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Abstract

In this paper, the new F-expansion method is proposed for constructing more general exact solutions nonlinear
evolution equation with the aid of symbolic computation. By using this method, we have successfully obtained
some travelling wave solutions of the modified KdV Equation. These exact solutions include the hyperbolic func-
tion solutions, trigonometric function solutions, rational function solutions and Jacobi elliptic function solutions.
Also it is shown that the proposed method is efficient for solving nonlinear evolution equations in mathematical
physics and in engineering.
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1. Introduction

A lot of phenomena in physics and other domains are frequently described by nonlinear partial differential equa-
tions (NLPDEs). The study of exact solutions, especially traveling wave solutions, for NLPDEs plays a significant
role in the study of nonlinear physical phenomena. These exact solutions when they exist can help to understand
the dynamical processes that are modeled by the corresponding nonlinear evolution equations (NLEEs). The soli-
tary wave is one of the basic nonlinear wave events appearing in fluid dynamics (Whitham, 1974) and plasma
physics (Davidson, 1972; Ablowitz & Clarkson, 1991).

Recently, the maple or Mathematica have been used efficiently to obtain exact analytical solutions to NLPDEs.
Further, a number of direct approaches have been proposed to obtain traveling wave solutions to NLEEs among
them the inverse scattering method (Ablowitz & Clarkson, 1991), the tanh-function method (Malfliet, 2004), the
extended tanh-function method (Fan, 2000) and the homogeneous balance method (Wang, 1996). It is assumed in

this paper that the exact solution is expressed by a simple expansion u (x,f) = u(§) = Z A F'(¢). where A; are

constants to be determined and the function F (¢) is defined by the solution of an auxilligry ordinary differential
equation(ODE). The exact solutions expressed by a variety of Jacobi elliptic functions (JEFs) of many NLEEs
have been obtained by Jacobi elliptic function expansion method (Liu, Fu, Liu, & Zhao, 2001; Chen & Zhang,
2003), mapping method (Peng, 2003; Peng, 2005), F expansion method (Zhao, Wang, & Wang, 2003), extended
F expansion method (Abdou, 2007; Liu & Yang, 2004), the generalized Jacobi elliptic function method (Huiqun
Zhang, 2007; Chen & Zhang, 2004), and other methods (Elwakil, El-Labany, Zahran, & Sabry, 2002; Khater,
Hassan, Krishnan, & Peng, 2008). Various exact solutions were obtained by using these methods, including the
solitary wave solutions, shock wave solutions and periodic wave solutions.

2. Summary of the Expansion Method

Step 1 Use the transformation u (x,t) = u(§); & = x — kt, k is an arbitrary constant, and reduce a given NLPDE,
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say in two independent variables,

POty Uy Uggy Uy Uy ... ) =0, (1)
to the (ODE) J
Hu,u',u”,...,)=0, u'=d—g 2)
In general, the left hand side of (1) is a polynomial in « and its various derivatives.
Step 2 The F—expansion method gives the solution of (1) in the form
N
(e =u@ =) - F (3)
i=0

where ; (i =0, 1,2, ..., N) are constants to be determined and F (¢) satisfies the first order nonlinear ODE in the
form 5

(F©) = AsF* (©) + AF () + A F” (©) + A F (§) + Ay )
where A4, Az, Az, Ay, and Ay are constants and N in (3) can be obtained by balancing the nonlinear term(s) and the

highest order derivatives in (1).

Step 3 Substituting the Equation (3) into (2) and using (4); setting coefficients of the polynomial to zero, we obtain
a system of algebraic equations containing ag, @1, ..., ay and k.

Step 4 Using Mathematica or Maple to solve these equations we obtain @y, a1, ...,ay and k, which can be ex-
pressed by Ay, Az, Az, Ay, Ap.

Step 5 By substituting the obtained results into Equation (3), a general form of traveling wave solution of the
NLPDE (1) is obtained. Several solutions of (4) have been well know for us (see Appendix A). Substituting the
values of A4, Az, Az, A1, Ay and the JEF solution F (¢) into the general form of solution, various classes of exact
solutions of Equation (1) involving JEFs are obtained. Moreover, a short description of the mapping method to
find the traveling wave solutions of Equation (1) in the form u (x, 1) = u(£); ¢ = x — kt, k is an arbitrary constant,
is given.

3. Exact Solutions of the Modified KdV Equation

In this section, we apply this method to construct the exact interaction solution solutions of the modified KdV
equation (mKdV)
u; + oulu + Uper = 0, (5)

The transformation u (x, 1) = u (£); & = x — kt reduces Equation (5) to the ordinary differential equation (ODE):

Bku+ud +u” =0, 6)

We can determine the positive integer N by balancing u and " in the given system equations. So we can suppose
that Equation (6) has the following form:

u(@) =ag+ap- F&) (7

Substituting (7) into (6) and equating the coefficients of powers of (F é) F (f)) to zero, a system of algebraic
equations are found. By resolving these system the following results are obtained:

—34 [-6A 2A4A, — 3A2
o = 3 a) = 54’ kz(T3] (8)

- ’
—6A4
0 o

Substituting (8) into (7) yields
—3A; N —6A4

—6A 0
o=

u(&) = F (&), ©)

24,A,-3A2
where f:x—( b 3)t

244
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According to appendix A, we have the following families of exact solutions:

Family 11 Ag = 1, A =0,A; = — (1 +m?), A3 = 0, Ay = m?, then we get

—6m?2
(@ = 6’” 5n (&),

where £ = x + (1 +m2)t.

In particular setting m = %, 0 =—6.

we find: |
u() = 3 sn (&),
where & = x + (%) t (See Figure 1).

Family 2If Ay = (1 = m?), A; =0, Ay = (2m? = 1), A3 = 0, Ay = —m?, then we get

2
u(€) = \/%-cn(f),

where & = x — <2m2 - l)t.
In particular setting m = 1,6 = —6.
We find: 1
u(é) = 3 ~en(8),
where &€ = x + (%) t (See Figure 2).
Family 3 If Ay = m?—1,A; =0,A, =2 —m?, Ay = 0,As = —1, then we get

u@) = \/gdn é,

where & = x — (2 - mz) t.
In particular setting m = 5,0 = 6.

We find:

1
2,
u(é) =dn(g),

where & = x — (%) t (See Figure 3).
Family 4 If Ag = m? A; =0,A; = —(m> + 1), A3 = 0, A4 = 1, then we get

-6
u() = 3/ s (@),

where & = x — (m2 + 1)t.
In particular setting m = %, o0 =—6.

We find:
u(€) =ns),

where & = x — (%) t (See Figure 4).

Family 5If Ag = —m?, A; =0, A> =2m?> — 1, A3 =0, Ay = 1 — m?, then we get
-6 (1 —m?)
0
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13)
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15)

(16)

a7

(18)
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where & = x — <2m2 - 1)t.
In particular setting m = 1,6 = 6.

We find:

3
ma=J;w@,
Family 6 If Ag = -1,A; =0, A, = 2—m? Ay =0, Ay = m® — 1, then we get

—6(m2 -1
wa=qi&%—lw@x

where & = x + (%) t (See Figure 5).

where & = x — (2 - m2) t.
In particular setting m = %, 6=06.

We find:

3
Ma=J;M@,
Family 7If Ag =1 —m?, A; =0,A, =2 —m?, A3 = 0, A4 = 1, then we get

u(é) = \/%6-“(6),

where & = x — (%) t (See Figure 6).

where £ = x — (2 - mz) t.
In particular setting m = 5,0 = —6.

We find:

1
27

u@ =cs@),
where & = x — (%) t (See Figure 7).

Family 8 If Ag = 1,A; =0,A; =2 -m?, A3 =0, Ay = 1 — m?, then we get

-6 (1 —mz).

u(§) = 5 sc(§),
where & = x — (2 - mz) t.
In particular setting m = %, 0 =-6.
We find: i
3
u(é) = TSC(f) ,

where & = x — (%) t (See Figure 8).

Family 9 If Ag = 1, Ay = 0, Ay = 2m? — 1, A3 = 0, Ay = m* (m? — 1), then we get

—6m?2 2 _1
MQ:V—E%?—JM@L

where & = x — (Zm2 - l)t.
In particular setting m = 5,6 = 6.

We find:

1
20

u(§) =sd (&),
86

19)

(20)

2y

(22)

(23)

(24)

(25)

(26)
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where & = x + (%) t (See Figure 9).

Family 10 1f Ao = m? (m? — 1), Ay = 0, Ay = 2m® — 1, A3 = 0, Ay = 1, then we get

0@ = \/%6-ds<§>,

where & = x — <2m2 - l)t.
In particular setting m = 1,6 = —6.

We find:
u(@ =ds@,
where & = x + (%) t (See Figure 10).

Family 111f Ay = , A; =0, Ay = (1 - 2m?), A; = 0, A4 = £, then we get

-3
u(é) = s (ns (&) +cs (&),

where ¢ = x— 1 (1 - 2m2)t.
In particular setting m = 5,0 = —6.

We find:

1
20

1
u@) =5 ns@)+cs @),

where & = x — (}1) t (See Figure 11).

Family 121f Ay = £ (1 - m?), A, = 0, Ay = } (1 +m?), A3 = 0, Ay = 1 (1 - m?), then we get

-3-(1=-m?
(@) = \/%-ms@) +5c (&),

. . _ 1 _
In particular setting m = 5,6 = —6.

We find:

wherefzx—%(l +m2)t.

u (@) = ? (15 (&) + 5¢ (©)).
where & = x — (%) t (See Figure 12).

Family 13If Ag = %, A; =0, Ay = § (m® - 2), A3 = 0, Ay = 1, then we get

1
4’
©) = | - (ns (&) + ds (&)
u(é) = s ns (& s(&),

Wherefzx—%(mz—Z)t.

In particular setting m = 5,0 = —6.

We find:

1
20

1
u(é) = 3 (ns (&) +ds (),
where & = x + (%) t (See Figure 13).

Family 14 If Ag = %, A; = 0, Ay = } (m® - 2), A3 = 0, Ay = ", then we get

w) - [Z3m> dn (&)
4-6 1 —mzsn(§)+cn(§)’

87

(28)

(29)

(30)

3D

(32)

(33)

(34)

(35)

(36)
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where ¢ = x - 1 (m2 —Z)t.
In particular setting m = %, o0 =—6.
We find:

1
B 1 B

i@+
where £ = x + (%) t (See Figure 14).

2
Family 151If Ay = =} (1-m?)", A =0, Ay = § (1 +m?), A; = 0, Ay = 1, then we get

3
u(&) = 4/ 75 (men(©) +dn(&))

Wherefzx—%(1+m2)t.

In particular setting m = 1,6 = 6.

We find:
1
(Ecn (&) +dn (f)),

| =

u(@) =

where ¢ = x — (%) t (See Figure 15).

Family 16 If Ao = 1, A; =0, Ay = § (1 - 2m?), A3 = 0, Ay = 1, then we get

I e O
“@ =375 (1+cn(g))’

where & = x — % (1 - 2m2) 1.

In particular setting m = %, 0 =-6.

We find:

1@
u(f)_2(1+cn(§))’

where & = x — (}1) t (See Figure 16).

Family 171 Ay = %, A; = 0, Ay = } (1 - 2m?), A3 = 0, Ay = 75, then we get

-3 dn (£)

S 2 ’
20m | Jimm o)

u(@) =

where é = x— 1 (1 -~ 2m2)t.
In particular setting m = %, 0 =—6.

We find:
dn (&) ]

“e© :(\/§+cn(§)

where £ = x — (}1) t (See Figure 17).

Family 181f Ay = 1, A =0, Ay = 1 (m? —2), A3 = 0, Ay = . then we get
[ sm®
W& =N (1+dn(§))’

88

(37

(38)

(39)

(40)

(41)

(42)

(43)

(44)



www.ccsenet.org/jmr Journal of Mathematics Research

Vol. 5, No. 4; 2013

Where & = x — %(m2 -~ 2)t.
In particular setting m = %, 0 =-6.
We find:

o= (210

1 +dn (&)
where & = x + (%) t (See Figure 18).

Family 191f Ay = 1 (m? = 1), A =0, Ay = } (1 +m?), A; = 0, Ay = 1 (1 - m?), then we get

_ [ (_dn©
u) = 6 '(1+msn(§))’

where £ = x — %(1 +m2)t.
In particular setting m = %, 0 =—6.

We find:
dn (§) )

u) = (1 + %.sn(é—‘)

where & = x — (%) t (See Figure 19).

Family 20 If Ay = § (1 - m?), Ay = 0, Ay = } (1 +m?), A3 = 0, Ay = } (1 - m?), then we get

=30 =-m?) [ en(é)
u(@) = 2.6 .(1+sn(§))’

where £ = x— 1 (1 +m2)t.
In particular setting m = 1,6 = 6.
We find:

u@ = ?(—C"(‘f) )

1+ sn()
where & = x — (g) t (See Figure 20).

; LA _1 2 _ — (1 -2V
FamllyZIIon—4,A1—0,A2—2(1+m),A3—O,A4—4(1 m),thenweget

) \/W (@)
u(é) = 2.6 .(cn(§)+dn(§))’

In particular setting m = %, 0 =—6.

We find:

Wherefzx—%(1+m2)t.

u(E) = %( 1) )

cn(é) +dn(§)
where & = x — (%) t (See Figure 21).

Family 221f Ag = 1, A; =0, Ay = 1 (2 - m?), A3 = 0, Ay = & then we get

w(E) = /—3m4‘( cn (&) )
226 \NT=mZ+dn@)

89

whereg-‘:x—%(Z—mz)t.

(45)

(46)

(47)

(48)

(49)

(50)

61V

(52)
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In particular setting m = 5,0 = —6.

We find:

1
20

1
we) = | =&

sl | (53)
\/g +dn (&)
where ¢ = x — (%) t (See Figure 22).
Family 23 IfAO = 0, Al = 0, Az = —1, A3 = A3, A4 = A4, then we get
_3a, e, (A3 +Astan® (€ — o) + \/tanz €-o)(1+tan (¢ - ) (A2 + 4A4))
u (= + : — (54
Py TN o ( 3444 tan’(E—c)
5 2
where & = x + (2A42/:3A§ )t
In particular setting 6 = —6,c = 0,A3 = 1,A4 = 1.
We find:
© Loo[1+ tan? (£) + V5 - yftan? (¢) (1 + tan? (£)) -
ué) == -
2 4tan2 (&) -1
where £ = x + (%) t (See Figure 23).
Family 24 If AQ = O, A] = O, A2 = O, A3 = A3, A4 = A4, then we get
-3A —6A 4A
@) = —2+ “[22 — (56)
S % 0 AZE? = 2A5¢€ + AT - 4A,
h _ —3A2
where & = x + (W)t'
In particular setting A3 = 1,A4 = 1,c = 1,6 = —6.
We find:
@ =2 +(5— (57)
HeEs M et —3)
where & = x — (%) t (See Figure 24).
Family 251If Ag=0,A; =0, Ay = Ay, A3 = A3, Ay = Ay, then we get
© —34; N [—6A4 [ 4A,e(VAE=0) 58)
u(§) = . ,
e 0 {4444y — A2 = 2A56(VEE0) _ 24,0V
2A4A,-3A2
where & = x+( 42/244 )
In particular setting 6 = —6,¢ = 0,A3 = 1,A4 = 1.
We find: .
1 4e
=], 59
u (&) 2+(62§—e§—3) (59)
where & = x — (%) t (See Figure 25).
Family 26 If Ay = -k, A} = —k, Ay =0, A3 = k, Ay = k, then we get
3k ek —i- \/§+sn2( 5
u = u el Wi (60)
0 77616 i 3+ sn? ( V3
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or

=6k
Oy

-3k -6k )1
u@)=——+\—- , (61)
o —\/§+i-sn2( _i‘k‘gf, i)

where & = x + (_73") 1.
Remark Using Maple, we have verified all solutions we obtained by butting them back into the original equations.

4. Table Graphics

4 2 0 2 4

Figure 7. u(¢é) = cs(¢é) Figure 8. u(¢é) = gsc ) Figure 9. u(¢) = sd(¢)

Figure 10. u(¢) = ds(€) Figure 11. u(¢) = %(ns &) +cs(6) Figure 12. u(¢) = g (ns (&) + sc (&)
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lcn n
Figurel4. u(¢) = j—="&— Figurel5. u(¢) = 2o&4©)

\/gsn(.f)-*—cn(.f)

Figure 16. u(¢) = %(]i’zgf()g)) Figure 17. u(¢) = (%) Figure 18. u(¢) = (ﬁ'ﬁ)g))

Figure 19. u() = (1+én.§)(g)) Figure 20. u($) = % ( li’;filg)) Figure 21. u(¢) = %(—m (g)"fi)n@)

i ol i L+tan’ &)+ V5 \tan?(€)(1+tan’(€)
Figure 22. u(¢) = %(%) Figure 23. u(¢) = § - 2( Han @ 4mn;(‘:€“)_1 (1+tan f))
4 S

92



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 5, No. 4; 2013

Figure 24. u(¢) = % + (éﬁw) Figure 25. u(¢) = % + ( 4¢f )

X%t -3

5. Conclusion

The main idea of the F—expansion method is that the traveling wave solutions of nonlinear partial differential
equations can be expressed as a polynomial in F (£), where F (£) satisfies the Equation (4) to some nonlinear PDEs
in mathematical physics via the modified KdV equation.

We have obtained families of exact solutions of these equations in terms of Jacobi elliptic functions and hyperbolic
functions Finally, we conclude according to the Appendix B that our results in terms of Jacobi elliptic functions
generate into hyperbolic functions when m — 1 and generate into trigonometric functions when m — 0.
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Appendix A
The general solutions to the Equation (4) are listed as follows:
AO Al A2 A3 A4 F (f )
1 0 (-1-m») 0 m’ sn(é)
1 —m? 0 2m*-1 0 —m? cn (&)
m* — 1 0 2 —m? 0 -1 dn(¢)
m> 0 (-1-m? 0 1 ns(&)
—m? 0 2m*-1 0 1-m? ne (§)
-1 0 2 —m? 0 m -1 nd (§)
1 0 2 —m? 0 1 —m? sc(£)
1 0 2m*-=1 0 (m*—m? sd (§)
1 —m? 0 2 —m? 0 1 cs(§)
(m* — m?) 0 2m? -1 0 1 ds (&)
1 1-2m? 1
i 0 5 0 a, ns(&) £ cs (&)
7 0 £ 0 7 ns (&) = sc (§)
mTz 0 m22— 0 1 ns (&) £ds (&)
m? 0 m=2 0 m? ___dn®
4 . 2 4 V1-m?sn(€)xcn(é)
1-m m>
% 0 Lo’ 0 -1 m - cn (€) + dn (¢)
1 0 1-2m? 0 1 sn(é)
1 5 7 1£cn(¢)
m’ 0 1-2m’ 0 L __dn@
4 2 4m . /:—'gzicn(é‘)
| -2 ) sn(€)
i 0 > 0 T T=dn(@)
m>—1 0 14+m? 0 1—m? dn(é)
| 4 } 2 | 4 ligw(s‘fr;(f)
—-m +m —m n
7 0 2 0 a1 , 1xsn(é)
1 0 N R o
1 2 4 cn(§)xdn(&)
1 0 2-m?* 0 m* __me
1 2 4 ( Vi-m2+dn(£)
A3+A; tan(-0)x \tan2(é-0)(1 +tan2(§—c))(A§+4A4))
0 0 T A A ()
2
4A;
0 0 0 Aj Ag A§§2—2A§c§:—czA§—4A4
0 K ok Kk 0 tanh (# - c))
» (i%(f—c))
0 0 A A A »
: : ! 4A44A, —A§—2A3e(i \/E("LC)) —2A3e(i2 \/5(&6))
K K 0 k K -’ @‘”Z( 73kﬁ§’i) OR V§+i's'lz(%ﬁé’“ )
i \/§+sn2(7v*"2'kﬁ§,i) - \B+i~sn2(7“§kﬁf,i)
0 A 0 As 0 ol (—1 + sn? (% V-A3AL¢, g))
0 —2k? k? K 0 —1+ sn? (L, ?)
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Appendix B

Jacobi elliptic functions degenerate into hyperbolic functions
whenm — 1:

sn (&) — tanh (§), cn (&) — sech (&), dn (&) — sech(€), sc(§) — sinh(§),
sd (&) — sinh(€),cd — 1,ns(€) — coth (&) ,nc(£) — cosh(é),

nd (&) — cosh(€),cs(§) = csch(§),ds (&) — csch(§),dc(§) — 1
Jacobi elliptic functions degenerate into trigonometric functions
whenm — 0:

sn(€) = sin(&),cn(é) — cos(€),dn (&) — 1,sc(é) — tan(€),

sd (&) — sin (&), cd (§) — cos (&) ,ns (&) — csc (&) ,nc (&) — sec(§),
nd (&) — 1,¢s5(6) = cot () ,ds (&) = csc(§),dc (&) — sec(§).
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