um (t) dΓ
)

(Aum (t) ,ΔΓum (t))Γ − 2 ( f (t) ,ΔΓum (t))Γ

and therefore
d
dt
|∇Γum (t)|22,Γ + 2 |ΔΓum (t)|22,Γ − 2

(
u2k+1

m (t) ,ΔΓum (t)
)
Γ

≤ 2

∣∣∣∣∣∣a
(∫
Γ

um (t) dΓ
)∣∣∣∣∣∣ |Aum (t)|2,Γ |ΔΓum (t)|2,Γ + 2 | f (t)|2,Γ |ΔΓum (t)|2,Γ .

(22)

Remark 1 For all v ∈ C∞ (Γ), we have −2
(
v2k+1,ΔΓv

)
≥ 0. Since C∞ (Γ) is dense in H2 (Γ) ∩ L4k+2 (Γ) and

um ∈ H2 (Γ) ∩ L4k+2 (Γ), we obtain that −2
(
u2k+1

m ,ΔΓum

)
is non-negative. Note also the elementary inequality for

positive real numbers: 2αβ ≤ α2 + β2.

From (22), employing (18) and Remark 1, we conclude that

d
dt
|∇Γum (t)|22,Γ + 2 |ΔΓum (t)|22,Γ ≤ 2C2

6
|Aum (t)|22,Γ +

1

2
|ΔΓum (t)|22,Γ + 2 | f (t)|22,Γ +

1

2
|ΔΓum (t)|22,Γ ,

that is,
d
dt
|∇Γum (t)|22,Γ + |ΔΓum (t)|22,Γ ≤ 2C2

6
|Aum (t)|22,Γ + 2 | f (t)|22,Γ . (23)

Integrating (23) from 0 to t ≤ T , we get

|∇Γum (t)|22,Γ +
∫ t

0

|ΔΓum (s)|22,Γ ds ≤ 2C2
6

∫ T

0

|Aum (t)|22,Γ dt + 2

∫ T

0

| f (t)|2 dt + |∇Γum (0)|22,Γ . (24)

Considering the convergence in (10)2, the hypothesis on f , the fact that the operator A ∈ L
(
H1 (Γ) , L2 (Γ)

)
and

the limitation obtained in (21), from (24) we obtain the third estimate:

|∇Γum (t)|22,Γ +
∫ t

0

|ΔΓum (s)|22,Γ ds ≤ C9. (25)

Finally we observe that from (21), (25) and the norm defined in (4) we get

(um)m∈N is bounded in L2
(
0,T ; H2 (Γ)

)
. (26)
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Passage to the limit

Thus we proved that the sequence of approximatios (um)m∈N is bounded in the spaces: L∞
(
0,T ; H1 (Γ)

)
, by (21);

L2
(
0,T ; H2 (Γ)

)
, by (26); L∞

(
0,T ; L2k+2 (Γ)

)
by (21) and

(
u
′
m

)
m∈N bounded in L2

(
0,T ; L2 (Γ)

)
by (20).

From the above estimates we deduce that there exists
(
uμ
)
μ∈N, subsequence of (um)m∈N, and a function u, such that

uμ ⇀ u weak-star in L∞
(
0,T ; H1 (Γ)

)
,

uμ ⇀ u weak-star in L∞
(
0,T ; L2k+2 (Γ)

)
,

uμ ⇀ u weak in L2
(
0,T ; H2 (Γ)

)
,

u
′
μ ⇀ u

′
weak in L2

(
0,T ; L2 (Γ)

)
.

(27)

On the other hand, from (18) and as the operatorA ∈ L
(
H1 (Γ) , L2 (Γ)

)
, we conclude that

∣∣∣∣∣∣a
(∫
Γ

uμ (t) dΓ
)
Auμ (t)

∣∣∣∣∣∣
2,Γ

≤ C10 a.e. on (0,T )

and therefore ∣∣∣∣∣∣a
(∫
Γ

uμ (t) dΓ
)
Auμ (t)

∣∣∣∣∣∣
L2(0,T ;L2(Γ))

≤ C11. (28)

From now on, we will consider some subsequeces of
(
uμ
)
μ∈N that will be still denoted by

(
uμ
)
μ∈N.

We have H2 (Γ) ↪→ H1 (Γ) ↪→ L2 (Γ), see Section 2 and H2 (Γ) ↪→ H1 (Γ) also compact, cf. Hebey (1999). Thus,

by compactness argument, see (Lions, 1969, p. 12) or (Aubin, 1963), we obtain a subsequence, such that

uμ → u strongly in L2
(
0,T ; H1 (Γ)

)
(29)

and therefore

Auμ → Au in L2
(
0,T ; L2 (Γ)

)
,

tthen,

Auμ → Au a.e. on Γ × (0, T ) . (30)

From (29), it follows that

uμ → u strongly in L2
(
0,T ; L2 (Γ)

)
(31)

and therefore ∫
Γ

uμ (t) dΓ→
∫
Γ

u (t) dΓ a.e. on (0,T ) . (32)

As a is continuous, from (32) we get

a
(∫
Γ

uμ (t) dΓ
)
→ a
(∫
Γ

u (t) dΓ
)

a.e. on (0,T ) . (33)

From (30) and (33), we conclude that

a
(∫
Γ

uμ (t) dΓ
)
Auμ → a

(∫
Γ

u (t) dΓ
)
Au a.e on Γ × (0,T ) . (34)

From (28) and (34), applying the result contained in Lions (1969, pp. 12-13), we obtain:

a
(∫
Γ

uμ (t) dΓ
)
Auμ ⇀ a

(∫
Γ

u (t) dΓ
)
Au weakly in L2

(
0, T ; L2 (Γ)

)
. (35)

Now note that from the first estimate we have(
u2k+1
μ

)
μ∈N is bounded in Lq (0,T ; Lq (Γ)) , (36)
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where q =
2k + 2

2k + 1
> 1, and from (31) it follows that

u2k+1
μ → u2k+1 a.e on Γ × (0,T ) . (37)

Therefore, from (36) and (37), by a similar argument as that one employed to obtain (35), we get

u2k+1
μ ⇀ u2k+1 weakly in Lq (0,T ; Lq (Γ)) (38)

with q =
2k + 2

2k + 1
. Taking into account the convergences in (27)3, (27)4, (35) and (38), we can pass to the limit in

the approximate equation to obtain

ut + a
(∫
Γ

udΓ
)
Au − ΔΓu + u2k+1 = f in L2

(
0,T ; L2 (Γ)

)
. (39)

We observe that, from the regularity obtained for u and u′, we have that u (0) makes sense and, in fact, we can

prove that u (0) = u0.

Uniqueness

Let us consider u1 and u2 solutions of (9). From Theorem 4.1 we know that

u1, u2 ∈ L2
(
0,T ; H2 (Γ)

)
∩ L∞

(
0,T ; H1 (Γ) ∩ L2k+2 (Γ)

)
,

u
′
1, u

′
2 ∈ L2

(
0,T ; L2 (Γ)

)
.

From (39), we have, after some calculations, that z = u1 − u2 satisfies

(
z
′
(t) , v
)
Γ
+

(
a
(∫
Γ

u1dΓ
)
Au1 (t) − a

(∫
Γ

u2dΓ
)
Au2 (t) , v

)
Γ

− (ΔΓz (t) , v)Γ +
(
u2k+1

1
(t) − u2k+1

2
(t) , v
)
Γ
= 0,

for all v ∈ L2 (Γ).

Taking v = z (t) we obtain

1

2

d
dt
|z (t)|22,Γ + |∇Γz (t)|22,Γ +

(
u2k+1

1
(t) − u2k+1

2
(t) , z (t)

)
Γ
+

(
a
(∫
Γ

u1dΓ
)
Au1 (t) − a

(∫
Γ

u2dΓ
)
Au2 (t) , z (t)

)
Γ

= 0.

(40)

By the mean value theorem, we obtain

(
u2k+1

1 (t) − u2k+1
2 (t) , z (t)

)
Γ
≥ 0. (41)

Applying (41) to (40) we get

1

2

d
dt
|z (t)|22,Γ + |∇Γz (t)|22,Γ ≤

∣∣∣∣∣∣
(
a
(∫
Γ

u2dΓ
)
Au2 (t) − a

(∫
Γ

u1dΓ
)
Au1 (t) , z (t)

)∣∣∣∣∣∣ . (42)

Let us do some estimates with the right-side term of the above inequality, in fact employing the hypothesis about

the function a, we obtain

∣∣∣∣∣∣
(
a
(∫
Γ

u2dΓ
)
Au2 (t) − a

(∫
Γ

u1dΓ
)
Au1 (t) , z (t)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
((

a
(∫
Γ

u2dΓ
)
− a
(∫
Γ

u1dΓ
))
Au2 (t)+ a

(∫
Γ

u1dΓ
)

(Au2 (t) −Au1 (t)) , z (t)
)∣∣∣∣∣∣

≤ C12

∣∣∣∣∣
∫
Γ

(u2 − u1) dΓ
∣∣∣∣∣ |(Au2 (t) , z (t))| +C13 |(Az (t) , z (t))| .

(43)
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By Cauchy–Schwartz’s inequality, Young’s inequality, by the regularity of the solution and recalling that A ∈
L
(
H1 (Γ) , L2 (Γ)

)
, we obtain

C12

∣∣∣∣∣
∫
Γ

(u2 − u1) dΓ
∣∣∣∣∣ |(Au2 (t) , z (t))| +C13 |(Az (t) , z (t))| ≤ C13 |z (t)|22,Γ +

1

2
|∇Γz (t)|22,Γ . (44)

Combining (43) and (44) then returning in (42), we conclude

1

2

d
dt
|z (t)|22,Γ +

1

2
|∇Γz (t)|22,Γ ≤ C13 |z (t)|22,Γ . (45)

As z (0) = 0, uniqueness follows from Gronwall’s inequality by applying it to (45).
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Faculté des Sciences de Toulouse, XI(1), 7-18.
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