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Abstract

In this paper we study the concept of Fuzzy-anti-n-normed linear operator as a generalization of Fuzzy-anti-2-
normed linear operator. Fuzzy-anti-n-continuous linear operator and three types (strongly, weakly, and sequen-
tially) of Fuzzy-anti-n-continuous linear operators are defined and relation between strongly, weakly and sequen-
tially Fuzzy-anti-n-continuous linear operator is developed. Also strongly and weakly fuzzy-anti n-bounded linear
operators are defined and relation between Fuzzy-anti-n-continuous linear operator and Fuzzy-anti-n-bounded lin-
ear operators is established.

Keywords: fuzzy-anti-n-linear operator, fuzzy-anti-n-continuous-linear operator, strongly, weakly, sequentially
fuzzy-anti-n-continuous-linear operators, fuzzy-anti-n-bounded-linear operators

1. Introduction

The idea of Fuzzy norm was initiated by Katsaras (1984). In 1993, Felbin introduced an idea of Fuzzy norm on a
linear space by assigning a Fuzzy Real number to each element of the linear space, so that the corresponding metric
associated this Fuzzy norm is a Kaleva type fuzzy metric. Narayanan and Vijayabalaji (2005) extended the notion
of n-normed linear space to fuzzy-n-normed-linear space. In 2010, Jebril and Samanta introduced fuzzy-anti-
norm on a linear space depending on the idea of fuzzy-anti-norm was introduced by Bag and Samanta (2003) and
investigated their important properties. In 2011, Reddy studied fuzzy-anti-2-norm and some results are established
in fuzzy-anti-2-normed linear space and Reddy (2011) introduced fuzzy-anti-n-norm on linear space and studied
the notion of convergent sequence, Cauchy sequence in fuzzy-anti-n-normed linear space. Sinha, Mishra, Lal
(2011, 2012) introduced the concept of fuzzy-anti-2-continous linear operator and fuzzy-anti-2-bounded linear
operator on fuzzy-anti-2-normed linear space. In this paper we introduced the concept of fuzzy-anti-n-continuous
linear operator on a fuzzy-anti-n-normed linear space to another fuzzy-anti-n-normed linear space and defined three
types (strongly, weakly and sequentially) of fuzzy-anti-n-continuous linear operators and relation between strongly,
weakly and sequentially fuzzy-anti-n-continuous linear operator is developed. Also introduced the concept of
fuzzy-anti-n-bounded linear operator on a fuzzy-anti-n-normed linear space to another fuzzy-anti n-normed linear
space and defined two types (strongly ane weakly) of fuzzy-anti-n-bounded linear operators and relation between
strongly, weakly fuzzy-anti-n-bounded linear operator is established.

2. Preliminaries
This section contains a few basic definitions and preliminary results which will be needed in the sequel.

Definition 2.1 Let n € N and let X be a real linear space of dimension d > n. A real valued function ||e, e, ..., o||:
X X X X ...x X — R satisfying the following four properties

nNy: ||x1, X2, ..., X,|| = 0 if and only if x|, x», ..., x,, are linearly dependent vectors.

nNy: X1, X2, oo Xall = ||, X, ooy x;, || for every permutation (ji, o, ... jin) Of (1,2, .im), e, [Ix1, X2, coey X s
invariant under any permutation of xi, x, ..., X,.

nN3: ||x1, X2, ..., Xu_1, @X,|| = |al|x1, X2, ..., X,|| for all @ € R.

nNg: |11, X2, ey X, ¥ + 201 < M1, X2, s Xpm 1 VI + (120, X2, o0, X2, 2] fOr all y, z, X1, X2, .., X1 € X, is called an
n-norm on X and the pair (X, |e, e, ..., o||) is called n -normed linear space.
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Definition 2.2 Let X be a linear space over a real field F. A fuzzy subset N of X X X X ... X X X R — R is called a
fuzzy n-norm on X if the following conditions are satisfied for all x;, x», ..., X, X, € X and

(n—=N1): Forallt € Rwitht <0, N(xi, x2, ..., X, 1) = 0

(n— N2): For all t € R with t > 0, N(x1, x2, ..., X, 1) = 1 if and only if x1, x5, ..., x,, are linearly dependent.
(n = N3): N(x1, x2, ..., X, t) is invariant under any permutation of xi, xz, ..., X,

(n — N4): Forall t € R witht > 0, N(x{, X2, ..., Xu=1, CXp, 1) = N(X1, X2, ..., Xp, ﬁ) ifc#0,ceF.

(n—N5): Vs, t €R,

N(X1, X2y oy o1, X + X, 8+ 1) 2 min (N(X1, X2, o0y X1, Xy ), N(X1, X2, 0oy X1, X, 1))
(n — N6): N(x1, x2, ..., X, 1) is a non-decreasing function of 7 € R and lim N(x, x2, ..., X, ) = 1.
1—o00

Then N is said to be a fuzzy n-norm on a linear space X and the pair (X, N) is said to be a fuzzy n-normed linear
space (briefly F-n-NLS).

The following condition of fuzzy n-norm N will be required later on
(n—NT7): For all t € R with t > 0, N(x1, x2, ..., X, 1) > 0, implies that xy, x», ..., x,, are linearly dependent.

Definition 2.3 Let X be a linear space over a real field F. A fuzzy subset N* of X X X X ... X X X R — R such that
forall xi, x2, ..., x,,x, € Xand c € F

(n—N*1): Forallt € Rwitht <0, N*(x1, X2, ., X, 1) = 1.

(n—N*2): Forall t € R with ¢ > 0, N*(xy, x2, ..., X, ) = 0 if and only if xy, x5, ..., x,, are linearly dependent.
(n— N*3): N*(x1, x2, ..., X, 1) is invariant under any permutation of xy, xa, ..., X,

(n—N*4): Forall t € R witht > 0, N*(x1, X2, ..., X, 1) = N*(x1, X2, ..., Xp, ﬁ) if c #0.

(n—N*5): Forall 5,1 €R,

’
N (X1, X2, ooy X1, Xy + X, 8 + 1) S MAX{N" (X1, X2, o0 Xy 15 Xy 8), N*(X1, X2, 10 X1, X, D)
(n— N*6): N*(xy, x2, ..., X5, 1) i$ @ non-increasing function of ¢t € R and

lim N*(x1, x2, ..., X, 1) = 0

[—oo

Then N* is said to be a fuzzy anti-n-norm on a linear space X and the pair (X, N*) is called a fuzzy anti-n-normed
linear space (briefly Fa-n-NLS).

The following condition of fuzzy anti-n-norm N* will be required later on.

(n—N*7): For all t € Rwith t > 0, N*(x1, x2, ..., X, ) < 1, implies that x;, x, ..., x,, are linearly dependent.
3. Fuzzy Anti n-Continuous Linear Operators

Let (X, Ny) and (Y, N;) are fuzzy-anti-n-normed-linear spaces defined on the same field.

Definition 3.1 7 is a mapping from X; X X, X ... X X, to Y| X Y5 X ... X ¥,, where X1, X>, ..., X;, and Y1, V>, ..., ¥}, are
subspaces of (X, NY), (¥, NJ) respectively. Then T is said to be fuzzy-anti-n-linear operator, if

n

n
T(Z x(ln) Z (in-1) Z (in- z) Z SZ)I’Z (n)) — Z Z Z Z T(x(ln)’x(zln—l)’xgu—’l)’““, 5;2)1’ 5111))

ip=1 i-1=1 ip=1 =1 i1=1 ih=11i3= ip=1

and
T(a1x1, 2%, ooy @pXy) = @1 Q2.0 T (X1, X2, o0y X)), V(X1, X2, ey Xp) € X1 X Xp X .. X X,

Definition 3.2 Let T be a fuzzy-anti-n-linear map from X; X X, X ... X X, to Y1 X Y X ... X Y, X1, X>, ..., X;, and
Y1, Ya,..., ¥, are subspaces of (X, Ny),(¥, NJ) respectively. Then T is called fuzzy-anti-n-continuous at (x(l), xz)z), ng),
) € Xi X Xo X .. X X, if given & > 0, @ € (0,1) 36 = 8(a, ) > 0, 8 = Ba, &) € (0, 1), such that for all

D, X2 X3 xMye X)X X X ... x X,
NI, 2@ 2 2™y = a2 a0, 61 < B
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= N;[T(x('),x(z),x(3), ) T(xél), xff),xg), ...,xg')),e] < a.

If T is fuzzy-anti-n-continuous at every point of 7: X; X X, X ... X X;, = Y} X Y5 X ... X ¥, then T is fuzzy-anti-n-
continuous on X; X X, X ... X X),.

From now we will denote fuzzy-anti-n-continuous map by fa-n-continuous map.

Definition 3.3 Let 7: X; X X, X ... X X,, = Y| X Y, X ... X Y, be a fuzzy-anti-n-linear mapping, X, Xs, ..., X;, and
Y1, Ya,..., Y, are subspaces of (X, N7), (¥, NJ) respectively. Then T is called sequentially-fuzzy-anti-n-continuous
at (), 22, x8, al) € Xy x Xo x o x X if

H .2 .G .2 .G
Yk, (xi ),)c,(< ),xf( ). ...,x,(:')) - ),xé ),xé ). ...,xf)"))

n 2 .G H @ .3
= T(x,(( ),x,(( ),xé ), ...,x(")) - T(x( ),x(() ),xé ), ...,xgl)).

i.e.
lim N, 22, xP, )y — 0 P D XYy =0,V >0
Jm 1 [C & %k )~ (X x5, Xg 0 )1l

= 1im M7, 62, 2P ) = 7D, 2219 x) 1 = 0,V > 0.
lim N [T (" %7, x; At 0 >%o 0 )11

From now we will denote sequentially-fuzzy-anti-n-continuous map by Sq-fa-n-continuous map.

If T is Sq-fa-n-continuous at every point of X; XX, X...x X, then T is called Sq-fa-n-continuous on X; X X5 X... X Xj,.

Definition 3.4 Let 7: X; X X, X ... X X;, = Y} X Y, X ... X ¥, be a fuzzy-anti-n-linear mapping, Xi, X», ..., X;,
and Y1, Y2, ..., ¥, are subspaces of (X, N7),(Y, N;) respectively. Then T is called strongly-fuzzy-anti-n-continuous
at (x(l),xgz),xff),...,x(()")) € X; x Xo X ... X X, if for each € > 0, 3§ > 0 such that V(x", x® x®, ., x™) €
X1 XXo X...xX,,

N;[T(x(l), @ 1 x™y -, xéz), xg), s x(()")), ]

< N;‘[(x(l), *@ X3 xmy = (D) xz)z), xé‘”, vy xg")), ).

From now we will denote strongly-fuzzy-anti-n-continuous map by St-fa-n-continuous map.

Definition 3.5 Let 7: X; X X; X ... X X, = Y| X Y5 X ... X Y¥,, be fuzzy-anti-n-linear mapping, Xi, X», ..., X,

and Y1, Y>, ..., Y, are subspaces of (X, N}), (¥, N;) respectively. Then T is called weakly-fuzzy-anti-n-continuous

at (xél),xéz),xES),...,xg')) € X; X Xp X ... X X, if for a given € > 0, @ € (0,1), 36 = 6(a,&) > 0, such that

VD, x@ x3 L x™y e X X Xp X ... X X,

NI, 2@ 63 x ™y - (xf)l), xéz), xﬁf), - xf)")), dl<l-a

= N[TD, 2,13 1™y - T, x((f), x((f), s xg’)),s] <l-a.
From now we will denote weakly-fuzzy-anti-n-continuous map by Wk-fa-n-continuous map.

Theorem 3.6 Let T: X; X Xp X ... X X, = Y| X Y5 X ... X Y, be a fuzzy-anti-n-linear mapping, X1, Xz, ..., X, and
Y1, Ya,..., Y, are subspaces of (X, Ny), (Y, N3) respectively. If T is St-fa-n-continuous then T is Sq-fa-n-continuous.

Proof. Let us assume that T is St-fa-n-continuous at (xél), xéz), x§)3), e xg')) € X; x X, X...x X, then for each € > 0,

36 = 6(x(1),x§)2), x(OS), ...,x(()”_l),xf)"),s) > 0, such that for all (x(V, x@, x®, . x™) e X; x X5 X ... X X,,,
NT(xD, x@, x® L x™y -1V, xéz), x(()3), s x(()")), £]

< NiTGD, 2@, 68 x®) = 0,28, 68 10, 6 (1)
Let (x,(:), x,(f), x,(f), e x,((”)) be a sequence in X; X X, X ... X Xj,, such that

(x(l) 2) 3

1 2 3
X x¢ ,...,xg')) N (xg) 2 ,03) xé"))

Xy 5 Xy s s

ie.,
lim N x(l),x(z),x(3),...,x(”) - x(l),x(z),x(3),...,x(") ,11=0,Yt > 0. 2
h e k0N )= 0 °%0 0 )1l 2)
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Now from Equation (1), by (2) we have
. D .2 .G D@ .G s () ) .3 .2 .G
N2[T(x( ),x,(( ),x,i ). ...,x,({")) — T ),x(() ),x(() ), ...,x(O")), €] < Nj [(x,i ), x,(< ), x,(( ), ...,x,(:’)) e ),x(() ),xé ), ...,x(()")),é]
= ]}Lrgo N;[T(x(l),x,(f), ...,xi")) - T(x(l),xgz), .y xg’)), gl < kh_)rg Nf[(x(l),x,(f), ...,x}(")) - (x(]),x(oz), ...,xg")), ]

= 1lim N T, 22, xP, )y 1D, 5@ 4 Wy g] = 0.
tim N7 62 5, ) = TG 2000,

](<l) 2 3 ,x](:l))—>T(x(()l) 2 3

Since ¢ is arbitrarily small positive real, it immediately follows that 7'(x, ", x;, x,”, ... R A

xg’)). Therefore T is Sq-fa-n-continuous.

Theorem 3.7 Let T: X; X X5 X ... X X, = Y| X Y5 X ... XY, be a fuzzy-anti-n-linear mapping, Xy, X», ..., X,
and Y1, Y, ..., Y, are subspaces of (X, Ny), (Y, N;)respectively. If T is Fa-n-continuous if and only if T is Sq-fa-n-
continuous.

Proof. Let us assume that 7T is Fa-n-continuous at (xf)l) , xgz) , xg) s x(()”)) € X xXoX...xX,. Let (x\V, x](cz), x,(f), vy x}("))
be a sequence in X; X X, X ... X X,,, such that (x(l), x](cz), xf), x,((")) — (xél), xéz), ng), x(()")). Let € > 0 be given,
choose a € (0, 1), since T is Fa-n-continuous at (x(l), xgz), xg), ey x(()")) then 16 = 6(a,e) > 0, 8 = B(a,e) € (0, 1),
such that for all (x, x®, x®, ., x™) e X; X X, X ... X X,,,

N, x® 63, xy - &\, xéz), x(()3), .y xgﬂ), o] <p

= N;[T(x(l),x(z),x@, ey Xy T(xé'), xéz), xg), ...,x(()")),e] < a.
Since (x,(:), x,(cz), xf), oy x,(:’)) - ] xf)z), xff), vy xg‘)) in (X, N}) 3 a positive integer n, such that
wr () ) .3 D .2 .G
N} [(x,(( ), x; ), xj( ). x,((")) - (xé ), xé ), xg — xé")), 6] < B,¥n > nq

= N;[T(x(l), xf), x,(f), oy xi")) -7, xz)z), xg3), . xg")), gl <a,¥n>ng

= N;[T(x,(cl), xf), xf), o x,(:')) - T(xél), xéz), xg), - xé")), £] =0.
Since ¢ is arbitrary thus T(x(l),x,(f),x,(f), B T T(x(l),x(()z),xg), ...,xgl)) in Yy X Y5 X ... x Y,. Therefore T is
Sqg-fa-n-continuous.

Next let us assume 7 is Sq-fa-n-continuous at (x(l) s xgz) s x(()3), x(()") ) € X1 xXpX...x X, If it is possible let us assume

T is not Fa-n-continuous at (x(l), x(()z), xg), ey xg‘)). Thus d¢ > 0 and @ > 0 such that for any 6 > 0 and 8 € (0, 1)
3 M, y?,y3, ...,y™) (depending on &, B), such that N;[(x)", x{”, x5, ., x0") — 0D, y@,y®, L y™) 6] < B,
but N;[T(xél),xéz),xg),...,x(()")) - TW,y@ y® . y™) g] > a. Thus for 8 = ﬁ, 5=1- ﬁ, k=1,273,...,
300309, .y, such that

1 1
* 1 2 3 () @ 3 (1)
Ny [(XO Xy Xy e X ) = 0 VY e I (1 = m) <Tr1
. 2) (3 2) @3
but NZ[T(xf)l),xE) ),xg) ), ...,x(”)) - T(yg),y;c ),yl(c ), ...,yfc")),s] > a.
Taking 6 > 0, 3 ko, such that (1 — ) < § Yk > ko, then
NI, 2,58, 28 = 6y v ), 6
1 1
# o (D2 (3 (n) 1 2 3) (n)
<N, [(x 23Xy 5 Xy e X ) = 0 LYY e Y ), (1 _k-i-_l) < k+—1,Vk>k0

. * 1 2 3 1 2 3
lim Ny[Gy 2”2 307 = 03073 )61 < 0

1 2 3
= 07y ™) - (&

But from Equation (1) N;[T(x\", x, x8, .., x¢)-T (", 32y, 3", 6] = @. So, N [T (), 27, x5, ., 20P)-

T(y,({l), y,(f), yf), wes yi")), €] does not converges to zero as k — co. Thus T(y,({l), y,(f), yf), wees yi")) does not converges to

T, x(()z), xf)s), s xg')), where as (yg),yf),y,(f), ...,y,i")) - P, x(()z), xff), s xg')) (with respect to N}). This would

be contradiction to above assumption. Therefore 7" is Fa-n-continuous at (x(l), xf)z), xgj ), - x(")).

a1 2 (3 ()
0 2 Xg s Xp s e X ).
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4. Fuzzy Anti n-Bounded Linear Operators

Definition 4.1 Let 7: X; X X, X ... X X;, = Y} X Y, X ... X ¥, be a fuzzy-anti-n-linear mapping, Xi, X», ..., X,
and Y, Y5, ..., Y, are subspaces of (X, ND), (Y, N3) respectively. Then T is said to be strongly-fuzzy-anti-n-bounded
(St-fa-n-bounded) on X X X, X... X X, if and only if 3 a positive real number M, such that for all (x;, x5, x3, ..., x,) €
X1 XXy X...x X, and Yt € R,
* * t
N2 [T(Xl, X253 X35 eees xn): t] < N1 [()C], X25 X35 eeey -xn)> M]

Example 4.2 Let (X, ||, o, ..., o||) be a n-normed-linear-space over the field K, where K = Ror C. Let ki, k, € R
such that ky > ky > 0. Let N}, N;: X x X x ... x X x R* — [0, 1] be defined by

ki llxr, X2, X3, .00y Xpl|

NiT(x1, X2, X3, o0y X, )] = ,
t+ky|lxr, x2, X3, ..y Xal|

ko |lx1, x2, X3, .0y X4l

Ni[(x1, X2, X3, 0, Xy, 1)] = .
2[5, %2, %3, 0 X 1) 1+ ko [lx1, X2, X3, 0y Xl

Clearly (X, Ny) and (Y, N}) are fuzzy-anti-n-normed linear spaces.

Consider the mapping 7: X; X X5 X ... X X,, = Y| X Y, X...xX Y, defined by T'(x1, x2, X3, ..., X)) = 1(X1, X2, X3, ..oy Xp)s
where r(# 0) € R is fixed.

Clearly T is a linear operator. Let us choose an arbitrary but fixed M > 0 such that M > |r| and (x1, x2, X3, ..., X,) €
X1 XXy X...xX,. Now
M > |r|

= klM”xl,xZ’ X35 000y xn” > k2 |r| ||xl5x2’ X35 000y xn”

= 1+ klM”-xl,-XZ’x:% ...,Xn” =1+ k2 |r| ||.x1,)C2, X35 ees xn” s vt >0

t t
> V>0

t+k2 |r| I|X],X2,X3,...,Xn|| t+k1M ||X1,x2,.x3,...,.xn“

¢ £

> - - V>0

1+ ko |lr(xr, x2, 3, ooy Xl 57 + K 1X1, X2, X3, 00 X

t L

- <l-- B V>0
4 ko |Ir(x1, X2, X3, ooy X0l 21 Tk llxr, x2, x5, Xl
k2||r(-xlsx29-x3"--’-xn)” kl ||x1,x2,X3,...,x,,|| V>0

t 4k |lr(xn, X2, X3, e X)L~ 2+ Ky llx, 22, X3, Xl

. " 4
N2 [r(-xl’x29-x33 -~-,xl‘l)9 t] < N] [(-xl’x29-x33 (X238} xn), M],VI >0

and
(X1, X2, X3, 000, X)) € X1 X Xo X ... X X,
(i.e.)
NIT(x1,x2, X3, ..., Xp), 1] < NY[(X1, X2, X3, ..., Xp), ﬁ], Yi>0
and

(X1, X2, X3, 00, Xp) € X1 X Xo X ..o X X,
Therefore T is St-fa-n-bounded.

Definition 4.3 Let 7: X; X X, X ... X X;, = Y| X Y, X ... X Y, be a fuzzy-anti-n-linear mapping, X, X, ..., X,, and
Y1, Ya,..., Y, are subspaces of (X, Ny), (¥, N;) respectively. Then T is said to be weakly-fuzzy-anti-n-bounded (Wk-
fa-n-bounded) on X; xX; X...xX,, iff forany a € (0, 1) 3 M,, > 0, such that for all (x;, x5, x3, ..., X;;) € X1 XXpX...XX),
and Vr € R,

* ! *
Nl [('x17x27-x3""9-xn)7 M] < l-a= NZ[T('x19x27-x37"'7-xn)’ t] < l-a
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Theorem 4.4 Let T: X; X Xp X ... X X;, = Y| X Y5 X ... X Y,, be a fuzzy-anti-n-linear operator, X1, Xz, ..., X, and
Y1, Ya,..., Y, are subspaces of (X, Ny), (Y, N;) respectively. If T is St-fa-n-bounded, then T is Wk-fa-n-bounded but
the converse need not be sure.

Proof. Let us assumeT is St-fa-n-bounded. Then AM > 0, such that Y(x, x2, x3, ..., X,) € X1 X X3 X ... X X,, and
Yt € R, N3[T (x1, X2, X3, .0y Xu), 1] < NY[(x1, X2, X3, ... X)), ﬁ]. Thus for any a € (0, 1), A M,(= M) > 0, such that

t
Ni[(x1, X2, X3, ooy Xn)s ﬁ] <1 —a= NJT(x1, %2, X3, .00, %), 1] < 1 — .
a

Therefore T is Wk-fa-n-bounded.
The following example tells us that the converse of the theorem is not always true.

Example 4.5 Let (X, ||e, o, ..., o) be a n-normed-linear space over the field K, where K = R or C. Let N}, N;:
+ * _ Aol s _

XXX X..x XX R" — [0,1] be defined by Nj(x1, X2, X3, ... Xy, 1) = yieeeestins if 1> [lxy, 40, X3, 0 2l = 1,

if 1 < lx1, X2, X3, ..y Xl

[l2x1, X2, 23, .0y Xl

N3 (X1, X2, X3, ey Xy 1) = .
t+ ||x19x2’ -x37 ey xn”

We know that (X, NJ) is a Fa-n-normed linear space.
Now we would prove (X, N}) is a Fa-n-normed linear space.
(i) Vt € R with t < 0 and by definition Nj(x1, X2, X3, ..., X, 1) = 1

(ii) Yt € R with t > 0,
2
4 lxy, x2, %3, 0 Xall” 0
2+ 2 |lxp, X2, X3, ooy Xl

*
N] (.XI, X25 X35 o005 Xpy t) =0e

S |1x1, X2, X3, s Xl = 0 & X1, X2, X3, ..y X,y ATE linearly dependent.

(iii) As ||x1, X2, X3, ..., X,|| is invariant under any permutation of x, x2, x3, ..., X, it follows that N} (x1, X2, X3, ..., X4, )
is invariant under any permutation of xi, xp, x3, ..., X;,.

(iv) Forallt € Rwitht > 0and c # 0, c € K, we get

2 2 2
4 lxi, x2, %3, cxall” el 4 Hlxg, xo, x5, Xl

Ny(x1, x2, X3, .. CXp, 1) = =
2 2 2
242 |lxp, X2, 03, s exll” 2+ el 2 lxg, X2, X3, ., Xl

4 ||x1, X2, X35 +eny Xn? t
= - Lot = Nr[(-xl,XZ, X35 eees Xpy _)]

2
2+ 2 e x, X3, e 2l l

(v) For all s, € R and x1, x2, X3, ..., X, X, € X, we have to show that
NT(X1, X2, ey Xpm 1, Xy + Xy, 8 + 1) < Max{Ny (X1, X2, ey X1, X, 8), N7 (X1, X2, oy X1, X, D)

If(aA)s+t<0M)s=t=0()s+t>0,5s>0,1<0; s <0, >0, then in the three cases the relation will be
trivial.

If(d)s>0,r>0,s+¢t>0and
1121 X2 23 ceeey Xty Xll 4+ |1 22, X3, s X1 25| 2 {|e1 22, X34 s X, 2 + |-

Therefore 5

4 |1 22, X3, s Xamrs (6 + X))

Ny (X1, X2, X35 ey X1, Xy + X, S+ 1) = >
(s+02+2 ||)C1,X2,)C3, e X1, (X + x;l)”

2
4 (||.x1,X2, X35 ees xn” + “)Cl,xz, X35 000y -xnfl,x,/‘l”)

)2

o ’
= N](-xlsx29-x3,---’-xn—l3 X t)

ne

(S + t)2 +2 (“xls-xZ, X35 ey Xp—1, xn” + “-x]’x29 X35 000y -xn—l,x;,

2
4 ||)C1, X253 X35 eees Xp—1, x;,“

= 2
2+2 Hxl, X2 X35 eeey Xn—1» x;l”
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Therefore Nj(x1, X2, X3, ooy Xpo1, X + X;,, S + 1) < NJ(X1, X2, X3, o0y X1, X5 1), When NY(X1, X2, X3, o0, X1, X, §) <
NY(X1, X2, X35 eveey X1, X, 1), Similarly, NT(xy, X2, X3, ..y Xam1, X + X7, 8 + 1) < NT(X1, X2, X3, .00y X1, Xy, S), When
NY (X1, X2, X35 0y X1, X5 1) < NT(X1, X2, X3, 00y X1, X, 8). Thus Ny (X1, X2, o0y X1, X, + X7, 8 + 1) < max{N](x1, x2,
eeey .xnfl,.xn,s),N‘f(.X],x2,..., -xnflsx;pt)}'

If t; < t; <0, which implies
NY(X1, X2, ey X1, Xy 1) = Ny (X1, X2, 0y X1, Xy 1) = 1

If0 <t <, then
Nik(x17-x23 """ ’xl‘utl)_NT(-xl’xZ"'"’ Xns tz)

2 2
4 ”xlax2,-"-’xn” 4 ||xl,x2’~-~,xn||

- 2 2
tf + 2 [[x1, X025 ceees Xl t% + 2 [X1, X2 ceeey Xyl|

2
4 ller, x2, s Xall” (13 = 17)

= >
2 2
(1 + 2 [1X1, X2 ceons XalIP)(B3 + 2 [Ix1, X2, s Xal%)
= Ny (xp, X2, X3, ey X, 1) = NY(X1, X2, X3, ey Xy 12).

Thus Ny (x1, X2, X3, ..., X», 1) is @ non- increasing function of 7 € R

41121, X2, X3, orny Xyl

lim Ny (x1, X2, X3, ..., X, ) = lim
[—o0

5 = 0,V(x1, X2, X3, ..., X,) € X1 X X5 X ... X X,,.
100 (2 4 2 ||x1, X2, X3, c.ey Xl

Therefore (X, Ny) is a fuzzy-anti-n-normed linear space.

Now let us consider the mapping 7: X; X X5 X ... X X, = Y| X Y, X ... X ¥,, defined by
T(X], X2, X3, ...,x,,) = (X1,JC2,X3, ceey xn)V(xl,xz, X3, ...,xn) e X; XXy X X3 X oen X Xn

Leta € (0,1) and t € R* and choose M, = 1%

@

We now prove that

t
NT[(X],)CZ, X35 eeey xn)’ V] <l-a= N;[T(xlaxz’ X35 eeey xn)’ t] <l-a
a

t 4 ||x1, X2, X3 ooy Xl
NiLCxn X2, X3, 000 Xn), =] S T - = — ”2 12 X2 50 Bl s<l-a
M, (1 = @) + 2 ||x1, X2, X3, .., X

2
4 ”'xla -x27 -x37 ceey xn”

>l-(l-a)=«a
(1= @)% +2 [|1x1, X2, X3, oory X

2
(1= a@)? =2 ||x1, X2, X3, ..., Xl

3 >
21— a)? + 2 |lxy, X2, X3, o0, Xl

= (1= @) =2 [|x1, X2, X3, 0, Xl = 2 (1 = @) + 20 ||x1, X2, X3, .0y X,
=21 —a) 2201 + ) ||Ix1, X2, X3, o0y X

2(1-a)
2(1 +a)
1(1-a)Vd -a)

V2T +a)

V2 NI+ ) +1(1 —a) VI —a)
V2T + )

. t . V2 T +a)

t4 llx, x, 65, Xl T (1—a) VI =) + V2 VA + @)
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¢ - V2 VO +a)

St X e Xl T 1-a)VvI-a)+ V2 VI +a)
[le1, X2, 23, oo all (1-a)v(l-a)

e X1, x2, 3, s Xl = (1 =) VT =) + V2 VA + @)

(1-a)VI-a) o
I-ovi-ao+ V2 Vi+a)
e Jil-o< V20 +a)+ 1 -a)-aJd -a)
0 V2Jl+o)-afl-a)e al-ao) < V21 +a)

edl-a)<24+2a e’ <’ +20+2,

Now consider

which is true for all a € (0, 1).

Hence

t
Ni[(x1, x2, X3, ... Xp), V] <l—a= Nj[T(x1, %2, X3, 0 %), 1] < 1 — .
a

Therefore T is weakly-fuzzy-anti-n-bounded.

Now conversely, let 7' be St-fa-n-bounded.

N;[T(-xlvst X3y eues -xn)9 t] < NT[(-xlsxz’ X3y eees xn)s V]
(07
2
(11, X2, X3, .0 Xl 4 ||x1, X2, X35 -0 Xl
=" Z{Mar = M}
t+ lxr, x2, X3, e Xl a7 T2 e, x2, X35 00 x|

11, X2, X3, ..0p Xl - 4 M?||x1, X2, X3, ooy X1

t+ I, 20, 23, e Xl T 2 4 2M2 ||xy, X2, X3, ey Xl

2 2 3 2 2 2 3
ot ||x1’x29x3’--~axn||+2M ||xl5x2’x3a-~',xn” S4IM ||xl’x27x3a"'7xn” +4M ||xl9x2’x3a"'7xn”
2 2 2 2 3
S 17 X1, X2, X3, vy Xyl < AEMT||X1, X2, X3, s X7+ 2M7 |1, X2, X35 e, Xl
2 2 2 2
S 17 < AtM? || X1, X2, X3y ey Xpl| + 2M7 || X1, X2, X3, ...y Xy|

2
t
< 2

)

At]121, %25 X35 oo Xl + 2 (11, X2, X3, oy XallF

(i.e.)

2
2 t

%

> 2,forte(O,l)
Atllx1, X2, X3, .0 Xpll + 2121, X2, X3, 00y X

t
oM >

ol—

2
(4211x1, X2, X3, s Xall + 21201, 12, X3, e )
M = o0 as t — oo. This would be contradiction to above assumption. Therefore T is not St-fa-n-bounded.

Theorem 4.6 Let T: X; X Xp X ... X X, = Y| X Y5 X ... X Y,, be a fuzzy-anti-n-linear mapping, X1, Xz, ..., X, and
Y1, Ys,.... Y, are subspaces of (X, Ny), (Y, NJ) respectively. Then

1) T is St-fa-n-continuous on Xy X Xo X ... X X,,, if T is St-fa-n-continuous at a point x(l), x(2), e x(")) € X1 XX X
p 0 0

X Xy

@ii) T is St-fa-n-continuous iff T is St-fa-n-bounded.

@ @
0

Proof. (i) Since T is St-fa-n-continuous at (x, X s e ,xf)")) € X X X, X ...x X, if for each € > 0, there exists

0 > 0, such that
NIT, 5@, x) = T a8, xi™), e] < NPT, 6@, x@) = ), x5, L x50, 61,
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taking (yV, y?, .....,y) € X;xX»X...xX,, and replacing (xV, x@, ..., x™) by (x(, x®, ...,x(”))+(x(1) xf)z), ...,xg'))—
Oy, .,y ™), we get

" n @ H @
NIT[(xV, xP, ., x™) + (x( ) xf) ) s xg')) — oW,y Ly - T(x( ) x(() ) s xgl)), ]

< NP, 2@, x ™)+ G a8, a ) = 0,y @,y ™) = (7, 207, 6
= N;[T(xm, X2, x)y =TV, yP, Ly ] < N; (D, X2 Xy = D,y L y™), 6]
Since 1V, y@, ..., y"M) € X1 X X» X ... X X,, is arbitrary. Therefore T is St-fa-n-continuous on X; X X, X ... X Xj,.

(ii) Now we assume 7 is St-fa-n-bounded. Thus there exists a positive real number M, such that for all (x", x®, ...,
XMy e X; x X, x...x X, and Ve € R,

. E
NIT(x D, XD, x™), 6] < N[V, x@, ., x™), M]

e
N;[T(x(l), A Xy - T(x(]) ng), s x(()")), g] < Nf[(x(l), 22, xmy - (x(]) xg),. oy, M]

= NITED, 3@, x™) = TG 2, al), 6] < NI, x@, o x ™) — (7, 8, x07), 6

where § = % Therefore T is St-fa-n-continuous at (x(l) ’xgz) s ...,x(()") ). This implies T is St-fa-n-continuous on

X1 X Xo X ... xX,.

Coming to converse let us assume 7' is St-fa-n-continuous on X; X X, X ... X X,,, applying fuzzy-anti-n-continuity at
(D, x@, L x®) = (P, 2D, ... 1)) for e = 1, there exists 6 > 0, such that V(xD, x®, .., x™) € X; x X5 X ... X X,

NIT D, 2P, x®) = T, X, x), 11 < NPT, 3@, ™) = 8P, 1), 6.
If (xD, x@ ., x™) = (x(l) x(()z), ves xg')) and t > 0, putting O x@ Xy = @D @ uy
NIT(xD, P, x ™), 1] = N3 IT (@, u®, . u™) 1), 1] = N T, u®, ..., u™), 1]

= N [T, u®, .., u™), 1] < N[, u®, ..., u™), 6]

1) (2 (n)
— Ni{c |:(x » X t""’x )’ 6:| [(x(l) . (Vl)) té‘:l

oo e : PN !
=N, [(x( ) x@ X, U } =N, [(x( ) xP X, M]’

where M = £, so, N3[T(xD, x®, ..., x™), 1] < N{[(xD, x2, ..., x™), L1.

If (xD, x@, ., x™) = (x(l) x(()z), s xgl)) and 7 < 0, then
13
NITGD, 22, 6, 1] = NG, 6, x™), =1

If (¢, 2@, x®) = (7, 6§, ..., 20”) and € R, then
T()C(l) XE)Z),...,)C(()H)) ()C(l) xéz),... (n))

and ;
NIT (@57, o 3000 1 = N0 257 o ), 221 =
ift > 0;
n n t
NITGE, 6, 207, 1 = NiTad), 1 ...,xg>),M]=1

if t < 0. ThereforeT is St-fa-n-bounded.

Theorem 4.7 Let T: X; X X5 X ... X X, = Y| X Y X ... X Y,, be a fuzzy-anti-n-linear mapping, X1, Xz, ..., X, and
Y1, Ya,.... Y, are subspaces of (X, NY),(Y, N3) respectively. Then
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(1) T is Wk-fa-n-continuous on X; X Xo X ... X X, if T is Wk-fa-n-continuous at a point (x(l),x(()z), ..... ,x(()")) €

X XXy X ... XX,

(i) T is Wk-fa-n-continuous if and only if T is Wk-fa-n-bounded.

Proof. (i) Since T is Wk-fa-n-continuous at (x(l),x(()z), ..... ,x(()”)) e XixXox..xX,fore >0,a € (0,1), 4
§ = d6(a, &) > 0, such that V(x, x@, .., x™) € X1 X X5 X ... X X,

NI, 1@ 63 x ™y — (xél), xéz), xg), - xg’)), dl<l-a

= N;[T(x(l), @ 1 xm™y -, xgz), xff), s x(()”)), gl<l—a

taking (y(l), y(z), ..... R y(”)) € X xX,X...xX, and replacing D, x@ L X by (xD, 2, . x(”))+(x(()1), xf)z), - x("))—
oD, y?, .., y™), we get

NI, x@ 1™y + (x(()l), x(()z), - xgl)) — Wy, Ly - (x(()l), x(()z), - xé”)), dl<l-a

* 1 2 1 2
NZ[T[(x(l), 2@, L xMy ¢ (xE) ), xz) s xg’)) -,y Ly = T(xé ), xg) s xg’)), gl<l—a

(ie.)
NI, X, x ™) = Wy Ly )61 < 1 —a

N;[T(x(l), X, x)y =TV, yP Ly el <1 -
Since (3, ¥, ..., y™) € X; X X, X ... X X,, is arbitrary, T is Wk-fa-n-continuous on X; X X» X ... X X,,.
(i) Now we assume T is Wk-fa-n-bounded. Thus for any @ € (0, 1) there exists M, > 0, such that V ¢ € R and for
all (x, x@, .., x™) e X; x X, X ... X X,,, we have

t
Nf[(x(l), K2 X, M] <l-a= N;[T(x(l),x(z), XM <1 —a.

Therefore
NG, 2@, 2 = 60,69, "), 1< 1-a
) 5 eeey 3 9 ey R M <
= NITOD, x@, . x®) = T, 6%, ... 6), 11 < 1 -
(i.e.)
NP, xP, Xy — @D, 62, .., 6™) i] <l-a
1 s 5 eeesy 5 P s Ma <
= NTD, 5@, x) =T @D, 69,...,6"), e] <1 -«
(i.e.)

NP, x@ Xy = 0,609, .,67), 51 <1 -«

= N [TV, x?, ., x) =TV, 69, ..,67), el < 1 -«
where ML = 0. Therefore T is Wk-fa-n-continuous at (x(l), xff), ..... s xf)”)), which implies T is Wk-fa-n-continuous
on X; X X, X ... X X,.

Coming to converse let us assume 7' is Wk-fa-n-continuous on X; X X, X ... X X,,, applying continuity of T at
@1,69, ...,6™) and take & = 1, we have Va € (0, 1) 35(r, 1) > 0, such that V(x", xP, ..., x™) € X; X X5 X ... X X,,,
(i.e.)

NP, X2, 1™y — 01,62, ., 67), 61 < 1 -«

= NITED, X, x) =T, 69,..,67), 11 < 1 —a

(ie.)
NT[(x(l),x(z), XM 1<l —a= N;[T(x(l),x(z), XM <1 —a.

If (xD, x®, ., x™) £ (0D, 62, ..,6™) and ¢ > 0, putting (xD, x?@, ..., xM) = @Ou®. )

t

1 2 () 1 2 (n)
NT((M U t,,u ),6)sl—a=>N;(T((u U t,,u )),l)<1—a
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(i.e.)
Ny (@, u®, . u™), 16) < 1—a = N; (T(w) 1) <l-a
(i.e.)
N ((u“>, u®, ™), ML) <l-a= N (T (M) 1) <l-a
where M, = —1—. So

o(a,1)

t
N [t(x(]),x(z), ey X, V] <l-a=Nj [T(x(l),x(z), ey X, l] <l-«a

a

(1) (2 (n)
s1—a=>N;[T(—(x X tx )),1

t
N [(x(l),x(z), s x(")), A <l-a

a

t
Ny [(x(l), X, x(")), —
M

@

<l-a=Nj [T ((x(l),x(z), ....,x("))), t] <l-a,

where M, = 6((;1). If (6D, x@, ., x™) % @D, 0%, ..,6™)and t < 0,

t

Ny [(x“),x(z), ....,x(”)), ] =N, [T ((x(l),x(z), ....,x("))), t] = 1 for any M, > 0.

(2

If (x1, x@, ., x™) = (1,62, ...,6™), then for M,, > 0,

. 1t
N} [(x(l), @ Xy, V] =N; [T ((x<1>,x<2>, ....,x<">)), t] =0, ifr>0,

@

1t
N: [(x('), X x™), V} = Ny [7 (2@, X)) o] = 1, ifr <0,

Therefore T is Wk-fa-n-bounded.
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