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Abstract

Let Q € R™ be a bounded domain, X = {X;,X>,---, Xy} be a Homander family of vector fields on Q whose
homogeneous dimension is Q. In this paper, we improve the dual inequality obtained by P. Hajlasz and P. Strzelecki
in 1998, and take use of it to discuss regularity of weakly subelliptic F-harmonic maps into Riemannian manifolds
with transitive isometric transformation groups.
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1. Introduction, Main Results

Let Q be a bounded domain of R, X = {X;,X5,---, Xy} a family of C* vector fields on Q. If the bracket

products of {X,,@ = 1,--- ,ko} span the tangent space of Q at every point, we call X to satisfy the Hormander’s

condition, or to be a Hormander family of vector fields. If y: [0,a] — Q is a piecewise smooth curve, and
K

V(1) = ZO ()X, (y(1)) for almost all # € [0, a], then vy is called horizontal (with respect to X). The set of all

a=1

horizontal curves in Q is denoted by /. Define a metric on Q as follows:
dec(x,y) = Inf {T|y(0) = x,9(T) = y}. (D
yeH

By the Chow’s theorem, the Hormander’s condition guarantees that any two points can be connected by horizontal
curves. Therefore, for any x,y € Q, we have d..(x,y) < oo, i.e. (Q,d,.) is a metric space. We call the metric d,. the
Carnot-Caratheodory metric, or the CC-metric for short. A CC-metric ball with center x and radius r is denoted by
B,(x), and its Lebesgue measure by |B,(x)|. Then there holds the following doubling inequality:

|B2(x)| < Cal Br(x)] 2)
for small r, where C, is a constant called a doubling constant.
Let RX be a K dimensional Euclidean space, and define a Sobolev space as
MYPQRY ={u: Q> RNueL”; Xgue LP,a =1, ko). (3)

Let Mé’P (€, IR¥) stand for the closure of C§*(€, RX) in M'7(Q, RX) with respect to the following norm:

1/p
||u||Mms( f ul? + f |Xu|P) : 4
Q Q

where |Xu| = +/3, |X,ul?>. In this paper, we adopt the convention of summation. The range of indexes a,f is
{1, ko}.

Let N be a compact Riemannian manifold. By Nash’s imbedding theorem, we can assume that N is a submanifold
of the Euclidean space RX (for some positive integer K) without loss of generality. Define subelliptic F-energy
functional of u as
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_ | Xul?
-

for a smooth map u: M — N, where F: [0, c0) — [0, c0) is a smooth function. The critical points of E(-) are called
subelliptic F-harmonic maps (with respect to X). If F(¢) = t, i(Zt)”, exp(2t), then the subelliptic F-harmonic maps
are called subelliptic harmonic maps subelliptic p-harmonic maps, subelliptic exponential harmonic maps, respec-
tively. Especially, when X; = ==, subelliptic F-harmonic maps are the originary F-harmonic maps. Therefore,
subelliptic F-harmonic maps are the generalization of F-harmonic maps which cover harmonic maps, p-harmonic
maps, exponential harmonic maps, etc.

Let M'"P(Q,N) = {u € M"P(Q,RX): u(x) € Nae. in Q). If F(r) < Ct%, and u € M"P(Q, N) is a critical point of
the F-energy functional E(u), then u is called a weakly subelliptic F-harmonic map.

Subelliptic harmonic maps are introduced by Jost and Xu in 1998. It is known that a weakly harmonic map from a
surface is regular. This result is proven by Helein (see Helein, 1990, 1991a, 1991b). Strzelecki (1994) generalizes
partially the Helein’s result, and proves that weakly p-harmonic maps from p dimensional domains into spheres
are regular. All these regularities are obtained by taking use of the Hardy space theory. A natural question is: Are
the above conclusions true for subelliptic harmonic maps? In this case, the Hardy space theory are not valid more.
However, Hajlasz and Strzelecki in 1998 establish a dual inequality, which is called H-S dual inequality here,
and use it to get a regularity of weakly subelliptic Q-harmonic maps into spheres, where Q is the homogeneous
dimension of the domains. E. Barletta and S. Dragomir also take use of H-S dual inequality to prove that weakly
subelliptic F-harmonic maps into spheres are regular, if F” has ( ) -power growth (see Barletta & Dragomir,
2004), and hence generalize the Hajtasz-Strzelecki’s regularity. In th1s paper, we improve the dual inequality of
Hajtasz-Strzelecki (1998), and apply it to obtain a regularity lemma of weak solutions of a subelliptic PDE of
divergent type. As an application, we get a regularity of weakly subelliptic F-harmonic maps into Riemannian
manifolds with transitive isometric transformation groups.

The main theorems of this paper are stated here.
Lemma 1 Let Ayp = Aop(x, u, Xu) ~ IXMIQ‘Zéwﬁ and & = &(x, u, Xu) satisfy X*& = 0 and €] < |Xu|®™', and Y' be
some functions, then any weak solution u € M l’Q(Q RX) of the following subelliptic PDE system

DX (AapXpu') = X* (£¥' () (5)
is Holder continuous, where, X*¢ is the subelliptic divergence of & and Q is the homogeneous dimension of Q.

Take Agp(x, u, Xu) = F ’(@)éaﬁ. Then the condition Aag(x, u, Xu) ~ |Xu|2 25,5 becomes as F’ (1) ~ %" . There-
fore we have

0-2 . . . . . , .
Theorem 2 Assume that F'(t) ~ t= and N is a compact Riemannian manifold on which the isometric transforma-
tion group acts transitively, then, any weakly subelliptic F-harmonic map u € M"“2(Q, N) is Holder continuous.

This theorem is a generalization of theorems in Barletta and Dragomir (2004) and Hajlasz and Strzelecki (1998).
2. Doubling Spaces

Let (Q, p, 1) be a metric-measure space, B(x, r) a ball of Q with center at x and radius r and nB(x, r) = B(x,nr). If
there exists a constant C; such that

1 (B(x,2r)) < Cqu(B(x,71)), (6)
then we call (Q, p, 1) a doubling space, and C,; a doubling constant.

If Q is an open subset of the Euclidean space, d.. the CC-metric on Q associated with a Hormander family of
vector fields and u the Lebesgue measure, then (Q, d., ) is a doubling space.

Lemma 3 If (Q, p, u) is a doubling space, and r < ry, then we have

u(B(x,r)) > C ( r )Q’ o
H(B(x,r9)) ro
where Q = log, Cy.
Proof. There exists a positive integer n, such that - 5 < % < 2%, i.e. 2"y < ry < 2"r. According to the doubling
inequality, we have
p(B(x,r9)) < p(B(x,2"r)) < (Co)" u(B(x, 1)), ®)
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H(B(x,r)

WBoy) 2 (c @,y - Because 2" 'r < rg < 2"r, we have log, ®* < n < 1+log, **. Hence we have

from which we get

(Ca)™ = (Cpy (THow )
= (€)™ (€
_ (Cd)_l 210g2 % log, Cq

s Ca ©)
= (Ca)! (—)
ro
0
= ()" (1) :
To
The lemma follows from (8) and (9). U
Note that, if Q is a bounded doubling space, taking ry = diamQ in (7) yields
Q
B > D0 (10)

C, (diamQ)R”

Let p be a metric on Q and dQ # 0, and let

r(x) = ——p(x, 0Q). (1)

1000

Then we have

Lemma 4 Let B8 = {B(x, r(x)): x € Q}. If B| = B(x1,r(x1)), By = B(xz,7(x2)) € B, and kB, N [B; # 0 for some k, |,
where k,1 < 1000, then r(x)) and r(x;) are comparable, i.e. there exist constants Cy,C,, depending only on k, 1,
such that

Cir(xy) < r(x1) < Cor(xy). (12)

Proof. Yx € By N By and Yw € 0Q, let r; = r(x;), i = 1,2. Then we have

1
< +
ry < 1000'0( W) < ——— 1000 [o (x1,x2) + p (x2, W)] 03

< — 1000 [kry + Iy + p (x2, W)].
Taking infimums for w, we have

! (kry + Ilr, + 1000 )— ! [k + (1000 + D) 7], (14)

r < 1000 r rn r I )

from which we get r| < :888*}( .
Similarly, we have r; < 11%%%”; r1. Therefore we obtain 11888;,1{ mn<r < 1188(()”11 . O

Lemma 5 There exists a sequence {x; € Qi € I C N}, such that the members of the family of balls
By ={Bi = B(x;, r(x;)} (15)

are pairwise disjoint, and that 3By = {3B;} covers Q.

Furthermore, if u is doubling, then the covering multiplicity of 3By is not more than a positive integer N3 which
depends only on the doubling constant.

Generally, if kBy is a covering of Q for some k > 3, and u doubling, then, the covering multiplicity of kB is not
more than a positive integer Ny which depends only on the doubling constant.

Proof. We can find a family of maximal pairwise disjoint balls By = {B;|i € I C N} in B = {B(x, r(x))|x € Q}, that
is to say that if we add a ball of B to the family B, then there must be two balls which intersect each other. It is
sufficient to check that 38, = {3B;} is a covering of Q.

28



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 5, No. 3; 2013

Use reduction to absurdity. If it were false, there would be an xy € Q, such that Vi € I we have xy ¢ 3B;. Now we
prove that By = B (xg, r(xp)) is disjoint with any member of B, and hence a contradiction is produced since B is
a family of maximal disjoint balls. In fact, Vy € By we have

o, x;) = p(xo, x;) — p(x0,y) = p(x0, x;) — r(x0). (16)

Taking a point w arbitrarily at 0Q, then we have

1 1
< — i i» 17
r(x0) < 1555P (0 W) < 155 LPGR0. ) + pCxi )] (17)
Inserting (17) into (16) yields
(0 %) > (0, ) = (i, ) (1)
PO = To00" 0 ™ To00” M
Take infimums at the two ends for w. We get
999 1 9
Q ). 1
POy, xi) = 1000p(x0’ Xi) = 1000p(x”a ) = 100010()60,)@) r(x;) (19)

Because we have assumed that xy ¢ 3B; for any i € I, we have p(x, x;) > 3r(x;) from which we have

1997

9
—3r(x;) — r(x;) = 1000

PO X 2 1650

o (X)) > r(xi), (20)

which implies that y ¢ B;. Hence Vi € I, By is disjoint with B;, which conflicts to the maximum.
Next, let us prove that the covering multiplication at each point is less than a constant Nj.

Take a point x € Q arbitrarily, and let 8, be a subset of 38, which cover x, i.e.
B, = (3B; € 3Blx € 3B;}.

In the following, we prove that the cardinal number of B, is not more than a positive integer N3 which is dependent
only on the doubling constant. By Lemma 4, for any 3B; = B(x;, 3r(x;)) and 3B; = B(x;, 3r(x;)) € B, there exists
a positive constant C, such that C~!r(x;) < r(x;j) < Cr(x;) since 3B; N 3B; # 0. Hence for all y € B;, we have

p(xi,y) < p(xi, x5) + p(x;j,y)
< 3r(x;) + 3r(x;j) + r(x;) 21
< B +40)r(x),

which shows that B; C (3 +4C)B;. Sowe get |J B; € (3 +4C)B;. Since B;’s are disjoint, we have
3B;eB,

> u(B)) <u(3+40)B)). (22)

3BjeB,
Taking k = [log,(3 + 4C)] + 1, we have 3 + 4C < 2. Hence by the doubling condition, we have

> u(B) <u(@G+400B) <u(2°B) < (Caf p(B). (23)
3BjeB,

Summing both ends for i such that 3B; € B,, we get

1Bd > u(By) <€t Y By,

3B;eB, 3BieB,

from which we have |8,| < (Cd)k Ns. U

Lemma 6 Let B; = B(x;,1;),i = 1,2 be two balls of a doubling space (Q,p, ). If ri = rp, and By N By # 0, then
we have u (By) = u(By), i.e. Au(By) < u(By) < Bu(B») for some constants A and B.
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Proof Let C™'r, < r; < Cr». For any y € B,, we have

p(x1,y) < p(xr, x2) + p(x2,¥) < (ry + 12) + 12 < (1 +20)r, 24

which shows that B, C (1 + 2C)B; C 2By, where k = [log,(1 + 2C)] + 1. From the doubling inequality we have

p(By) < (2B1) < (Ca)f p(By). (25)
Similarly, we have

p(By) < (2°By) < (Co)* p(Bo). (26)
The lemma follows. O

3. Partition of Unity

Let ¢ be a smooth function on [0, co) which satisfies 0 < ¢ < 1, and is equal to 1 on [0, 1] and to 0 on [4/3, c0), B;
asin Lemma 5 and r; = r(x;) = lolﬁp(x;, 09Q).

Taking ¢;(x) = z/t("%—f”), we have

Cilgs, 3y = 1 @ilipanye = 0, 27
and ¢; is Lipschitz continuous, whose Lipschitz constant is Cr; . Then, taking 6;(x) = Zw‘;(kﬁc)’ we have
suppt; C B(x;, 4r), (28)

and 6; is also Lipschitz continuous with the same Lipschitz constant Cri’l. This is proven in following.

Let A; = {jl4B; N 4B; # 0}. For each x € 4B, there exists an [ € A; such that 3B; > x, hence 4B; > x, since {3B}}
covers Q. Apparently, ; ¢x(x) > 1, because ¢;(x) = 1. Hence, taking any points x,y € 4B;, we have
keA;

@i(x) ©i(y)

6i(x) — 6, = -
60 =00 = 1500 7T e
keA; keA;

‘soi(x) 2 ek —@i(y) 2 er(x)
keA; keA;

2 o) X er(y)
keA; keA;

(29)
< e D] @) = 0i) D u0)

keA; keA;

[6:(0) = @] D @) + 9 D [k = ()]

ke keA;

<CNur'p () +C D rlp (),
keA;

where Ny is the covering mutiplicity in Lemma 5. Since r; (k € A;) and r; are comparable by Lemma 4, there
exists a positive constant A, such that r,:' < Ar; !, Applying it to the above inequality, we reach

16:x) = 6:)| < CNar ' p (x,3) + CA Y 17l p (x,3) = Cr ' p (6,3, (30)

keA;

where C = CN4 (1 + A). Hence the Lipschitz constant of 6; is Cr;'.

Let B = B(%,7) € Q with 200B c Q. Fixing y € B, and applying Lemma 5 to Q, = Q\{y}, we get that there exists
a sequence {x,- eQlielcN } such that the members of the family of balls

By = {Bi =B, r)lri= p(xi, 3Qy)} €1V

1
1000
30
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are mutually disjoint and such that 38 = {3B;} is an open covering of Q,, the multiplicity of which is no more
than N;. Let {6 Y}ic1 be the partition of unity subordinated to this covering. Then supp6xy C 3B;, where {B;|i € I} is
the maximal d1s_]01nt family of balls of Q. Apparently, the radius of B; satisfies the following inequality

1
ri = ——p(x;, 0Qy) < ——p(x;, 0Q) = r(x;). (32)

1000 1000

Let I’ C I be an index set of i’s satisfying that supp, N 4B # 0. Note that i € I’ implies 3B; N 4B # (. We have
Lemma 7 Ifi € I', then p(x;, 0Q) > p(x;, ), and hence r; = ﬁp(x,-,y).

Proof. By 200B c Q, we get 2007 < p(&, 0Q), and hence (%) = 10Oop(x 0Q) > é Therefore we have

3B (x;, r(x;)) N 20B (%, 7(%)) 2 3B; N 4B # 0. (33)
From (33) and Lemma 4, one can arrive at

1000 - 20 1000 + 20

T000+3 " =70 = TFagp 3 B

On the other hand, by 3B; N 4B # 0 and (32) we have

p(xi,y) < p(xi, X) + p(X,y)
<3r,+47+ 7 (35)
< 3r(x;) + 5r(X).

Therefore, we have

1
p(xi,y) <3r(x;) +5r(%) < [3+5X —— 003 r(x;)
980
1003 1 (36)
(6 3580 ) 100071 9V
< p(x;, 0Q),
by (34) and (35). O

Lemma 8 Ifi € I, then 3B; C 8B.

Proof. There are two points of 3B; located at two sides of 8 B\4B separately, provided 3B; ¢ 8B, because 3B;N4B #
0. Letting the two points be x, z respectively, then we have 6r; > p(z, x) > 47.

Let x € 3B; N 4B, then we have p(x,y) < p(x, X) + p(X,y) < 57, and hence 6r; > 47 > 5,o(x y), i.e. p(x,y) < —r,
On the other hand, by Lemma 7, we get
px,y) = p(y, x;) = p(xi, x) > 1000r; = 3r; = 997r;, (37)

which is a contradition. U
Lemma 9 In doubling space, we have 1 (B (v, p(x,y))) = u (3B;), fori € I' and x € 3B; N 4B.

Proof. Note p(x,y) < p(x, X) +p(X,y) < 57. On the other hand, we have 7 < Cr; by Lemma 4. Hence p(x,y) < C'r;.
Then by Lemma 7 we get

(o(x,y) = p(y, x;) = p(xi, x) = 1000r; = 3r; = 997r;. (33)
Therefore r; ~ p(x,y). Because x € B (y, p(x,y)), we have B(y, p(x,y)) N 3B; # 0. So we obtain u (B (y, p(x,y))) =
4 (3B;) by Lemma 6. O

Lemma 10 Let i € I'. If x; € B(y, 25")\B(y, 2572) for some integer k, then we have 3r; =~ 2%, 3B; c B(y, 2¥), and
1(3B)) = u(B(y,2%)) by the doubling inequality.

Proof. If i € I, then we have ri = mp(x,, y) according to Lemma 7. Hence we have 272 < p(x;,y) = 1000r; <
2¢=1 which implies that —— 1000 2K 2 < 3r, < m 2¢=1 and hence 3r; ~ 2*. For any x € 3B; we get

3
p(x,y) < p(x, x) + p(x;, y) < 3r; + 2! < 1006 2Ry ok <0k (39)
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therefore 3B; C B(y, 2).

On the other hand, B(x;,3r;) € B(y, 2%) we obtain that B(x;,3r;) N B(y, 2Ky # 0. Then by Lemma 6 we get
u(3B;) =~ u(B(y, 2%)) because 3r; ~ 2~ . O

Lemma 11 If 252 > 97, then no i € I' such that x; € B(y, 25" ")\B(y, 2K2).

Proof. If 2=2 > 97, then for any z € 8B, we have
p(y,2) < p(y, %) + p(%,2) < F + 8F = 9F, i.e. z € B(y,97), (40)

from which we get 8B c B(y,97) C B(y, 252y,

By Lemma 8, if there were i € I’, we would have 3B; C 8B, and hence 3B; C B(y, 2%=2), which is a contradiction
to x; € B(y, 25" H\B(y, 272). O

In the following, we need the estimates of Subelliptic Green functions

Lemma 12 (Sanchez-Calle, 1984) Let G be a subelliptic Green function, then we have

IG(x, y)| < Cp(x,y)*u (B (v, p(x, )",
IXG(x,y)| < Co(x,y)u (B (y,p(x, )", 41)
|X*G(x.y)| < Cu (B (. px.y)) ™"

Using it, we can obtain

Lemma 13 Take n € C;'(Q), such thatn =1 on 2B, 7 = 0 outside 4B, and |Xn| < C¥~'. Then, fori € I', we have

X3 (n(06, (X2 G(x, )| < Cu(B (v, px, 1)) (42)
ify € B.

Proof. (i) |Xn(x)| < Cp(x,y)™! for y € B.

Because 7 is not vanish only in 4B, we consider x € 4B. For y € B, we have p(x,y) < 57, and hence |Xn| < C7! <
Cp(x, ).

(i) [X&(x)| < Cp(x,y)"' forie I’ and y € B.

We only consider x € 3B; since supp#? C 3B;. If i € I, then supp@ N 4B # 0, and hence 3B; N 4B # 0. Now we
prove 7! < Cp(x,y)~". If this is true, then by (30) we have | X&' (x)| < Cr;' < Cp(x,y)~". By Lemma 8 we have

3B; C 8B, and by Lemma 7 we have r; = 10 (x;, ). Therefore, we have

p(x,y) < p(x, x;) + p(xi, ) < 3r; + 1000r; = 100373, (43)

from which we have rlT1 < Cp(x, y)’l.

Taking use of (i), (ii) and the estimates of Green fuctions (see 41), we get

X (08 (OXAGx,»)| < CuCB (v, plx, ). (44)

The proof of (42) is complete. g
4. Several Important Inequalities
4.1 Fractional Integration Theorem

Assume that (Q, p, 1) is a metric measure space where  is a Borel measure on Q such that each ball has a positive
measure. For a bounded open subset O € Q, p > 0,0 > 1 and € > 0, define

i I/p

Jyew = ), zm(f _ Igl”dﬂ) , 4s)
2i<20diamO B(x,2%)

where Jﬁ, = ;ﬁ fA. The following Fractional integration theorem is obtained by Hajlasz and Koskela (1995):
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Lemma 14 Suppose that u is a doubling measure on V. = {x € Q: p(x,0) < 2o0diamO}, and that there exist
constants b, s > 0 such that for any x € O and r < 20-diamO, the following inequality holds:

r N
u(BGx. 1) 2 b( ) (o) (46)
diamO
Ife>0and 0 < p < g < s/g, then we have
T2 8llLg 0 < C(diamO)*u(0) " lIgl o) (47)

where, q* = sq/(s — eq) and C = C(g, 0, p,q,b, 5,Cy).
4.2 Subelliptic Sobolev Inequality and Poincare Inequality

The following subelliptic Sobolev inequality can be found in many papers (see for example Hajlasz & Strzelecki,
1998):

Lemma 15 Let the homogeneous dimension of a bounded domain Q C R™ be Q, and 1 < p < Q, then there exists
a constant C > 0, such that for each ball B = B(x,r) C Q, the following inequality holds:

1/p* 1/p
( f e uB|P*) < Cr( f IXulp) , (48)
B B

where i is the Lebesgue measure, p* = Qp/(Q — p).
Especially, taking p = QQ—+21 in (48) yields p* = 0 and

L o+l
2 2 2
(Jc|u—u3|Q2)Q SCr(JCIXulQQ“)Q . (49)
B B

The subelliptic Sobolev inequality implies the following Poincare inequality (see Hajlasz & Strzelecki, 1998;

Jerison, 1986):
flu—ugl” < Cr”leul”. (50)
B B

Lemma 16 We have

5. Dual Inequality of Hajlasz-Strzelecki Type

Let Q C R™ be a bounded domain, u: Q — S" a weakly subelliptic Q-harmonic map. Denote V; = |Xu|?~2Xu;.
Because ), ulz = 1, one can get )’ u;V; = 0. Therefore, we have

Vi= Z u(w Vi — u;Vy).
Leting E;; = u;V; — u;V; € L2927V then X*E;; = 0 (see Hajlasz & Strzelecki, 1998), and

X (1IXul®2Xw) = > X" (wEy).

Here, X*¢ is the subelliptic divergence of &, and Xu is the subelliptic gradient of u.
For a regularity of such a map u, the following dual inequality is established in (Hajlasz & Strzelecki, 1998):

Lemma 17 (H-S dual inequality, Hajlasz & Strzelecki, 1998) For any i,l € {1,2,--- ,n}, any ball B with200B C Q,
and each function ¢ € M(I)’Q(B), there holds the following inequality:

] f X Es)0edx| < CIXull®, o 1Xl o,
B

where C is a constant independent of B.

In order to discuss the regularity of weak solutions to more general PDEs in this paper, we need the following dual
inequality of H-S type:
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Lemma 18 (dual inequality of H-S type) Let B = B(X, 7) be a ball with 2008 C Q, and & = ¥, &,X, a vector field
on Q depending on x, u, Xu, which satisfies that

€l < C1Xul¢!, X*¢=0. (51)

Ifp e W(;’Q(B, RX) and Y is RX -valued function defined on RX smoothly, then there exists a constant C independent
of B, such that

|| o @ om0 < clxul, ., X6l (52)

where u € WH2(Q, RX) and (-, -) is the inner product of RX.

Proof. Take n € C;°(Q), such thatp = 1 on 2B, 1 = 0 outside 4B, and |Xn| < C7~!. For any ¢ € WS’Q(E‘, RX), we
have

009 = [ 3 X605 9%3000, (53)

IT3RL]

where Xj stands the derivative in along Xz and G(x, y) is the Geen function. Therefore, we have

L X (Y o)) (%), ¢(x)) = jl; X" (Y o w)é) (x), n(x)p(x))
= f X" (Y o)) (x), n(x)¢p(x)) (54)

- [ [ {x @onn e Y, x600%00) avds

“ 99

Here and below Xg stands the derivative in “y” along X3. Set

Ap(y) = fX (Y 0 &) (nOXZG(, ). (55)

Then we have

[ @owo.m= [ 3 (a0 5300) . (56)

Fix a point y € B, and let {Gly Jier be a partition unity of Q, = Q\{y} subordinated to the above covering. Then
suppOf C 3B;, where {B;|i € I} is a maximal disjoint family of balls of Q,.

Let x( be an arbitrary point in Q and Yy = Y(u3p,) where uzp = Jg g U By the assumption X*¢ = }} X &, = 0, we
have

A= f X (Y 0 wé) (OB OXGE,¥)

iel

=2, f33 X (Y o u = Y0) ) ()8, (VX3G(-,y)
i€l i (57)
=Zf DXL 0 u=Yo)£] OB XSG, y)

iel

=2 f [Y @) = Yatsp)] Y X OB OXGC0)]

iel

Because suppn C 4B, we choose I’ C I to be a set of index i’s which satisfy that suppé; N 4B # 0. Take I, C I’, the
index i in which satisfies that x; € B(y,2¥"")\B(y, 2¢"%). Then I’ is the disjoint union of all /;. Hence we have

Ag(y) = ZZ f [¥ (u()) - Y(u5,)] Zm )Xo OO OXGC, )]

iel]

= Z Zf [Y (u(-)) = Y(usp)] Zfa()x n()G“()XyG( y)]

26=2<9F i€l}

(58)
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where the second equality holds because of Lemma 11.

Applying (42) to (58), and taking use of Lemma 9, we have

wolse ¥ [ G o Y O = Y

2k=2<9F i€l]
<C ), ZJE ¥ () = Y (s, )| €]
2k-2<97 i€l]
<¢ Z Z(JE |Y(”('))_Y(M3Bi)|Q) (JC |§|(.>21)
2k-2<97 iel; 3B,
<CswpIDY| ), 25(f7|m>—uw| )ztf mﬁl)y
2k2<9F i€l 3B;

0+1

0’1
2\ 2\
< Csup|DY| )’ Zr,-(f |Xu|QQ+1) (JC |Xu|5+1)
3B; 3B;

U-2<9F el

0+1

2\ 0
< Csup|DY| Z Zr(f |Xu|QQ+I) ,

2k=2<9F i€l

(59)

where we have used Sobolev Inequality (49). If x; € B(y, Zk’l)\B(y, 2%-2) for some integer k, then from Lemma 10

we get

o+l o+l
0>\ ¢ 0>\ ¢
r,-(f |Xu|Q+1) sczk(f |Xu|Q+1) )
3B; B(y,2)

(60)

Furthermore, let N be the number of index i € I’ such that x; € B(y, 2¢"1)\ B(y, 2=2) has a upper bound depending

only on p and Q.
Substituting (60) into (59) yields

0+1
¢ A
Aa(y)] < cZZz (Ji(m |Xu|0 1) <C

i€l}

0+1

02\ ¢
2k (fB() " |Xu|Q+l ) — C 2, 8B (|XMIQ) (y)

26<2.2-16F o

Take

* Q Q D
—lLo=2¢=—5g=1 p=—=— 5=0, 0=8B
3 o T=0-11 Pt Q
From fractional integration formula (47) we have (for O = 8B, the conditions of Lemma 14 are satisfied):
23,u> 0
PO X < Clixul?,, .

Q+1 LQ/leU(gB)
where V = {x: p(x, 8B) < 2-2-167) = 72B. Hence we have

lAallLoro-n(sp) < C”X””LQ(nB)

from which wed get
< ClIXul®

1Al 0ro- n(B) < 1Al 0rco- n(sB) = C||Xu||

L2(72B) L2(100B)

Applying (65) to (56), we get

[ @own.m= [ 3 (a0 5300)

S Z “Aﬁ“LQ/(Q—w(g) ||X¢||LQ([;)
<C IIXullLQ(IOOB) Xl o)
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(62)

(63)

(64)

(65)

(66)
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which is we need. ]
6. Regularity of Weak Solutions to a Subelliptic PDE System of Divergence Type-Proof of Lemma 1

For each x( € Q, we take a small ball B,(xy). Let 1 be a cut-off function which is 1 on B,(xo), and is zero outside
B»,(x0), and furthmore |X7| < Cr~'. Let ¢ = n(u — u»,), where u,, = m fBz,(xo) udx = Jch,-(xo) udx. Testing (5)

by ¢ yields
fB( ) (DX (AupXpu) ,v) = fB( )(ZX;(fa,,»Y,-ou),w). 67)

Applying (Lemma 18), the dual inequality of H-S type to the right hand side of (67) yields

RHS < G, ”XMHLQ(Bzoo (x0) ”XWHLQ(Bz,(xo)) 68)
<G ||X1ft||LQ(B2O0 con X tllLesy, x0)) -

Then, applying the Poincare inequality (50) to estimate the left hand side of (67), we have

LHS = f ZAaﬁ <XﬁM,Xalﬁ>
Bar(x0)
= f ZA“ﬁ Xpu, Xou 77 + f ZA(,,; (Xﬁu, u— u2r> Xon
Bor(x0) Ba,(x0)
>C; f IXul@ - f ZAQI; | X |Xﬁu| |t — uoy|
B:(x0) Bsr(x0)
2C [ - e ) I ol ol - |
B,(xo) Ty,

zcgf IXMIQ—CSr‘lf X2 i = uyyl
B, (x0) Ty

0-1

0
zc3f IXul® — Csr™! (f |Xu|Q) (f |u—u2r|Q)
B,(x0) T, B, (x0)

0-1

o
>Cy f |Xu|Q—C6( f |Xu|Q) ( f |Xu|Q) ,
B, (x0) Ty, Bo(x0)

1

where T, = By, (x9) — B,(xo). Therefore we get
o-1
o
f IXul? <C ( f IXMIQ) ( IXMIQ) ( IXuIQ) ( f |Xu|Q)
B, (x0) T, Bo(x0) Baoor(xo) By (x0)

o-1 1 L
o 0
<C ( f 1Xul? - f |Xu|Q) ( f IXulQ) +c( f |Xu|Q) ( f |Xu|Q) (70)
Bo(x0) B:(xo) Ba(x0) Baoor(x0) Bay(x0)

o-1 1 0O+l

o 0
<C ( f |Xul® - f |Xu|Q) ( f |Xu|Q) + c( f |XM|Q)
Baoor(x0) B, (x0) Baoor(x0) Baoor(x0)

Let M (xg,7r) = fB () |Xu|Q Then, there exist positive numbers ry and A € (0, 1), which are independent of xj,
such that for all » < ry the following inequality holds

(69)

Q=

Q=

fQI—
Ql—

M (xp,r) < AM (x0,200r) . (71)

In fact, if the inequality were not true, there would be a positive r < ry, such that M (xg, r) > AM (xy, 200r) for all
ro > 0and A € (0, 1). Hence we have

AM (x0,2007) < C (1 = )T M (x0,200r) + CM (x0,200r) % . (72)
For A € [1/2, 1) and positive number ry small enough, we have
1
5 <Ca- D@V 1 CM (x,200r)2..
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for arbitrararily small positive number r. Letting A tend to 1, and r tend to O yield a contradiction.

Then, by a standard calculation from (71) we obtain me " |Xul? < Cr* for any x; € B,,(x0) and any r < ro, which
implies that u is locally Holder continuous (see Hajlasz & Strzelecki, 1998).

7. Regularity of Weakly Subelliptic F-Harmonic Maps-Proof of Theorem 2
In this section, we deduce the regularity of weakly subelliptic F-harmonic maps.

Let Vi1, - - - , vk be a local field of normal frame of N in RX, and A¥(X, Y) = X(v;) - Y is the second fundamental
2

form of N in RK respect to v. Let Axu =X, (F ! (@) Xau) be the F-Laplacian of u. Then the Euler-Lagrange

equation of weakly subelliptic F-harmonic maps can be written in the following form:

2
Avu=F (%)A(u)(Xu,Xu), (73)
i.e. 5 )
>x; (F’('X”| ) ) F’('Xgl )A(u)(Xu,Xu), (74)
where )
A(u)(Xu, Xu) = Z ZAk(u)(XQu,Xau)(vkou). (75)
k=n+1 «a

For example, if N = §" ¢ R™!, then the Euler-Lagrange equation is
X 2
Afu=—F' (' ;" )lX Pu. (76)

On N, we call a vector field K is of Killing, if (Z,V,K) = 0 for any vector field Z, or equivalently (Y, V,K) +
(Z,VyK) = 0 for any vector fields Y, Z, where (-, -) is the Riemannian inner product of N.

Lemma 19 Let u € W"2(Q, N) be a weakly subelliptic F-harmonic map, K a Killing vector field of N, and
£=F (1Xuf /2) Z (K o u, X,u) Xu.

Then X*¢ = 0, i.e. 3, X, (F' (1Xul® /2)(K o u, X,u)) = 0

Proof. For ¢ € Cy(Q,R), setyy = pK ou € Wé’Q(Q, RX). Applying ¢ to the Euler-Lagrange Equation (73), we
have

0= f{A?u v) = f ZX F’ |Xu|2/2)X u) ¢Kou>
f Z F' (1XuP /2) X, Xo (9K o ) (77)

_ ’ 2 ° ’ 2 °
= fg Z (F' (1Xul® /2) Xo1t, (Xo®) K 0 u) + fg Z(F (IXuP /2) Xou, $Xo (K 0 ).

Since K is a Killing field, we get Y, (Xou, X, (K o w)) = Y, (Xqu, Vx,,K) = 0, and hence the last integral vanish.

Therefore, we have
0= [ Y {F (el 2) XK o) o6 = [ (x00.

The follwing lemma is proven by Helein (1991a).

Lemma 20 Let N be a compact Riemannian manifold where the isometric transformation group acts transitively.
Then, there exist vector fields Yi,--- ,Y, and Killing fields Ky, --- , K, on N, such that for any vector filed V, we
have

V=(K,V)Y, +---+(Kq,v>yq

o-1 . s
From now on, we assume that F’(f) ~ t2 . The range of index i is from 1 to q.
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Take V,, = X,u in Lemma 20. Then we have

Xou = Z (Kiou,Xou)Yiou.

Let K,; = (K; o u, Xou). Then we get

F' (IXuP? /2) Xou = Z F' (IXuP /2) Ko iY; o u. (78)
Because u is weakly subelliptic F-harmonic, by Lemma 19, we have
DX (F7 (1XuP /2) Koi) = 0. (79)
Le.
> Xi£ai =0, (80)

where &,; = F’ (IXuI2 /2) Ko

Letting & = > é0.iXe = 2 F' (|Xu|2 /2) (K; o u, Xqu) X, then we have X*¢; = 0. Apparently, |£,,] < C|Xul@".
From (78) one has

Z X; (F' (1XuP /2) Xqu) = Z X (éasYiou). (81)
From this and Lemma 1, we prove Theorem 2. O
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