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Abstract

Let Ω ⊆ R
m be a bounded domain, X = {X1, X2, · · · , Xk0

} be a Hömander family of vector fields on Ω whose

homogeneous dimension is Q. In this paper, we improve the dual inequality obtained by P. Hajlasz and P. Strzelecki

in 1998, and take use of it to discuss regularity of weakly subelliptic F-harmonic maps into Riemannian manifolds

with transitive isometric transformation groups.
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1. Introduction, Main Results

Let Ω be a bounded domain of R
m, X = {X1, X2, · · · , Xk0

} a family of C∞ vector fields on Ω. If the bracket

products of {Xα, α = 1, · · · , k0} span the tangent space of Ω at every point, we call X to satisfy the Hormander’s

condition, or to be a Hormander family of vector fields. If γ: [0, a] → Ω is a piecewise smooth curve, and

γ′(t) =
k0∑
α=1

cα(t)Xα(γ(t)) for almost all t ∈ [0, a], then γ is called horizontal (with respect to X). The set of all

horizontal curves in Ω is denoted byH . Define a metric on Ω as follows:

dcc(x, y) = inf
γ∈H
{T |γ(0) = x, γ(T ) = y}. (1)

By the Chow’s theorem, the Hormander’s condition guarantees that any two points can be connected by horizontal

curves. Therefore, for any x, y ∈ Ω, we have dcc(x, y) < ∞, i.e. (Ω, dcc) is a metric space. We call the metric dcc the

Carnot-Caratheodory metric, or the CC-metric for short. A CC-metric ball with center x and radius r is denoted by

Br(x), and its Lebesgue measure by |Br(x)|. Then there holds the following doubling inequality:

|B2r(x)| ≤ Cd |Br(x)| (2)

for small r, where Cd is a constant called a doubling constant.

Let RK be a K dimensional Euclidean space, and define a Sobolev space as

M1,p(Ω,RK) ≡ {u : Ω→ R
K |u ∈ Lp; Xαu ∈ Lp, α = 1, · · · k0}. (3)

Let M1,p
0

(Ω,RK) stand for the closure of C∞0 (Ω,RK) in M1,p(Ω,RK) with respect to the following norm:

‖u‖M1,p ≡
(∫
Ω

|u|p +
∫
Ω

|Xu|p
)1/p
, (4)

where |Xu| = √∑ |Xαu|2. In this paper, we adopt the convention of summation. The range of indexes α, β is

{1, · · · , k0}.
Let N be a compact Riemannian manifold. By Nash’s imbedding theorem, we can assume that N is a submanifold

of the Euclidean space R
K (for some positive integer K) without loss of generality. Define subelliptic F-energy

functional of u as
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EF(u) ≡
∫
Ω

F
( |Xu|2

2

)

for a smooth map u: M → N, where F: [0,∞)→ [0,∞) is a smooth function. The critical points of EF(·) are called

subelliptic F-harmonic maps (with respect to X). If F(t) = t, 1
p (2t)p, exp(2t), then the subelliptic F-harmonic maps

are called subelliptic harmonic maps, subelliptic p-harmonic maps, subelliptic exponential harmonic maps, respec-

tively. Especially, when Xi =
∂
∂xi

, subelliptic F-harmonic maps are the originary F-harmonic maps. Therefore,

subelliptic F-harmonic maps are the generalization of F-harmonic maps which cover harmonic maps, p-harmonic

maps, exponential harmonic maps, etc.

Let M1,p(Ω,N) = {u ∈ M1,p(Ω,RK): u(x) ∈ N a.e. in Ω}. If F(t) ≤ Ct
p
2 , and u ∈ M1,p(Ω,N) is a critical point of

the F-energy functional EF(u), then u is called a weakly subelliptic F-harmonic map.

Subelliptic harmonic maps are introduced by Jost and Xu in 1998. It is known that a weakly harmonic map from a

surface is regular. This result is proven by Helein (see Helein, 1990, 1991a, 1991b). Strzelecki (1994) generalizes

partially the Helein’s result, and proves that weakly p-harmonic maps from p dimensional domains into spheres

are regular. All these regularities are obtained by taking use of the Hardy space theory. A natural question is: Are

the above conclusions true for subelliptic harmonic maps? In this case, the Hardy space theory are not valid more.

However, Hajłasz and Strzelecki in 1998 establish a dual inequality, which is called H-S dual inequality here,

and use it to get a regularity of weakly subelliptic Q-harmonic maps into spheres, where Q is the homogeneous

dimension of the domains. E. Barletta and S. Dragomir also take use of H-S dual inequality to prove that weakly

subelliptic F-harmonic maps into spheres are regular, if F′ has
(

Q−2
2

)
-power growth (see Barletta & Dragomir,

2004), and hence generalize the Hajłasz-Strzelecki’s regularity. In this paper, we improve the dual inequality of

Hajłasz-Strzelecki (1998), and apply it to obtain a regularity lemma of weak solutions of a subelliptic PDE of

divergent type. As an application, we get a regularity of weakly subelliptic F-harmonic maps into Riemannian

manifolds with transitive isometric transformation groups.

The main theorems of this paper are stated here.

Lemma 1 Let Aαβ = Aαβ(x, u, Xu) ∼ |Xu|Q−2δαβ and ξ = ξ(x, u, Xu) satisfy X∗ξ = 0 and |ξ| ≤ |Xu|Q−1, and Yi be
some functions, then any weak solution u ∈ M1,Q(Ω,RK) of the following subelliptic PDE system∑

X∗α
(
AαβXβui

)
= X∗

(
ξYi(u)

)
(5)

is Holder continuous, where, X∗ξ is the subelliptic divergence of ξ and Q is the homogeneous dimension of Ω.

Take Aαβ(x, u, Xu) = F′( |Xu|2
2

)δαβ. Then the condition Aαβ(x, u, Xu) ∼ |Xu|Q−2δαβ becomes as F′(t) ∼ t
Q−2

2 . There-

fore we have

Theorem 2 Assume that F′(t) ∼ t
Q−2

2 and N is a compact Riemannian manifold on which the isometric transforma-
tion group acts transitively, then, any weakly subelliptic F-harmonic map u ∈ M1,Q(Ω,N) is Holder continuous.

This theorem is a generalization of theorems in Barletta and Dragomir (2004) and Hajlasz and Strzelecki (1998).

2. Doubling Spaces

Let (Ω, ρ, μ) be a metric-measure space, B(x, r) a ball of Ω with center at x and radius r and nB(x, r) = B(x, nr). If

there exists a constant Cd such that

μ (B(x, 2r)) ≤ Cdμ (B(x, r)) , (6)

then we call (Ω, ρ, μ) a doubling space, and Cd a doubling constant.

If Ω is an open subset of the Euclidean space, dcc the CC-metric on Ω associated with a Hormander family of

vector fields and μ the Lebesgue measure, then (Ω, dcc, μ) is a doubling space.

Lemma 3 If (Ω, ρ, μ) is a doubling space, and r ≤ r0, then we have

μ (B(x, r))

μ (B(x, r0))
≥ C−1

d

(
r
r0

)Q
, (7)

where Q = log2 Cd.

Proof. There exists a positive integer n, such that 1
2n ≤ r

r0
≤ 1

2n−1 , i.e. 2n−1r ≤ r0 ≤ 2nr. According to the doubling

inequality, we have

μ (B(x, r0)) ≤ μ (B(x, 2nr)) ≤ (Cd)n μ (B(x, r)) , (8)
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from which we get
μ(B(x,r))

μ(B(x,r0))
≥ 1

(Cd)n . Because 2n−1r ≤ r0 ≤ 2nr, we have log2
r0

r ≤ n ≤ 1 + log2
r0

r . Hence we have

(Cd)−n ≥ (Cd)−(1+log2
r0
r )

= (Cd)−1 (Cd)
log2

r
r0

= (Cd)−1 2
log2

r
r0

log2 Cd

= (Cd)−1

(
r
r0

)log2 Cd

= (Cd)−1

(
r
r0

)Q
.

(9)

The lemma follows from (8) and (9). �
Note that, if Ω is a bounded doubling space, taking r0 = diamΩ in (7) yields

μ (B(x, r)) ≥ 1

Cd

μ(Ω)

(diamΩ)Q
rQ. (10)

Let ρ be a metric on Ω and ∂Ω � ∅, and let

r(x) =
1

1000
ρ(x, ∂Ω). (11)

Then we have

Lemma 4 Let B = {B(x, r(x)): x ∈ Ω}. If B1 = B(x1, r(x1)), B2 = B(x2, r(x2)) ∈ B, and kB1 ∩ lB2 � ∅ for some k, l,
where k, l < 1000, then r(x1) and r(x2) are comparable, i.e. there exist constants C1,C2, depending only on k, l,
such that

C1r(x2) ≤ r(x1) ≤ C2r(x2). (12)

Proof. ∀x ∈ B1 ∩ B2 and ∀w ∈ ∂Ω, let ri = r(xi), i = 1, 2. Then we have

r1 ≤ 1

1000
ρ (x1,w) ≤ 1

1000

[
ρ (x1, x2) + ρ (x2,w)

]

≤ 1

1000

[
kr1 + lr2 + ρ (x2,w)

]
.

(13)

Taking infimums for w, we have

r1 ≤ 1

1000
(kr1 + lr2 + 1000r2) =

1

1000
[kr1 + (1000 + l) r2] , (14)

from which we get r1 ≤ 1000+l
1000−k r2.

Similarly, we have r2 ≤ 1000+k
1000−l r1. Therefore we obtain 1000−l

1000+k r2 ≤ r1 ≤ 1000+l
1000−k r2. �

Lemma 5 There exists a sequence {xi ∈ Ω|i ∈ I ⊆ N}, such that the members of the family of balls

B0 = {Bi = B (xi, r(xi))} (15)

are pairwise disjoint, and that 3B0 = {3Bi} covers Ω.

Furthermore, if μ is doubling, then the covering multiplicity of 3B0 is not more than a positive integer N3 which
depends only on the doubling constant.

Generally, if kB0 is a covering of Ω for some k ≥ 3, and μ doubling, then, the covering multiplicity of kB0 is not
more than a positive integer Nk which depends only on the doubling constant.

Proof. We can find a family of maximal pairwise disjoint balls B0 = {Bi|i ∈ I ⊆ N} in B = {B(x, r(x))|x ∈ Ω}, that

is to say that if we add a ball of B to the family B0, then there must be two balls which intersect each other. It is

sufficient to check that 3B0 = {3Bi} is a covering of Ω.
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Use reduction to absurdity. If it were false, there would be an x0 ∈ Ω, such that ∀i ∈ I we have x0 � 3Bi. Now we

prove that B0 = B (x0, r(x0)) is disjoint with any member of B0, and hence a contradiction is produced since B0 is

a family of maximal disjoint balls. In fact, ∀y ∈ B0 we have

ρ(y, xi) ≥ ρ(x0, xi) − ρ(x0, y) ≥ ρ(x0, xi) − r(x0). (16)

Taking a point w arbitrarily at ∂Ω, then we have

r(x0) ≤ 1

1000
ρ(x0,w) ≤ 1

1000

[
ρ(x0, xi) + ρ(xi,w)

]
. (17)

Inserting (17) into (16) yields

ρ(y, xi) ≥ 999

1000
ρ(x0, xi) − 1

1000
ρ(xi,w). (18)

Take infimums at the two ends for w. We get

ρ(y, xi) ≥ 999

1000
ρ(x0, xi) − 1

1000
ρ(xi, ∂Ω) =

999

1000
ρ(x0, xi) − r(xi). (19)

Because we have assumed that x0 � 3Bi for any i ∈ I, we have ρ(x0, xi) ≥ 3r(xi) from which we have

ρ(y, xi) ≥ 999

1000
3r(xi) − r(xi) =

1997

1000
r(xi) > r(xi), (20)

which implies that y � Bi. Hence ∀i ∈ I, B0 is disjoint with Bi, which conflicts to the maximum.

Next, let us prove that the covering multiplication at each point is less than a constant N3.

Take a point x ∈ Ω arbitrarily, and let Bx be a subset of 3B0 which cover x, i.e.

Bx =
{
3Bj ∈ 3B0|x ∈ 3Bj

}
.

In the following, we prove that the cardinal number of Bx is not more than a positive integer N3 which is dependent

only on the doubling constant. By Lemma 4, for any 3Bi = B(xi, 3r(xi)) and 3Bj = B(x j, 3r(x j)) ∈ Bx, there exists

a positive constant C, such that C−1r(xi) ≤ r(x j) ≤ Cr(xi) since 3Bi ∩ 3Bj � ∅. Hence for all y ∈ Bj, we have

ρ(xi, y) ≤ ρ(xi, x j) + ρ(x j, y)

≤ 3r(xi) + 3r(x j) + r(x j)

≤ (3 + 4C)r(xi),

(21)

which shows that Bj ⊆ (3 + 4C)Bi. So we get
⋃

3Bj∈Bx

B j ⊆ (3 + 4C)Bi. Since Bj’s are disjoint, we have

∑
3Bj∈Bx

μ
(
Bj

)
≤ μ ((3 + 4C)Bi) . (22)

Taking k =
[
log2(3 + 4C)

]
+ 1, we have 3 + 4C ≤ 2k. Hence by the doubling condition, we have

∑
3Bj∈Bx

μ
(
Bj

)
≤ μ ((3 + 4C)Bi) ≤ μ

(
2kBi

)
≤ (Cd)k μ (Bi) . (23)

Summing both ends for i such that 3Bi ∈ Bx, we get

|Bx|
∑

3Bj∈Bx

μ
(
Bj

)
≤ (Cd)k

∑
3Bi∈Bx

μ (Bi) ,

from which we have |Bx| ≤ (Cd)k ≡ N3. �
Lemma 6 Let Bi = B(xi, ri), i = 1, 2 be two balls of a doubling space (Ω, ρ, μ). If r1 ≈ r2, and B1 ∩ B2 � ∅, then
we have μ (B1) ≈ μ (B2), i.e. Aμ(B2) ≤ μ(B1) ≤ Bμ(B2) for some constants A and B.
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Proof. Let C−1r2 ≤ r1 ≤ Cr2. For any y ∈ B2, we have

ρ(x1, y) ≤ ρ(x1, x2) + ρ(x2, y) ≤ (r1 + r2) + r2 ≤ (1 + 2C)r1, (24)

which shows that B2 ⊆ (1 + 2C)B1 ⊆ 2kB1, where k =
[
log2(1 + 2C)

]
+ 1. From the doubling inequality we have

μ (B2) ≤ μ
(
2kB1

)
≤ (Cd)k μ (B1) . (25)

Similarly, we have

μ (B1) ≤ μ
(
2kB2

)
≤ (Cd)k μ (B2) . (26)

The lemma follows. �
3. Partition of Unity

Let ψ be a smooth function on [0,∞) which satisfies 0 ≤ ψ ≤ 1, and is equal to 1 on [0, 1] and to 0 on [4/3,∞), Bi

as in Lemma 5 and ri = r(xi) =
1

1000
ρ(xi, ∂Ω).

Taking ϕi(x) = ψ
(
ρ(x,xi)

3ri

)
, we have

ϕi|B(xi,3ri)
≡ 1, ϕi|[B(xi,4ri)]

c ≡ 0, (27)

and ϕi is Lipschitz continuous, whose Lipschitz constant is Cr−1
i . Then, taking θi(x) =

ϕi(x)∑
ϕk(x)

, we have

suppθi ⊂ B(xi, 4ri), (28)

and θi is also Lipschitz continuous with the same Lipschitz constant Cr−1
i . This is proven in following.

Let Λi = { j|4Bi ∩ 4Bj � ∅}. For each x ∈ 4Bi, there exists an l ∈ Λi such that 3Bl � x, hence 4Bl � x, since {3Bj}
covers Ω. Apparently,

∑
k∈Λi

ϕk(x) ≥ 1, because ϕl(x) = 1. Hence, taking any points x, y ∈ 4Bi, we have

|θi(x) − θi(y)| =
∣∣∣∣∣∣∣∣∣
ϕi(x)∑

k∈Λi

ϕk(x)
− ϕi(y)∑

k∈Λi

ϕk(y)

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣ϕi(x)
∑

k∈Λi

ϕk(y) − ϕi(y)
∑

k∈Λi

ϕk(x)

∣∣∣∣∣∣∑
k∈Λi

ϕk(x)
∑

k∈Λi

ϕk(y)

≤
∣∣∣∣∣∣∣ϕi(x)

∑
k∈Λi

ϕk(y) − ϕi(y)
∑
k∈Λi

ϕk(x)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
[
ϕi(x) − ϕi(y)

]∑
k∈Λi

ϕk(y) + ϕi(y)
∑
k∈Λi

[
ϕk(y) − ϕk(x)

]∣∣∣∣∣∣∣
≤ CN4r−1

i ρ (x, y) +C
∑
k∈Λi

r−1
k ρ (x, y) ,

(29)

where N4 is the covering mutiplicity in Lemma 5. Since rk (k ∈ Λi) and ri are comparable by Lemma 4, there

exists a positive constant A, such that r−1
k ≤ Ar−1

i . Applying it to the above inequality, we reach

|θi(x) − θi(y)| ≤ CN4r−1
i ρ (x, y) +CA

∑
k∈Λi

r−1
i ρ (x, y) = C̄r−1

i ρ (x, y) , (30)

where C̄ = CN4 (1 + A). Hence the Lipschitz constant of θi is C̄r−1
i .

Let B̃ = B(x̃, r̃) ⊆ Ω with 200B̃ ⊂ Ω. Fixing y ∈ B̃, and applying Lemma 5 to Ωy = Ω\{y}, we get that there exists

a sequence
{
xi ∈ Ωy|i ∈ I ⊆ N

}
, such that the members of the family of balls

B0 =

{
Bi = B (xi, ri) | ri =

1

1000
ρ(xi, ∂Ωy)

}
(31)
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are mutually disjoint and such that 3B0 = {3Bi} is an open covering of Ωy, the multiplicity of which is no more

than N3. Let {θyi }i∈I be the partition of unity subordinated to this covering. Then suppθ
y
i ⊂ 3Bi, where {Bi|i ∈ I} is

the maximal disjoint family of balls of Ωy. Apparently, the radius of Bi satisfies the following inequality

ri =
1

1000
ρ(xi, ∂Ωy) ≤ 1

1000
ρ(xi, ∂Ω) ≡ r(xi). (32)

Let I′ ⊂ I be an index set of i’s satisfying that suppθ
y
i ∩ 4B̃ � ∅. Note that i ∈ I′ implies 3Bi ∩ 4B̃ � ∅. We have

Lemma 7 If i ∈ I′, then ρ(xi, ∂Ω) > ρ(xi, y), and hence ri =
1

1000
ρ(xi, y).

Proof. By 200B̃ ⊂ Ω, we get 200r̃ ≤ ρ(x̃, ∂Ω), and hence r(x̃) = 1
1000
ρ(x̃, ∂Ω) ≥ 1

5
r̃. Therefore we have

3B (xi, r(xi)) ∩ 20B (x̃, r(x̃)) ⊇ 3Bi ∩ 4B̃ � ∅. (33)

From (33) and Lemma 4, one can arrive at

1000 − 20

1000 + 3
r(x̃) ≤ r(xi) ≤ 1000 + 20

1000 − 3
r(x̃). (34)

On the other hand, by 3Bi ∩ 4B̃ � ∅ and (32) we have

ρ(xi, y) ≤ ρ(xi, x̃) + ρ(x̃, y)

< 3ri + 4r̃ + r̃

≤ 3r(xi) + 5r(x̃).

(35)

Therefore, we have

ρ(xi, y) < 3r(xi) + 5r(x̃) ≤
(
3 + 5 × 1003

980

)
r(xi)

=

(
6 + 5 × 1003

980

)
· 1

1000
ρ(xi, ∂Ω)

< ρ(xi, ∂Ω),

(36)

by (34) and (35). �
Lemma 8 If i ∈ I′, then 3Bi ⊂ 8B̃.

Proof. There are two points of 3Bi located at two sides of 8B̃\4B̃ separately, provided 3Bi � 8B̃, because 3Bi∩4B̃ �
∅. Letting the two points be x, z respectively, then we have 6ri ≥ ρ(z, x) ≥ 4r̃.

Let x ∈ 3Bi ∩ 4B̃, then we have ρ(x, y) ≤ ρ(x, x̃) + ρ(x̃, y) < 5r̃, and hence 6ri ≥ 4r̃ > 4
5
ρ(x, y), i.e. ρ(x, y) < 15

2
ri.

On the other hand, by Lemma 7, we get

ρ(x, y) ≥ ρ(y, xi) − ρ(xi, x) > 1000ri − 3ri = 997ri, (37)

which is a contradition. �
Lemma 9 In doubling space, we have μ (B (y, ρ(x, y))) ≈ μ (3Bi), for i ∈ I′ and x ∈ 3Bi ∩ 4B̃.

Proof. Note ρ(x, y) ≤ ρ(x, x̃)+ρ(x̃, y) < 5r̃. On the other hand, we have r̃ ≤ Cri by Lemma 4. Hence ρ(x, y) ≤ C′ri.

Then by Lemma 7 we get

(ρ(x, y) ≥ ρ(y, xi) − ρ(xi, x) ≥ 1000ri − 3ri = 997ri. (38)

Therefore ri ≈ ρ(x, y). Because x ∈ B (y, ρ(x, y)), we have B (y, ρ(x, y)) ∩ 3Bi � ∅. So we obtain μ (B (y, ρ(x, y))) ≈
μ (3Bi) by Lemma 6. �
Lemma 10 Let i ∈ I′. If xi ∈ B(y, 2k−1)\B(y, 2k−2) for some integer k, then we have 3ri ≈ 2k, 3Bi ⊂ B(y, 2k), and
μ(3Bi) ≈ μ(B(y, 2k)) by the doubling inequality.

Proof. If i ∈ I′, then we have ri =
1

1000
ρ(xi, y) according to Lemma 7. Hence we have 2k−2 ≤ ρ(xi, y) = 1000ri ≤

2k−1, which implies that 3
1000
· 2k−2 ≤ 3ri ≤ 3

1000
· 2k−1 and hence 3ri ≈ 2k. For any x ∈ 3Bi we get

ρ(x, y) ≤ ρ(x, xi) + ρ(xi, y) ≤ 3ri + 2k−1 ≤ 3

1000
· 2k−1 + 2k−1 < 2k, (39)
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therefore 3Bi ⊂ B(y, 2k).

On the other hand, B(xi, 3ri) ⊆ B(y, 2k) we obtain that B(xi, 3ri) ∩ B(y, 2k) � ∅. Then by Lemma 6 we get

μ(3Bi) ≈ μ(B(y, 2k)) because 3ri ≈ 2k . �
Lemma 11 If 2k−2 ≥ 9r̃, then no i ∈ I′ such that xi ∈ B(y, 2k−1)\B(y, 2k−2).

Proof. If 2k−2 ≥ 9r̃, then for any z ∈ 8B̃, we have

ρ(y, z) ≤ ρ(y, x̃) + ρ(x̃, z) ≤ r̃ + 8r̃ = 9r̃, i.e. z ∈ B(y, 9r̃), (40)

from which we get 8B̃ ⊂ B(y, 9r̃) ⊂ B(y, 2k−2).

By Lemma 8, if there were i ∈ I′, we would have 3Bi ⊂ 8B̃, and hence 3Bi ⊂ B(y, 2k−2), which is a contradiction

to xi ∈ B(y, 2k−1)\B(y, 2k−2). �
In the following, we need the estimates of Subelliptic Green functions

Lemma 12 (Sanchez-Calle, 1984) Let G be a subelliptic Green function, then we have

|G(x, y)| ≤ Cρ(x, y)2μ (B (y, ρ(x, y)))−1 ,

|XG(x, y)| ≤ Cρ(x, y)μ (B (y, ρ(x, y)))−1 ,∣∣∣X2G(x, y)
∣∣∣ ≤ Cμ (B (y, ρ(x, y)))−1 .

(41)

Using it, we can obtain

Lemma 13 Take η ∈ C∞0 (Ω), such that η = 1 on 2B̃, η ≡ 0 outside 4B̃, and |Xη| ≤ Cr̃−1. Then, for i ∈ I′, we have
∣∣∣∣Xx
β

(
η(x)θ

y
i (x)Xy

αG(x, y)
)∣∣∣∣ ≤ Cμ(B (y, ρ(x, y)))−1 (42)

if y ∈ B̃.

Proof. (i) |Xη(x)| ≤ Cρ(x, y)−1 for y ∈ B̃.

Because η is not vanish only in 4B̃, we consider x ∈ 4B̃. For y ∈ B̃, we have ρ(x, y) ≤ 5r̃, and hence |Xη| ≤ C̃r̃−1 ≤
Cρ(x, y)−1.

(ii) |Xθyi (x)| ≤ Cρ(x, y)−1 for i ∈ I′ and y ∈ B̃.

We only consider x ∈ 3Bi since suppθ
y
i ⊂ 3Bi. If i ∈ I′, then suppθ

y
i ∩ 4B̃ � ∅, and hence 3Bi ∩ 4B̃ � ∅. Now we

prove r−1
i ≤ Cρ(x, y)−1. If this is true, then by (30) we have |Xθyi (x)| ≤ C̃r−1

i ≤ Cρ(x, y)−1. By Lemma 8 we have

3Bi ⊆ 8B̃, and by Lemma 7 we have ri =
1

1000
ρ (xi, y). Therefore, we have

ρ(x, y) ≤ ρ(x, xi) + ρ(xi, y) ≤ 3ri + 1000ri = 1003ri, (43)

from which we have r−1
i ≤ Cρ(x, y)−1.

Taking use of (i), (ii) and the estimates of Green fuctions (see 41), we get

∣∣∣∣Xx
β

(
η(x)θ

y
i (x)Xy

αG(x, y)
)∣∣∣∣ ≤ Cμ(B (y, ρ(x, y)))−1. (44)

The proof of (42) is complete. �
4. Several Important Inequalities

4.1 Fractional Integration Theorem

Assume that (Ω, ρ, μ) is a metric measure space where μ is a Borel measure on Ω such that each ball has a positive

measure. For a bounded open subset O ⊂ Ω, p > 0, σ ≥ 1 and ε > 0, define

Jσ,Oε,p g(x) =
∑

2i≤2σdiamO

2iε
(�

B(x,2i)

|g|pdμ
)1/p
, (45)

where
�

A =
1
μ(A)

∫
A. The following Fractional integration theorem is obtained by Hajlasz and Koskela (1995):

32



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 5, No. 3; 2013

Lemma 14 Suppose that μ is a doubling measure on V = {x ∈ Ω: ρ(x,O) < 2σdiamO}, and that there exist
constants b, s > 0 such that for any x ∈ O and r ≤ 2σdiamO, the following inequality holds:

μ(B(x, r)) ≥ b
( r
diamO

)s
μ(O). (46)

If ε > 0 and 0 < p < q < s/ε, then we have

‖Jσ,Oε,p g‖Lq∗(O,μ) ≤ C(diamO)εμ(O)−ε/s‖g‖Lq(V,μ), (47)

where, q∗ = sq/(s − εq) and C = C(ε, σ, p, q, b, s,Cd).

4.2 Subelliptic Sobolev Inequality and Poincare Inequality

The following subelliptic Sobolev inequality can be found in many papers (see for example Hajlasz & Strzelecki,

1998):

Lemma 15 Let the homogeneous dimension of a bounded domain Ω ⊆ R
m be Q, and 1 ≤ p < Q, then there exists

a constant C > 0, such that for each ball B = B(x, r) ⊆ Ω, the following inequality holds:

(�
B
|u − uB|p∗

)1/p∗
≤ Cr

(�
B
|Xu|p

)1/p
, (48)

where μ is the Lebesgue measure, p∗ = Qp/(Q − p).

Especially, taking p = Q2

Q+1
in (48) yields p∗ = Q2 and

(�
B
|u − uB|Q2

) 1

Q2

≤ Cr
(�

B
|Xu| Q2

Q+1

) Q+1

Q2

. (49)

The subelliptic Sobolev inequality implies the following Poincare inequality (see Hajlasz & Strzelecki, 1998;

Jerison, 1986):

Lemma 16 We have ∫
B
|u − uB|p ≤ Crp

∫
B
|Xu|p. (50)

5. Dual Inequality of Hajlasz-Strzelecki Type

Let Ω ⊆ R
m be a bounded domain, u: Ω → S n a weakly subelliptic Q-harmonic map. Denote Vi = |Xu|Q−2Xui.

Because
∑

u2
l = 1, one can get

∑
ulVl = 0. Therefore, we have

Vi =
∑

ul(ulVi − uiVl).

Leting Ei,l = ulVi − uiVl ∈ LQ/(Q−1), then X∗Ei,l = 0 (see Hajlasz & Strzelecki, 1998), and

X∗
(
|Xu|Q−2Xui

)
=
∑

X∗
(
ulEi,l

)
.

Here, X∗ξ is the subelliptic divergence of ξ, and Xu is the subelliptic gradient of u.

For a regularity of such a map u, the following dual inequality is established in (Hajlasz & Strzelecki, 1998):

Lemma 17 (H-S dual inequality, Hajlasz & Strzelecki, 1998) For any i, l ∈ {1, 2, · · · , n}, any ball B̃ with 200B̃ ⊆ Ω,
and each function ϕ ∈ M1,Q

0
(B̃), there holds the following inequality:

∣∣∣∣∣
∫

B̃
X∗(ulEi,l)(x)ϕ(x)dx

∣∣∣∣∣ ≤ C‖Xu‖Q
LQ(100B̃)

‖Xϕ‖LQ(B̃),

where C is a constant independent of B̃.

In order to discuss the regularity of weak solutions to more general PDEs in this paper, we need the following dual

inequality of H-S type:
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Lemma 18 (dual inequality of H-S type) Let B̃ = B(x̃, r̃) be a ball with 200B̃ ⊆ Ω, and ξ =
∑
ξαXα a vector field

on Ω depending on x, u, Xu, which satisfies that

|ξ| ≤ C |Xu|Q−1 , X∗ξ = 0. (51)

If φ ∈ W1,Q
0

(B̃,RK) and Y is RK-valued function defined on R
K smoothly, then there exists a constant C independent

of B̃, such that ∣∣∣∣∣
∫

B̃
〈X∗ ((Y ◦ u)ξ) , φ〉

∣∣∣∣∣ ≤ C ‖Xu‖Q
LQ(100B̃)

‖Xφ‖LQ(B̃) , (52)

where u ∈ W1,Q(Ω,RK) and 〈·, ·〉 is the inner product of RK.

Proof. Take η ∈ C∞0 (Ω), such that η = 1 on 2B̃, η ≡ 0 outside 4B̃, and |Xη| ≤ Cr̃−1. For any φ ∈ W1,Q
0

(B̃,RK), we

have

φ(x) =

∫
B̃

∑
XβG(x, ·)Xβφ(·), (53)

where Xβ stands the derivative in “·” along Xβ and G(x, y) is the Geen function. Therefore, we have

∫
B̃
〈X∗ ((Y ◦ u)ξ) (x), φ(x)〉 =

∫
B̃
〈X∗ ((Y ◦ u)ξ) (x), η(x)φ(x)〉

=

∫
〈X∗ ((Y ◦ u)ξ) (x), η(x)φ(x)〉

=

∫ ∫ 〈
X∗ ((Y ◦ u)ξ) (x), η(x)

∑
Xy
βG(x, y)Xy

βφ(y)
〉

dydx.

(54)

Here and below Xy
β stands the derivative in “y” along Xβ. Set

Aβ(y) =

∫
X∗ ((Y ◦ u)ξ) (·)η(·)Xy

βG(·, y). (55)

Then we have ∫
B̃
〈X∗ ((Y ◦ u)ξ) , φ〉 =

∫ ∑〈
Aβ(y), Xy

βφ(y)
〉

dy. (56)

Fix a point y ∈ B̃, and let {θyi }i∈I be a partition unity of Ωy = Ω\{y} subordinated to the above covering. Then

suppθ
y
i ⊂ 3Bi, where {Bi|i ∈ I} is a maximal disjoint family of balls of Ωy.

Let x0 be an arbitrary point in Ω and Y0 = Y(u3Bi ) where u3B =
�

3B u. By the assumption X∗ξ =
∑

X∗αξα = 0, we

have

Aβ(y) =
∑
i∈I

∫
3Bi

X∗ ((Y ◦ u)ξ) (·)η(·)θyi (·)Xy
βG(·, y)

=
∑
i∈I

∫
3Bi

X∗ ((Y ◦ u − Y0) ξ) (·)η(·)θyi (·)Xy
βG(·, y)

=
∑
i∈I

∫
3Bi

∑
X∗α
[
(Y ◦ u − Y0) ξα

]
(·)η(·)θyi (·)Xy

βG(·, y)

=
∑
i∈I

∫
3Bi

[
Y (u(·)) − Y(u3Bi )

]∑
ξα(·)Xα

[
η(·)θyi (·)Xy

βG(·, y)
]
.

(57)

Because suppη ⊆ 4B̃, we choose I′ ⊂ I to be a set of index i’s which satisfy that suppθ
y
i ∩ 4B̃ � ∅. Take I′k ⊆ I′, the

index i in which satisfies that xi ∈ B(y, 2k−1)\B(y, 2k−2). Then I′ is the disjoint union of all I′k. Hence we have

Aβ(y) = −
∑

k

∑
i∈I′k

∫
3Bi

[
Y (u(·)) − Y(u3Bi )

]∑
α

ξα(·)Xα
[
η(·)θyi (·)Xy

βG(·, y)
]

= −
∑

2k−2≤9r̃

∑
i∈I′k

∫
3Bi

[
Y (u(·)) − Y(u3Bi )

]∑
α

ξα(·)Xα
[
η(·)θyi (·)Xy

βG(·, y)
]
,

(58)
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where the second equality holds because of Lemma 11.

Applying (42) to (58), and taking use of Lemma 9, we have

∣∣∣Aβ(y)
∣∣∣ ≤ C

∑
2k−2≤9r̃

∑
i∈I′k

∫
3Bi

1

μ(B (y, ρ(·, y)))

∣∣∣Y (u(·)) − Y(u3Bi )
∣∣∣ |ξ|

≤ C
∑

2k−2≤9r̃

∑
i∈I′k

�
3Bi

∣∣∣Y (u(·)) − Y(u3Bi )
∣∣∣ |ξ|

≤ C
∑

2k−2≤9r̃

∑
i∈I′k

(�
3Bi

∣∣∣Y (u(·)) − Y(u3Bi )
∣∣∣Q2
) 1

Q2
(�

3Bi

|ξ| Q2

Q2−1

) Q2−1

Q2

≤ C sup |DY |
∑

2k−2≤9r̃

∑
i∈I′k

(�
3Bi

∣∣∣u(·) − u3Bi

∣∣∣Q2
) 1

Q2
(�

3Bi

|ξ| Q2

Q2−1

) Q2−1

Q2

≤ C sup |DY |
∑

2k−2≤9r̃

∑
i∈I′k

ri

(�
3Bi

|Xu| Q2

Q+1

) Q+1

Q2
(�

3Bi

|Xu| Q2

Q+1

) Q2−1

Q2

≤ C sup |DY |
∑

2k−2≤9r̃

∑
i∈I′k

ri

(�
3Bi

|Xu| Q2

Q+1

) Q+1
Q

,

(59)

where we have used Sobolev Inequality (49). If xi ∈ B(y, 2k−1)\B(y, 2k−2) for some integer k, then from Lemma 10

we get

ri

(�
3Bi

|Xu| Q2

Q+1

) Q+1
Q

≤ C2k
(�

B(y,2k)

|Xu| Q2

Q+1

) Q+1
Q

. (60)

Furthermore, let N be the number of index i ∈ I′ such that xi ∈ B(y, 2k−1)\B(y, 2k−2) has a upper bound depending

only on p and Ω.

Substituting (60) into (59) yields

|Aα(y)| ≤ C
∑

k

∑
i∈I′k

2k
(�

B(y,2k)

|Xu| Q2

Q+1

) Q+1
Q

≤ C
∑

2k≤2·2·16r̃

2k
(�

B(y,2k)

|Xu| Q2

Q+1

) Q+1
Q

= CJ2,8B̃
1, Q

Q+1

(
|Xu|Q

)
(y). (61)

Take

ε = 1, σ = 2, q∗ =
Q

Q − 1
, q = 1, p =

Q
Q + 1

, s = Q, O = 8B̃, (62)

From fractional integration formula (47) we have (for O = 8B̃, the conditions of Lemma 14 are satisfied):∥∥∥∥∥∥∥J
2,B8r(x0)

1,
Q

Q+1

|Xu|Q
∥∥∥∥∥∥∥

LQ/(Q−1)(8B̃)

≤ C ‖Xu‖QL1(V)
, (63)

where V = {x: ρ(x, 8B̃) < 2 · 2 · 16r̃} = 72B̃. Hence we have

‖Aα‖LQ/(Q−1)(8B̃) ≤ C ‖Xu‖Q
LQ(72B̃)

, (64)

from which wed get

‖Aα‖LQ/(Q−1)(B̃) ≤ ‖Aα‖LQ/(Q−1)(8B̃) ≤ C ‖Xu‖Q
LQ(72B̃)

≤ C ‖Xu‖Q
LQ(100B̃)

. (65)

Applying (65) to (56), we get ∫
B̃
〈X∗ ((Y ◦ u)ξ) , φ〉 =

∫ ∑〈
Aβ(y), Xy

βφ(y)
〉

dy

≤
∑∥∥∥Aβ∥∥∥LQ/(Q−1)(B̃)

‖Xφ‖LQ(B̃)

≤ C ‖Xu‖Q
LQ(100B̃)

‖Xφ‖LQ(B̃)

(66)
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which is we need. �
6. Regularity of Weak Solutions to a Subelliptic PDE System of Divergence Type-Proof of Lemma 1

For each x0 ∈ Ω, we take a small ball Br(x0). Let η be a cut-off function which is 1 on Br(x0), and is zero outside

B2r(x0), and furthmore |Xη| ≤ Cr−1. Let ψ = η(u − u2r), where u2r =
1

μ(B2r(x0))

∫
B2r(x0)

udx ≡ �B2r(x0)
udx. Testing (5)

by ψ yields ∫
B2r(x0)

〈∑
X∗α
(
AαβXβu

)
, ψ
〉
=

∫
B2r(x0)

〈∑
X∗α
(
ξα,iYi ◦ u

)
, ψ
〉
. (67)

Applying (Lemma 18), the dual inequality of H-S type to the right hand side of (67) yields

RHS ≤ C1 ‖Xu‖QLQ(B200r(x0))
‖Xψ‖LQ(B2r(x0))

≤ C2 ‖Xu‖QLQ(B200r(x0))
‖Xu‖LQ(B2r(x0)) .

(68)

Then, applying the Poincare inequality (50) to estimate the left hand side of (67), we have

LHS =

∫
B2r(x0)

∑
Aαβ
〈
Xβu, Xαψ

〉

=

∫
B2r(x0)

∑
Aαβ
〈
Xβu, Xαu

〉
η +

∫
B2r(x0)

∑
Aαβ
〈
Xβu, u − u2r

〉
Xαη

≥C3

∫
Br(x0)

|Xu|Q −
∫

B2r(x0)

∑
Aαβ |Xαη|

∣∣∣Xβu∣∣∣ |u − u2r |

≥C3

∫
Br(x0)

|Xu|Q −C4

∫
T2r

∑
|Xu|Q−2 |Xαη| |Xαu| |u − u2r |

≥C3

∫
Br(x0)

|Xu|Q −C5r−1

∫
T2r

|Xu|Q−1 |u − u2r |

≥C3

∫
Br(x0)

|Xu|Q −C5r−1

(∫
T2r

|Xu|Q
)Q−1

Q
(∫

B2r(x0)

|u − u2r |Q
) 1

Q

≥C3

∫
Br(x0)

|Xu|Q −C6

(∫
T2r

|Xu|Q
)Q−1

Q
(∫

B2r(x0)

|Xu|Q
) 1

Q
,

(69)

where T2r = B2r(x0) − Br(x0). Therefore we get

∫
Br(x0)

|Xu|Q ≤C
(∫

T2r

|Xu|Q
)Q−1

Q
(∫

B2r(x0)

|Xu|Q
) 1

Q
+C
(∫

B200r(x0)

|Xu|Q
) (∫

B2r(x0)

|Xu|Q
) 1

Q

≤C
(∫

B2r(x0)

|Xu|Q −
∫

Br(x0)

|Xu|Q
)Q−1

Q
(∫

B2r(x0)

|Xu|Q
) 1

Q
+C
(∫

B200r(x0)

|Xu|Q
) (∫

B2r(x0)

|Xu|Q
) 1

Q

≤C
(∫

B200r(x0)

|Xu|Q −
∫

Br(x0)

|Xu|Q
)Q−1

Q
(∫

B200r(x0)

|Xu|Q
) 1

Q
+C
(∫

B200r(x0)

|Xu|Q
)Q+1

Q
.

(70)

Let M (x0, r) =
∫

Br(x0)
|Xu|Q. Then, there exist positive numbers r0 and λ ∈ (0, 1), which are independent of x0,

such that for all r ≤ r0 the following inequality holds

M (x0, r) ≤ λM (x0, 200r) . (71)

In fact, if the inequality were not true, there would be a positive r ≤ r0, such that M (x0, r) > λM (x0, 200r) for all

r0 > 0 and λ ∈ (0, 1). Hence we have

λM (x0, 200r) < C (1 − λ) Q−1
Q M (x0, 200r) +CM (x0, 200r)

Q+1
Q . (72)

For λ ∈ [1/2, 1) and positive number r0 small enough, we have

1

2
< C (1 − λ)(Q−1)/Q +CM (x0, 200r)1/Q .
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for arbitrararily small positive number r. Letting λ tend to 1, and r tend to 0 yield a contradiction.

Then, by a standard calculation from (71) we obtain
∫

B(x1,r)
|Xu|Q ≤ Crμ for any x1 ∈ Br0

(x0) and any r ≤ r0, which

implies that u is locally Holder continuous (see Hajlasz & Strzelecki, 1998).

7. Regularity of Weakly Subelliptic F-Harmonic Maps-Proof of Theorem 2

In this section, we deduce the regularity of weakly subelliptic F-harmonic maps.

Let νn+1, · · · , νK be a local field of normal frame of N in R
K , and Ak(X,Y) = X(νk) · Y is the second fundamental

form of N in R
K respect to νk. Let ΔF

Xu =
∑

X∗α
(
F′
( |Xu|2

2

)
Xαu
)

be the F-Laplacian of u. Then the Euler-Lagrange

equation of weakly subelliptic F-harmonic maps can be written in the following form:

ΔF
Xu = F′

( |Xu|2
2

)
A(u)(Xu, Xu), (73)

i.e. ∑
X∗α

(
F′
( |Xu|2

2

)
Xαu
)
= F′

( |Xu|2
2

)
A(u)(Xu, Xu), (74)

where

A(u)(Xu, Xu) =

v∑
k=n+1

∑
α

Ak(u)(Xαu, Xαu)(νk ◦ u). (75)

For example, if N = S n ⊂ R
n+1, then the Euler-Lagrange equation is

ΔF
Xu = −F′

( |Xu|2
2

)
|Xu|2u. (76)

On N, we call a vector field K is of Killing, if 〈Z,∇Z K〉 = 0 for any vector field Z, or equivalently 〈Y,∇Z K〉 +
〈Z,∇Y K〉 = 0 for any vector fields Y,Z, where 〈·, ·〉 is the Riemannian inner product of N.

Lemma 19 Let u ∈ W1,Q(Ω,N) be a weakly subelliptic F-harmonic map, K a Killing vector field of N, and

ξ = F′
(
|Xu|2 /2

)∑
〈K ◦ u, Xαu〉 Xαu.

Then X∗ξ = 0, i.e.
∑

X∗α
(
F′
(
|Xu|2 /2

)
〈K ◦ u, Xαu〉

)
= 0.

Proof. For φ ∈ C∞0 (Ω,R), set ψ = φK ◦ u ∈ W1,Q
0

(Ω,RK). Applying ψ to the Euler-Lagrange Equation (73), we

have

0 =

∫
Ω

〈
ΔF

Xu, ψ
〉
=

∫
Ω

〈∑
X∗α
(
F′
(
|Xu|2 /2

)
Xαu
)
, φK ◦ u

〉

=

∫
Ω

∑〈
F′
(
|Xu|2 /2

)
Xαu, Xα (φK ◦ u)

〉

=

∫
Ω

∑〈
F′
(
|Xu|2 /2

)
Xαu, (Xαφ) K ◦ u

〉
+

∫
Ω

∑〈
F′
(
|Xu|2 /2

)
Xαu, φXα (K ◦ u)

〉
.

(77)

Since K is a Killing field, we get
∑ 〈Xαu, Xα (K ◦ u)〉 = ∑〈Xαu,∇XαuK

〉
= 0, and hence the last integral vanish.

Therefore, we have

0 =

∫
Ω

∑〈
F′
(
|Xu|2 /2

)
Xαu,K ◦ u

〉
Xαφ =

∫
Ω

(X∗ξ) φ.

�
The follwing lemma is proven by Helein (1991a).

Lemma 20 Let N be a compact Riemannian manifold where the isometric transformation group acts transitively.
Then, there exist vector fields Y1, · · · , Yq and Killing fields K1, · · · ,Kq on N, such that for any vector filed V, we
have

V = 〈K1,V〉Y1 + · · · +
〈
Kq,V

〉
Yq.

From now on, we assume that F′(t) ∼ t
Q−1

2 . The range of index i is from 1 to q.
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Take Vα = Xαu in Lemma 20. Then we have

Xαu =
∑
〈Ki ◦ u, Xαu〉 Yi ◦ u.

Let Kα,i = 〈Ki ◦ u, Xαu〉. Then we get

F′
(
|Xu|2 /2

)
Xαu =

∑
F′
(
|Xu|2 /2

)
Kα,iYi ◦ u. (78)

Because u is weakly subelliptic F-harmonic, by Lemma 19, we have∑
X∗α
(
F′
(
|Xu|2 /2

)
Kα,i
)
= 0. (79)

I.e. ∑
X∗αξα,i = 0, (80)

where ξα,i = F′
(
|Xu|2 /2

)
Kα,i.

Letting ξi =
∑
ξα,iXα =

∑
F′
(
|Xu|2 /2

)
〈Ki ◦ u, Xαu〉 Xα, then we have X∗ξi = 0. Apparently, |ξα,i| ≤ C|Xu|Q−1.

From (78) one has ∑
X∗α
(
F′
(
|Xu|2 /2

)
Xαu
)
=
∑

X∗α
(
ξα,iYi ◦ u

)
. (81)

From this and Lemma 1, we prove Theorem 2. �
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