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Abstract

In this paper, we restate a necessary and sufficient condition for all positive integer powers of a Toeplitz matrix to

be still Toeplitz matrices which was ever studied by T. N. E. Greville (1983) and Tamir Shalom (1987), and our

new proof is clear and self-contained. We also derive some identities involving the entries of the Toeplitz matrix

and those of its positive integer powers in case that the powers are still Toeplitz matrices.
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1. Introduction

A Toeplitz matrix is an n × n matrix A = (ai j) where ai j = a j−i, i.e., a matrix of the form

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 a1 a2 · · · an−1

a−1 a0 a1 · · · an−2

a−2 a−1 a0

. . .
...

...
...

. . .
. . . a1

a−n+1 a−n+2 · · · a−1 a0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where a−n+1, a−n+2, . . . , a−1, a0, a1, a2, . . . , an−1 ∈ C. The entries of A are constant down the diagonals parallel to

the main diagonal. Toeplitz matrix arises in scientific computing and engineering, for example, image processing,

numerical differential equations and integral equations, time series analysis and control theory (see Chan & Ng,

1996; Gray, 2006; Horn & Johnson, 1985; Kailath & Sayed, 1995). A great deal is known about the behavior of

such matrices–the most common and complete references being Grenander and Szegö (1958). A more recent text

devoted to the subject is Böttcher and Silbermann (1999).

For an n × n matrix A = (ai j), we call the diagonal parallel to the main diagonal which has the entries ai,i+r (i =
1, 2, . . . , n − r) the upper-rth diagonal for r = 1, 2, . . . , n − 1, and call the diagonal parallel to the main diagonal

which has the entries ai,i−r (i = r + 1, r + 2 . . . , n) the lower-rth diagonal for r = 1, 2, . . . , n − 1. Given an n × n
Toeplitz matrix A = (ai j) = (a j−i), the upper-rth diagonal has the constant entry ar, and the lower-rth diagonal has

the constant entry a−r for r = 1, 2, . . . , n − 1.

Notice that the positive integer powers of Toeplitz matrices are not necessarily Toeplitz matrices. However, we

can still find a great deal of Toeplitz matrices whose positive integer powers are Toeplitz matrices, for example,

circulant matrices. So what additional conditions do those kinds of Toeplitz matrices have? In section 2, we restate

a necessary and sufficient condition for Toeplitz matrices to have Toeplitz positive integer powers which was ever

studied before. Moreover, we also get some additional results about this problem In section 3, we give some

examples to interpret our result.
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2. Main Results

T. N. E. Greville obtained a criterion for a nonsingular Toeplitz matrix to have a Toeplitz inverse in 1983 (see

Greville, 1983). In 1987, Tamir Shalom derived an equivalent necessary and sufficient condition for a nonsingular

Toeplitz matrix to have a Toeplitz inverse, and proved that the statement “All positive powers of a nonsingular

Toeplitz matrix are Toeplitz matrices” is equivalent to the statement “The inverse of a nonsingular Toeplitz matrix

is a Toeplitz matrix” (see Shalom, 1987). We restate the necessary and sufficient condition for Toeplitz matrices to

have Toeplitz positive integer powers and give a new proof.

Obviously, any power of a Toeplitz matrix of order n = 1 is naturally a Toeplitz matrix, and any power of a

scalar matrix which is a diagonal matrix whose diagonal elements are the same scalar is also a scalar matrix that

is naturally a Toeplitz matrix. So we only need to consider Toeplitz matrices of order n ≥ 2 which are not scalar

matrices in the following. Now we derive an important result for the product of two Toeplitz matrices which are not

scalar matrices to be still a Toeplitz matrix, and obtain some connections between the entries of the two Toeplitz

matrices and those of their product.

Lemma 1 Let A = (a j−i)
n
i, j=1

, B = (b j−i)
n
i, j=1

be Toeplitz matrices which are not scalar matrices, n ≥ 2. If
aib j−n = ai−nb j for i, j = 1, . . . , n − 1, then the product AB is also a Toeplitz matrix. Furthermore, if we let
AB = C = (c j−i)

n
i, j=1

, then cia j−n = ci−na j and cib j−n = ci−nb j for i, j = 1, . . . , n − 1.

Proof. Suppose A = (ai j)
n
i, j=1
= (a j−i)

n
i, j=1

, B = (bi j)
n
i, j=1
= (b j−i)

n
i, j=1

are Toeplitz matrices which are not scalar

matrices, and AB = C = (ci j)
n
i, j=1

. Then ci j =
n∑

p=1
ai,pbp, j =

n∑
p=1

ap−ib j−p for 1 ≤ i, j ≤ n. Thus, for r = 1, 2, . . . , n−1,

the entries of C down the upper-rth diagonal are

ci,i+r =

n∑

p=1

ap−ibi+r−p =

n−i∑

q=1−i

aqbr−q, i = 1, · · · , n − r;

the entries of C down the lower-(n − r)th diagonal are

ci,i+r−n =

n∑

p=1

ap−ibi+r−n−p =

n−i∑

q=1−i

aqbr−n−q, i = n − r + 1, · · · , n.

And the entries of C on the main diagonal are

ci,i =

n∑

p=1

ap−ibi−p =

n−i∑

q=1−i

aqb−q, i = 1, 2, · · · , n.

Now we assume aib j−n = ai−nb j for i, j = 1, . . . , n − 1.

Case (I) aiai−n = 0 for any i = 1, . . . , n − 1.

Then for any j = 1, . . . , n − 1, we have 0 = aib j−nai−nb j = a2
i b2

j−n = a2
i−nb2

j . That is, aib j−n = ai−nb j = 0 for any

i, j = 1, . . . , n − 1.

Subcase (I) There exists an i0 (1 ≤ i0 ≤ n − 1) such that ai0 = 0 and ai0−n � 0.

Since ai0−nb j = ai0 b j−n = 0, we have b j = 0 ( j = 1, . . . , n − 1), i.e., B is a lower triangular Toeplitz matrix.

Considering that B is not a scalar matrix, so there exists an j0 (1 ≤ j0 ≤ n − 1) such that b j0−n � 0. Then

ai = 0 (i = 1, . . . , n − 1) since aib j0−n = ai−nb j0 = 0, i.e., A is also a lower triangular Toeplitz matrix. Thus we only

need to show that the lemma holds for the case in which A and B are both lower triangular Toeplitz matrices. Note

that, for r = 1, 2, . . . , n − 1, the entries of C down the upper-rth diagonal are

ci,i+r =

n−i∑

q=1−i

aqbr−q = 0, i = 1, · · · , n − r;

the entries of C down the lower-(n − r)th diagonal are

ci,i+r−n =

n−i∑

q=1−i

aqbr−n−q =

0∑

q=r−n

aqbr−n−q,
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for all i = n − r + 1, · · · , n. And the entries of C on the main diagonal are

ci,i =

n−i∑

q=1−i

aqb−q = a0b0, i = 1, 2, · · · , n.

Thus, C = AB is also a lower triangular Toeplitz matrix. Furthermore, if we let AB = C = (c j−i)
n
i, j=1

, then

cia j−n = 0 = ci−na j and cib j−n = 0 = ci−nb j for i, j = 1, . . . , n − 1.

Subcase (II) There exists an i0 (1 ≤ i0 ≤ n − 1) such that ai0 � 0 and ai0−n = 0.

This subcase can be proved similarly to Subcase (I). In fact, A and B are both upper triangular Toeplitz matrices in

this subcase.

Case (II) bibi−n = 0 for any i = 1, . . . , n − 1.

This case can be proved similarly to Case (I).

Case (III) There exist p, q (1 ≤ p, q ≤ n − 1) such that apap−n � 0 and bqbq−n � 0.

Considering that biap−nb j−nap = bi−napb jap−n and aibq−na j−nbq = ai−nbqa jbq−n for i, j = 1, . . . , n − 1, we have

bib j−n = bi−nb j and aia j−n = ai−na j for i, j = 1, . . . , n − 1.

Since aib j−n = ai−nb j for i, j = 1, . . . , n − 1, we get equations for r = 0, 1, 2, · · · , n − 2:

an−1br−n+1 = a−1br+1,

an−2br−n+2 = a−2br+2,

· · ·
ar+1b−1 = ar−n+1bn−1.

Hence,

n−2∑

q=0

aqbr−q + an−1br−n+1 = a−1br+1 +

n−2∑

q=0

aqbr−q,

n−3∑

q=−1

aqbr−q + an−2br−n+2 = a−2br+2 +

n−3∑

q=−1

aqbr−q,

· · · · · · · · ·
r∑

q=r−n+2

aqbr−q + ar+1b−1 = ar−n+1bn−1 +

r∑

q=r−n+2

aqbr−q.

That is,

c1,1+r =

n−1∑

q=0

aqbr−q =

n−2∑

q=−1

aqbr−q = c2,2+r,

c2,2+r =

n−2∑

q=−1

aqbr−q =

n−3∑

q=−2

aqbr−q = c3,3+r,

· · · · · · · · ·
cn−r−1,n−1 =

r+1∑

q=r−n+2

aqbr−q =

r∑

q=r−n+1

aqbr−q = cn−r,n.

Therefore, the entries down the upper-rth diagonal of C are equal for r = 1, 2, . . . , n−1 and the entries on the main

diagonal of C are also equal.

Similarly, we get equations for r = 2, 3, · · · , n − 1 (suppose n ≥ 3 now without loss of generality since it is not

necessary to prove the case n = 2 here):

ar−1b1−n = ar−n−1b1,

ar−2b2−n = ar−n−2b2,

· · ·
a1br−n−1 = a1−nbr−1.
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So

r−2∑

q=r−n

aqbr−n−q + ar−1b1−n = ar−n−1b1 +

r−2∑

q=r−n

aqbr−n−q,

r−3∑

q=r−n−1

aqbr−n−q + ar−2b2−n = ar−n−2b2 +

r−3∑

q=r−n−1

aqbr−n−q,

· · · · · · · · ·
0∑

q=2−n

aqbr−n−q + a1br−n−1 = a1−nbr−1 +

0∑

q=2−n

aqbr−n−q.

That is,

cn−r+1,1 =

r−1∑

q=r−n

aqbr−n−q =

r−2∑

q=r−n−1

aqbr−n−q = cn−r+2,2,

cn−r+2,2 =

r−2∑

q=r−n−1

aqbr−n−q =

r−3∑

q=r−n−2

aqbr−n−q = cn−r+3,3,

· · · · · · · · ·
cn−1,r−1 =

1∑

q=2−n

aqbr−n−q =

0∑

q=1−n

aqbr−n−q = cn,r.

Thus, the entries down the lower-(n − r)th diagonal of C are equal for r = 1, 2, . . . , n − 1.

Therefore, AB is also a Toeplitz matrix. Furthermore, if we let AB = C = (c j−i)
n
i, j=1

, then

ci = cn−i,n =

i∑

q=i−n+1

aqbi−q = aib0 + a0bi +

i−1∑

q = i − n + 1
q � 0

aqbi−q

and

ci−n = cn−i+1,1 =

i−1∑

q=i−n

aqbi−n−q = ai−nb0 + a0bi−n +

i−1∑

q = i − n + 1
q � 0

aqbi−n−q.

Hence,

cia j−n = b0aia j−n + a0bia j−n +
i−1∑

q = i − n + 1
q � 0

aqbi−qa j−n

= b0ai−na j + a0bi−na j +
i−1∑

q = i − n + 1
q � 0

aqbi−q−na j = ci−na j

and

cib j−n = b0aib j−n + a0bib j−n +
i−1∑

q = i − n + 1
q � 0

aqbi−qb j−n

= b0ai−nb j + a0bi−nb j +
i−1∑

q = i − n + 1
q � 0

aqbi−q−nb j = ci−nb j

for any i, j = 1, 2, . . . , n − 1. �

Next we obtain a sufficient condition for a Toeplitz matrix to have Toeplitz positive integer powers by the lemma

above, and clarify the connections between the entries of the Toeplitz matrix and those of its positive integer

powers.

55



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 5, No. 4; 2013

Lemma 2 Let A = (a j−i)
n
i, j=1

be a Toeplitz matrix, n ≥ 2. If aia j−n = ai−na j for i, j = 1, 2, . . . , n − 1, then Ak

is also a Toeplitz matrix for any positive integer k. Furthermore, if we let Ak = (a(k)
j−i), then aia

(k)
j−n = ai−na(k)

j for
i, j = 1, 2, . . . , n − 1.

Proof. If A is a scalar matrix, then the lemma holds naturally. Otherwise, We prove by induction on k. The case

k = 1 holds naturally and the case k = 2 is proved by choosing B = A in Lemma 1.

Now we suppose that the lemma holds for k−1. Since Ak = AAk−1, the lemma holds by taking B = Ak−1 in Lemma

1. �

Now we derive a necessary condition for Toeplitz matrices to have Toeplitz squares.

Lemma 3 Let A = (a j−i)
n
i, j=1

, and A2 be Toeplitz matrices, n ≥ 2. Then aia j−n = ai−na j for i, j = 1, 2, . . . , n − 1.

Proof. Suppose that A = (a j−i)
n
i, j=1

, A2 = (c j−i)
n
i, j=1

. Then for r = 1, 2, . . . , n − 2, the entries of A2 down the

upper-rth diagonal are equal:

n−1∑

q=0

aqar−q =

n−2∑

q=−1

aqar−q = · · · =
r∑

q=1−n+r

aqar−q;

the entries of A2 down the lower-(n − r)th diagonal are equal:

r−1∑

q=r−n

aqar−n−q =

r−2∑

q=r−n−1

aqar−n−q = · · · =
0∑

q=1−n

aqar−n−q.

And the entries of A2 on the main diagonal are also equal:

c0 =

n−1∑

q=0

aqa−q =

n−2∑

q=−1

aqa−q = · · · =
0∑

q=1−n

aqa−q.

Compare both sides of each “=”, we derive (n − 1)2 identities: aia j−n = ai−na j for i, j = 1, 2, . . . , n − 1. �

Finally, our main theorem of this paper can be easily obtained.

Theorem 4 Let A = (a j−i)
n
i, j=1

be a Toeplitz matrix, n ≥ 2. Then any positive integer power of A is also a Toeplitz
matrix if and only if aia j−n = ai−na j for i, j = 1, 2, . . . , n − 1.

Proof. The sufficiency is proved by Lemma 2, and the necessity is proved by Lemma 3. �

The condition in Theorem 4 can be examined by computer easily, so it is a valuable condition for us to study the

powers of Toeplitz matrices. We note that circulant matrices are well-known examples of such Toeplitz matrices

satisfying the necessary and sufficient condition above.

3. Examples

Now we give some matrices, and compare the powers of them.

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4

4 1 2 3

3 4 1 2

2 3 4 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, A5 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

25056 25072 24928 24944

24944 25056 25072 24928

24928 24944 25056 25072

25072 24928 24944 25056

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 4 8

4 1 2 4

2 4 1 2

1 2 4 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, B5 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

28361 34266 40476 47576

23788 28361 34266 40476

20238 23788 28361 34266

17133 20238 23788 28361

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 4 0

4 1 2 4

2 4 1 2

1 2 4 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, C5 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

10681 11674 12988 9520

14668 16841 18394 12988

13214 14668 16841 11674

11997 13214 14668 10681

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The matrix A is a circulant matrix, hence any positive integer power of A, A5 for example, is still a Toeplitz matrix

(a circulant matrix actually) by Theorem 4. The matrices B and C are both Toeplitz matrices, however, B5 is a

Toeplitz matrix while C5 is no longer a Toeplitz matrix since C = (c j−i)
4
i, j=1 does not satisfy the conditions in

Theorem 4: c3c2−4 = 0 × 2 � c3−4c2 = 4 × 4.

Toeplitz matrices have nice properties and great applications in science and industry, there remain many problems

for us to study.
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