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Abstract

A more fundamental concept than the minimal residual method is proposed in this paper to solve an n-dimensional

linear equations system Ax = b in an m-dimensional Krylov subspace. We maximize the orthogonal projection

of b onto y: = Ax. Then, we can prove that the maximal projection solution (MP) is better than that obtained by

the least squares solution (LS) with ‖b − AxMP‖ < ‖b − AxLS‖. Examples are discussed which confirm the above

finding.
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1. Introduction

In this paper we derive a better Krylov subspace solution method by maximizing the orthogonal projection, instead

of that obtained by the method of minimal residual, to solve the following linear equations system:

Ax = b, (1)

where x ∈ Rn is an unknown vector, to be determined from a given non-singular coefficient matrix A ∈ Rn×n, i.e.

Rank(A) = n, and the input b ∈ Rn.

Given an initial guess x0, from Equation (1) we have an initial residual

r0 = b − Ax0.

Upon letting

z = x − x0,

Equation (1) is equivalent to

Az = r0, (2)

which can be used to search a descent direction z after giving an initial residual r0. Liu (2013a, 2013b, 2014a) has

proposed new methods by minimizing the following merit function:

min

{
a0 =

‖r0‖2‖Az‖2
[r0 · (Az)]2

}
, (3)

to obtain a faster descent direction z in the iterative solution of Equation (1).

In the numerical solution of linear equations system the Krylov subspace method is one of the most important

classes of numerical methods (Dongarra, 2000; Saad, 1981; Freund & Nachtigal, 1991; van den Eshof & Sleijpen,

2004; Liu, 2013c). The iterative algorithms that are applied to solve large scale linear systems are mostly the

preconditioned Krylov subspace methods (Simoncini & Szyld, 2007).

Suppose that we have an m-dimensional Krylov subspace generated by the coefficient matrix A from the right-hand

side vector r0 in Equation (2):

Km := Span{r0,Ar0, . . . ,Am−1r0}. (4)
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Let Lm = AKm. The idea of GMRES is using the Galerkin method to search the solution z ∈ Km, such that the

residual b−Ax = r0−Az is perpendicular to Lm (Saad & Schultz, 1986). It can be proven that the solution z ∈ Km

minimizes the residual (Saad, 2003):

min{‖r0 − Az‖2 = ‖b − Ax‖2}. (5)

Throughout this paper the 2-norm of a vector x is denoted by ‖x‖.
Recently, Liu (2014b) has developed a new theory to find the double optimal solution of Equation (1), simulta-

neously based on the two minimizations in Equations (3) and (5). Here, we only use a similar merit function as

that in Equation (3) and employ a scaling invariant property of the proposed merit function to derive a maximal
projection solution (MP) in the Krylov subspace. More importantly, we can prove that the MP is better than the

least squares solution (LS) with an exact estimation equation of the difference between MP and LS provided.

The remaining parts of this paper are arranged as follows. In Section 2 we start from an m-dimensional Krylov

subspace to express the solution with coefficients to be optimized in Section 3, where a new merit function is

proposed for finding the optimal expansion coefficients. We can derive a closed-form MP of Equation (1). The

comparisons between the MP and the LS are performed in Section 4, and an important improvement is verified.

The examples of linear problems and discussions are given in Section 5 to display some advantages of the present

methodology to find an approximate solution of Equation (1).

2. A Krylov Subspace Method

For the linear equations system (1), by using the Cayley-Hamilton theorem we can expand A−1 by

A−1 =
a1

a0

In +
a2

a0

A +
a3

a0

A2 + . . . +
an−1

a0

An−2 +
1

a0

An−1,

and hence, the solution x is given by

x = A−1b =
[
a1

a0

In +
a2

a0

A +
a3

a0

A2 + . . . +
1

a0

An−1

]
b, (6)

where the coefficients a0, a1, . . . , an−1 appear in the characteristic equation for A: λn+an−1λ
n−1+ . . .+a2λ

2+a1λ−
a0 = 0. Here, we assume that a0 = −det(A) � 0. In practice, the above formula to find the solution of x is quite

difficult to be realized, since the coefficients a j, j = 0, 1, . . . , n − 1 are hard to find, and the computations of the

higher order powers of A are very expensive, when n is a quite large positive integer.

The idea of projection method, including the GMRES, is searching a solution x in a smaller subspace than the

original space R
n with dimension m � n. In doing so, the higher order expansion terms in Equation (6) are

truncated, and we can find the lower order expansion coefficients through a suitably designed optimization in a

Krylov subspace. A basic ingredient of the Krylov subspace method is the construction of an orthonormal set of

linearly independent bases. We describe how to set up the bases uk, k = 1, . . . ,m by the Krylov subspace method.

Suppose that we have an m-dimensional Krylov subspace generated by the coefficient matrix A from the right-hand

side vector b in Equation (1):

Km := Span{b,Ab, . . . ,Am−1b}. (7)

Then the Arnoldi process is used to normalize and orthogonalize the Krylov vectors A jb, j = 0, 1, . . . ,m− 1, such

that the resultant vectors ui, i = 1, . . . ,m satisfy ui · u j = δi j, i, j = 1, . . . ,m, where δi j is the Kronecker delta

symbol. The resulting matrix is denoted by

U := [u1, . . . ,um], (8)

which is an n × m Arnoldi matrix with its jth column being the vector u j. Because u1, . . . , um are linearly inde-

pendent and m < n, U has a full column rank, that is, Rank(U) = m. The expansion of x in the Krylov subspace is

denoted by x ∈ Km. Then, we can prove the following result, where we minimize ‖r‖ as shown in Figure 1(a).

Theorem 1 For x ∈ Km, and b � 0 ∈ Rn being a given vector, the best x and y = Ax which satisfy

min
y
{‖r‖2 = ‖b − Ax‖2 = ‖b − y‖2} (9)

are given by

x = Xb, (10)

y = Eb, (11)
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where X = UDJT, and E = AX.

Figure 1. (a) The approximation of b by y, and (b) the relation of b, y and Jα used in Lemma 1, and (c) the

relation of b − y0, y − y0 and Jα used in Lemma 2

Proof. Because of x ∈ Km we can write

x = Uα, (12)

where α := (α1, . . . , αm)T consists of the expansion coefficients, and the superscript T denotes the transpose.

Let J be an n × m matrix:

J := [Au1, . . . ,Aum] = AU. (13)

By the assumption of the full ranks of A and U, J has a full rank with Rank(J) = m. Then, y = Ax can be written

as

y = Jα. (14)

Expanding the square residual we have

‖b − y‖2 = ‖b‖2 − 2b · y + ‖y‖2, (15)

where

b · y = bTJα, (16)

‖y‖2 = αTCα, (17)

C := JTJ. (18)

A dot between two vectors signifies the inner product of these two vectors. Because J has a full rank, C is an m×m
positive definite matrix, whose inversion is denoted by D = C−1.

Inserting Equations (16) and (17) into Equation (15), taking the differential with respect to α and setting it to be

zero, we can find

α = DJTb. (19)

Feeding it into Equation (12) we can obtain Equation (10), while Equation (11) is obtained from Equation (10) by

multiplying A on both sides. �
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3. Maximizing the Orthogonal Projection

In this section we will propose a new merit function to improve the solution in Theorem 1.

3.1 An orthogonal Projection of b onto y

Let

y := Ax, (20)

and we attempt to establish a merit function, such that its minimization leads to the best fit of y to b, because

Ax = b is exactly the equation we want to solve.

We consider finding the best approximation of y to b. The orthogonal projection of b to y is regarded as the

approximation of b by y as shown in Figure 1(a), whose error vector is written as

e := b −
(
b,

y
‖y‖
)

y
‖y‖ , (21)

where the parenthesis denotes the inner product. The best approximation can be found with y minimizing

‖e‖2 = ‖b‖2 − (b · y)2

‖y‖2 , (22)

or maximizing the square norm of the orthogonal projection of b to y, i.e.,

max
y

{
(b · y)2

‖y‖2
}
. (23)

Due to this reason the solution of the above equation will be named the maximal projection solution (MP), to

distinct it from the well-known least squares solution (LS).

3.2 A Main Result

The maximum in Equation (23) is equivalent to minimize the following merit function:

min
y

{
f :=

‖y‖2
(b · y)2

}
. (24)

However, it is a quite difficult optimization problem, and how to solve it is given below.

Theorem 2 For x ∈ Km, and b � 0 ∈ Rn being a given vector, the best x and y = Ax which satisfy

min
y

{
f =

‖y‖2
(b · y)2

}
(25)

are given by

x = Xb + α0b − α0XAb, (26)

y = Eb + α0Ab − α0EAb, (27)

where

X = UDJT,

E = AX = JDJT,

α0 =
bTAb − bTEAb

bTATAb − bTATEAb
. (28)

Moreover, we have the following implication and identity:

min
y

{ ‖y‖2
(b · y)2

}
⇒ min

y
{‖r‖2 = ‖b − y‖2 = ‖b − Ax‖2}, (29)

‖e‖2 = ‖r‖2. (30)
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Proof. The proof of this theorem is quite lengthy and we divide it into four parts. (A) Because of x ∈ Km we can

expand x by

x = α0b + Uα, (31)

where α0 is a scaling factor to be determined below, and α := (α1, . . . , αm)T ∈ Rm is the collection of m expansion

coefficients. Here, we intentionally divide the coefficient preceded u1 = b/‖b‖ into two parts α0‖b‖ and α1. Due

to Equation (31), y = Ax reads as

y = y0 + Jα, (32)

where J was defined by Equation (13) and

y0 = α0Ab. (33)

With the help of Equation (32), the terms b · y and ‖y‖2 in Equation (25) can be written as

b · y = b · y0 + bTJα, (34)

‖y‖2 = ‖y0‖2 + 2yT
0 Jα + αTJTJα. (35)

From the necessary condition for the minimization of f we have

∇α ‖y‖
2

(b · y)2
= 0⇒ (b · y)2∇α‖y‖2 − 2b · y‖y‖2∇α(b · y) = 0, (36)

in which ∇α denotes the gradient with respect to α. Thus, we can derive

b · yy2 − 2‖y‖2y1 = 0, (37)

where

y1 := ∇α(b · y) = JTb, (38)

y2 := ∇α‖y‖2 = 2JTy0 + 2JTJα. (39)

(B) With the help of Equation (18), Equations (35) and (39) can be written as

‖y‖2 = ‖y0‖2 + 2yT
0 Jα + αTCα, (40)

y2 = 2JTy0 + 2Cα. (41)

From Equation (37) we can observe that y2 is proportional to y1, which is supposed to be

y2 =
2‖y‖2
b · y y1 = 2λy1, (42)

where 2λ is a multiplier to be determined, abiding to the principle of simplicity. From the second equality, by

cancelling the common term 2y1 on both sides, we have

‖y‖2 = λb · y. (43)

Then, by Equations (38), (41) and (42) we have

α = λDJTb − DJTy0, (44)

where

D := C−1 = (JTJ)−1. (45)

Inserting Equation (44) into Equations (34) and (40) we have

b · y = b · y0 + λbTEb − bTEy0, (46)

‖y‖2 = λ2bTEb + ‖y0‖2 − yT
0 Ey0, (47)

where

E := JDJT (48)
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is an n × n positive semi-definite matrix.

Now, from Equations (43), (46) and (47) we can derive a linear equation:

‖y0‖2 − yT
0 Ey0 = λ[b · y0 − bTEy0], (49)

such that λ is derived as follows:

λ =
‖y0‖2 − yT

0 Ey0

b · y0 − bTEy0

. (50)

Inserting Equation (50) into Equation (44) and using Equation (33), α is given by

α = α0

[
bTATAb − bTATEAb

bTAb − bTEAb
DJTb − DJTAb

]
. (51)

Then, using Equations (32), (33) and (48), we can derive

y = α0Ab + α0

[
bTATAb − bTATEAb

bTAb − bTEAb
Eb − EAb

]
. (52)

(C) From Equation (25) it can be seen that if y is a solution, cy, c � 0 is also a solution. It means that the solution

of Equation (25) is scaling invariant. So we can select a suitable scaling factor α0 to be

α0 =
bTAb − bTEAb

bTATAb − bTATEAb
, (53)

such that y is simplified to

y = Eb + α0Ab − α0EAb. (54)

Defining

X = UDJT, (55)

inserting Equation (51) into Equation (31) and using Equation (53), we can derive Equation (26).

Inserting Equation (33) into Equation (50) we can obtain

λ = α0

bTATAb − bTATEAb
bTAb − bTEAb

, (56)

which, by using Equation (53), leads to

λ = 1; (57)

hence, Equation (43) is simplified to

‖y‖2 = b · y. (58)

Under the principle of simplicity, we have chosen the scaling factor α0 to be given by Equation (53), which renders

a simple value of λ = 1, and more importantly a simple relation between ‖y‖2 and b · y in Equation (58). The proof

of some important properties given below requires this equation.

(D) The minimized function in Equation (9) can be written as

‖r‖2 = ‖b‖2 − 2b · y + ‖y‖2. (59)

Then by using Equation (58) we have

‖r‖2 = ‖b‖2 − b · y. (60)

When b · y is maximized as shown by Equation (23), where we can take ‖y‖ = 1 by using the scale invariance of

y, it implies that the residual ‖r‖2 = ‖b −Ax‖2 is minimized by viewing the above equation. Hence, Equation (29)

is proven. Inserting Equation (58) into Equations (22) and (60) we have

‖e‖2 = ‖b‖2 − ‖y‖2 = ‖r‖2, (61)

as shown in Equation (30). This ends the proof of Theorem 2. �
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Remark 1 In Equation (10), Xb is known a least squares solution of Equation (1) in the Krylov subspace x ∈
Km, which minimizes the residual ‖b − Ax‖. Obviously, Equation (10) is a special case of Equation (26) with

α0 = 0. Theorem 2 indicates that the minimization in Equation (25) is a more fundamental concept than the usual

minimization of the residual ‖b − Ax‖2 as shown in Equation (29).

4. Comparing the Maximal Projection and Least Squares Solutions

In this section we compare the two optimal solutions of Equation (1) derived in Theorems 1 and 2, and prove some

important results.

Lemma 1 For Rank(J) = m, α in Theorem 1 appeared in y = Jα of Equation (14) is a least squares solution of the
following least squares problem:

min
α∈Rm

‖b − Jα‖. (62)

Proof. α in Equation (14) satisfies Equation (62) and is a least squares solution of the following overdetermined

linear system:

Jα = b. (63)

In the sense of Penrose, we have

α = J†b = DJTb, (64)

where J† is the Penrose pseudo-inverse of J (Trefethen & Bau III,1997), and Jα is a projection of b to the nearest

point in the space of Range(J) as shown in Figure 1(b). �

Lemma 2 For Rank(J) = m, α in y − y0 = Jα of Equation (32) is a least squares solution of the following least
squares problem:

min
α∈Rm

‖b − y0 − Jα‖. (65)

Proof. By using Equations (44) and (57) we have

α = DJT(b − y0). (66)

The above α satisfies Equation (65) and is a least squares solution of the following overdetermined linear system:

Jα = b − y0. (67)

Hence, we have

α = J†(b − y0) = DJT(b − y0), (68)

where J† is the Penrose pseudo-inverse of J, and Jα is a projection of b − y0 to the nearest point in the space of

Range(J) as shown in Figure 1(c). �

Remark 2 From Equations (32), (68) and (48) we have y − y0 = Jα = E(b − y0), where the orthogonal projector

E plays a role to project b − y0 onto the space of Range(J) ⊂ Range(A). On the other hand, by setting α0 = 0 in

Equation (26) and using Equations (12) and (64) we can write

xLS = UJ†b, (69)

which is a least squares solution in the Krylov subspace for the minimization in Equation (9). Because of α0 = 0,

the point y0 in Figure 1(c) moves to the zero point as shown in Figure 1(b). In general, α0 not necessarily be a

small number, and thus the above solution will be less accurate than that obtained from Equation (26), which can

be recast to

xMP = UJ†b + α0(b − XAb). (70)

Then, we can claim that the maximal projection solution in Equation (70) is better than the least squares solution

obtained from the minimum of residual in Equation (9), which is recast to Equation (69).

Below we prove two main results about the residuals of the optimal solutions derived from Theorems 1 and 2;

however, before that we need the following lemma.

Lemma 3 Both E and In − E are projection operators, which render

xTEx > 0, ∀x � 0 ∈ Rn/Null(JT), (71)

xT(In − E)x > 0, ∀x � 0 ∈ Rn. (72)
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Proof. From Equations (48) and (45) it follows that

E2 = E, (73)

which means that E and In − E are projection operators. By using the following identity:

xTEx = xTE2x = (Ex)T(Ex) > 0, ∀x � 0 ∈ Rn/Null(JT), (74)

Equation (71) is proven. Similarly, we can prove Equation (72). �

In Theorem 2, we have given a qualitative implication between the two minimizations in Equations (9) and (25);

however, a quantitative description is still absent. Now we can offer the following crucial results.

Theorem 3 For x ∈ Km, and b � 0 ∈ Rn being a given vector, the best xMP and yMP = AxMP which minimize the
merit function in Equation (25) has the following residual:

‖b − yMP‖2 = bT(In − E)b − α2
0bTAT(In − E)Ab, (75)

‖b − yMP‖2 < bT(In − E)b. (76)

Proof. Inserting Equation (58) into Equation (59) and using the notation yMP for y we have

‖b − yMP‖2 = ‖b‖2 − ‖yMP‖2. (77)

Using Equation (47) for yMP and taking Equations (57) and (33) into account, we have

‖yMP‖2 = bTEb + α2
0bTAT(In − E)Ab. (78)

Then, Equation (75) follows from the above two equations. In view of Lemma 3, the following term

bTAT(In − E)Ab > 0 (79)

is positive. Hence, the inequality in Equation (76) follows from Equation (75) by using α2
0 > 0. �

As a consequence we have

Theorem 4 For x ∈ Km, and b � 0 ∈ R
n being a given vector, the best xLS and yLS = AxLS which minimize the

merit function in Equation (9) has the following residual:

‖b − yLS‖2 = bT(In − E)b. (80)

Proof. Taking α0 = 0 in Equation (75) ends the proof. �

Theorem 5 For x ∈ Km, and b � 0 ∈ R
n being a given vector, the best vectors yMP and yLS which minimize,

respectively, the merit functions in Equations (25) and (9) have the following relations about the residuals:

‖b − yMP‖2 = ‖b − yLS‖2 − [bT(In − E)Ab]2

bTAT(In − E)Ab
, (81)

‖b − yMP‖2 < ‖b − yLS‖2. (82)

Proof. Inserting Equation (53) for α0 into Equation (75) we have

‖b − yMP‖2 = bT(In − E)b − [bT(In − E)Ab]2

bTAT(In − E)Ab
. (83)

Substracting it by Equation (80) we can prove Equation (81). The inequality in Equation (82) is obtained by using

Equations (81) and (79). �

5. Results and Discussions

In order to compare the performance of the newly developed maximal projection (MP) solution and that obtained

by the least squares (LS) solution, we test two linear problems, one direct problem and one inverse problem.
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5.1 Example 1

Finding an n-order polynomial function p(x) = a0 + a1x + . . . + anxn to best match a continuous function f (x) in

the interval of x ∈ [0, 1]:

min
deg(p)≤n

∫ 1

0

[ f (x) − p(x)]2dx,

leads to a problem governed by Equation (1), where A is the (n + 1) × (n + 1) Hilbert matrix defined by

Ai j =
1

i + j − 1
,

x is composed of the n + 1 coefficients a0, a1, . . . , an appeared in p(x), and

b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ 1

0
f (x)dx

∫ 1

0
x f (x)dx
...∫ 1

0
xn f (x)dx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is uniquely determined by the function f (x).

The Hilbert matrix is a notorious example of highly ill-conditioned matrices. Equation (1) with the matrix A having

a large condition number usually displays that an arbitrarily small perturbation of data on the right-hand side may

lead to an arbitrarily large perturbation to the solution on the left-hand side. The ill-posedness of Equation (1) with

the above coefficient matrix A increases very fast with n. Todd (1954) has proven that the asymptotic of condition

number of the Hilbert matrix is

O
⎛⎜⎜⎜⎜⎝ (1 +

√
2)4n+4

√
n

⎞⎟⎟⎟⎟⎠ .
We consider an exact solution with x j = 1, j = 1, . . . , n and bi is given by

bi =

n∑
j=1

1

i + j − 1
.

Then, we solve this problem by using the LS and MP solutions under n = 300. In Figures 2(a) we show the values

of α0 of the MP solution with respect to m in the range of 6 ≤ m ≤ 13. The values of α0 are in the range of

[0.3, 2.5]. Then the residuals and the maximum errors of xi with respect to m are compared in Figures 2(b) and

2(c). It can be seen that the MP solutions are slightly better than that of the LS solutions. When we take m = 12,

the solution is the best one with the maximum error being 8.96 × 10−4 and the residual being 4.18 × 10−9.
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Figure 2. For the Hilbert linear problem with n = 300, (a) α0 of MP solution, comparing (b) residual errors and

(c) maximum errors obtained by MP and LS solutions

5.2 Example 2

When the backward heat conduction problem (BHCP) is considered in a spatial interval of 0 < x < � by subjecting

to the boundary conditions at two ends of a slab:

ut(x, t) = κuxx(x, t), 0 < t < T, 0 < x < �,

u(0, t) = u0(t), u(�, t) = u�(t),

we solve u under a final time condition:

u(x,T ) = uT (x).

The fundamental solution of Equation (84) is by

K(x, t) =
H(t)

2
√
κπt

exp

(−x2

4κt

)
,

where H(t) is the Heaviside function.

The method of fundamental solutions (MFS) has a serious drawback that the resulting linear equations system

is always highly ill-conditioned, when the number of source points is increased, or when the distances of source

points are increased.
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In the MFS the solution of u at the field point z = (x, t) can be expressed as a linear combination of the fundamental

solutions U(z, s j):

u(z) =

n∑
j=1

c jU(z, s j), s j = (η j, τ j) ∈ Ωc, (84)

where n is the number of source points, c j are unknown coefficients, and s j are source points being located in the

complement Ωc of Ω = [0, �] × [0,T ]. For the heat conduction equation we have the basis functions

U(z, s j) = K(x − η j, t − τ j).

Figure 3. For backward heat conduction problem under a noise, (a) α0 of MP solution, comparing (b) residual

errors and (c) maximum errors obtained by MP and LS solutions

After imposing the boundary conditions and the final time condition to Equation (84) we can obtain a linear

equations system:

Ax = b, (85)

where

Ai j = U(zi, s j), x = (c1, · · · , cn)T,

b = (u�(ti), i = 1, . . . ,m1; uT (x j), j = 1, . . . ,m2; u0(tk), k = m1, . . . , 1)T,

and n = 2m1 + m2.

Since the BHCP is highly ill-posed, the ill-condition of the coefficient matrix A in Equation (85) is serious. To

overcome the ill-posedness of Equation (85) we can use the MP to solve this problem. Here we compare the
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optimal solution with an exact solution:

u(x, t) = cos(πx) exp(−π2t).

For the case with T = 1 the value of final time data is in the order of 10−4, which is small by comparing with the

value of the initial temperature f (x) = u0(x) = cos(πx) to be retrieved, which is O(1). We impose a relative random

noise with an intensity σ = 10% being imposed on the final time data, which is used to test the stability of MP

solution. Under the following parameters m1 = 11 and m2 = 6, and hence n = 28, we first plot the values of α0 of

the MP solution with respect to m in the range of 5 ≤ m ≤ 16. The values of α0 are in the range of [−6.5, 9.4]. The

residual error ‖b −Ax‖ with respect to m is plotted in Figure 3(b), while the maximum error of u(x, 0) is plotted in

Figure 3(c), of which m = 16 is the best one. With m = 16 we can obtain very accurate solution with the maximum

error being 9.37× 10−3. The solutions obtained by the LS method are very bad, which show that the LS solution is

not applicable to the inverse problem. Because α0 is quite large, neglecting which in Equation (10) causes a large

error as shown in Figures 3(b) and 3(c) by dashed lines.

5.3 Discussions

Because the least squares methods are popularly used in the mathematical, physical and engineering science (Blais,

2010), the results presented in this paper are quite significant and promising that a more fundamental and better

solution than the least squares solution exists. It can be seen that Theorem 5 guarantees that the MP solution is

better than the LS solution as shown in example 1 for a direct problem. For the inverse problem of example 2 the

superiority of MP solution is fully exposed, of which the LP solution is thoroughly failure, but the MP solution is

still workable, giving solutions with higher accuracy and higher robustness against a large noise up to 10%. More

studies are required in order to test the performance of the newly developed maximal projection solution in the

Krylov subspace for other systems. Because the theorems were proven without needing of the restriction of m,

the maximal projection solution is always better than the LS solution, independent to the Krylov subspace and its

dimension m. The new methodology presented here may shed a new light on numerical methods which are based

on the least squares method.
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