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Abstract

In this paper we discuss the integration of highly oscillatory univariate and multivariate functions. Based on the

recursive formulation of the Tau method we develop numerical quadratures that achieve a high degree of accuracy

when the frequency in the integrand takes moderate as well as very large values. With our procedures the integral

is obtained in terms of the value of the function and its derivatives at the boundary points. The accuracy of our

results are confirmed through numerical examples.
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1. Introduction

Consider the integral

I[ω] =

∫ b

a
f (x)eiωg(x)dx, (1)

where f (x) and g(x) are smooth functions in an interval [a, b] and ω is a positive real number. By taking the real

and the imaginary parts of (1) we obtain integrals with trigonometric kernels:

Re(I) =

∫ b

a
f (x) cos(ωg(x))dx, Im(I) =

∫ b

a
f (x) sin(ωg(x))dx.

The most immediate candidate for numerically approximating integral (1) might be the standard Gauss-Christoffel

quadrature (Davis & Rabinowitz, 1980), where we interpolate the integrand at distinct nodes c1 < c2 < ... < cν in

[a, b] by a polynomial p(x) of a prescribed degree ν − 1, and approximate

I[ω] ≈
∫ b

a
p(x)dx. (2)

When the frequency ω >> 1 is large, the integrand in (1) oscillates very rapidly and I[ω] is called highly oscil-
latory. Integrals of this form arise in a wide range of science and engineering such as quantum chemistry, image

analysis, acoustics, electrodynamics, computerized tomography and fluid mechanics etc. The evaluation of highly

oscillatory integrals was considered as a challenging problem in the numerical analysis and computational physics.

Unfortunately, if ω >> 1 the accuracy of approximation (2) obtained by the standard quadrature deteriorates

rapidly due to the presence of sharp variations throughout [a, b]. The reason behind this deterioration lies in that

such methods fail to detect the sharp oscillations exhibited by the integrand unless the degree of its interpolant

p(x) grows with the frequency. The following numerical experiment shows that while the exact value of the highly

oscillatory integral decays like O(ω−1), the Gauss-Christoffel quadrature produces approximate results of O(1).

Consider the integral

I0[ω] =

∫ 1

0

(3x2 + 2x + 1)eiω(x3+x2+x)dx. (3)

We approximate I0[ω] for frequencies 100 ≤ ω ≤ 6000 using the 20-point Gauss-Christoffel quadrature; the

results are plotted in Figure 1-right. On the other hand, using integration by parts we find the exact value of I0[ω],

I0[ω] = − i(−1 + e3iω)

ω
= O

(
1

ω

)
,
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which is shown in Figure 1-left for the same frequencies. It is clearly seen from Figure 1 that, when ω is large, the

approximate values of I0[ω] are of O(1) whereas the exact values of I0[ω] behaves as O(ω−1).
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Figure 1. [left] Plot of (ω, I0[ω]) where I0[ω] given by (3) is obtained by integration by parts. [right] Plot of

(ω, Ĩ0[ω]) where Ĩ0[ω] ≈ I0[ω] using the 20-point Gauss-Christoffel quadrature

This test suggests that any numerical method of a practical value must be at least of order O(ω−1). The first

known numerical quadrature with this order was developed in Filon (1928). Therein, Filon presented an efficient

method for computing integrals of the form (1) with g(x) = x. His approach consists of dividing the interval

into 2n subintervals of size h, and then f (x) is interpolated at the endpoints and midpoint of each subinterval by

a quadratic function. In each subinterval the integral becomes a polynomial multiplied by the oscillatory kernel

sinωx, which can be integrated in a closed form. This method was generalized in Luke (1954) by using higher

degree polynomials in each panel, again with evenly spaced nodes. The computation of the Filon approximation

rests on the ability to compute the moments ∫ b

a
xkeiωxdx.

In order to achieve a higher accuracy, Iserles and Nørsett (2005) suggested the approximation of f (x) by its Hermite

interpolant by choosing a sequence of nodes {x1, x2, ..., xν} associated with a sequence of multiplicities {mk; k =
1, ..., ν}, where x1 = a and xν = b. With this choice, and in the absence of stationary points, (ξ is stationary with

order r if g( j)(ξ) = 0 for j = 0, 1, 2, ..., r but g(r+1)(ξ) � 0), the error is of O(ω−s−1) where s: = min{m1,mν}.
Another efficient method to approximate (1) that was described in Iserles and Nørsett (2005) is the truncated

asymptotic expansion of I[ω]:

I[ω] ∼
∞∑
j=0

a j

ω j+1
,

where the coefficients a j depend on the function and the derivative values of f (x) and g(x) at the points a and b
(Stein, 1993). The unknown coefficients {a j} depend on the moments

∫ b
a xkeiωg(x)dx, and therefore they can be

obtained explicitly if the moments are known.

Other numerical methods for approximating (1) include quadratures based on the analytic continuation and numer-

ical steepest descent method (Huybrechs & Vandewalle, 2006) and the exponentially fitted quadratures (Ixaru &

Vanden Berghe, 2004; Van Daele, Vanden Berghe, & Vanden Vyver, 2005) where the weights and the nodes of the

quadratures depend on the frequency of the problem.

Many of the above mentioned methods, in particular the uniform asymptotic expansion and the Filon approxima-

tion, requires an exact computation of the moments. For the particular oscillator g(x) = x, these moments can be

obtained exactly, either through integration by parts or by using the incomplete Gamma function Γ (Abramowitz

& Stegun, 1965). However, for irregular oscillators g(x) the values of the the moments

∫ b

a
xkeiωg(x)dx

are not necessarily computable in a closed form and therefore the Filon-type and the asymptotic methods are not

applicable. Thus it is necessary to find alternative techniques that are free of the moments.
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The first numerical method that approximates highly oscillatory integrals without using moments was developed

in Levin (1996). Levin’s approach consists in finding a function F(x) such that

d
dx

[
F(x)eiωg(x)

]
= f (x)eiωg(x).

Expanding out the derivatives, we find that F(x) satisfies the non oscillatory differential equation

(DF)(x) := F
′
(x) + iωg′(x)F(x) = f (x). (4)

So, once F(x) is obtained we immediately gain

I[ω] =

∫ b

a
f (t)eiωg(t)dt = F(b)eiωg(b) − F(a)eiωg(a). (5)

Thus, the problem of evaluating the definite integral I[ω] turns out to be a question of approximating the solution

F(x) of the differential Equation (4). In the absence of the stationary points, F(x) is smooth and, according to

Levin (1996), Equation (4) can be approximated efficiently by collocation. The latter belongs to a class of powerful

techniques that use a global approach called spectral methods. In this paper we will consider solving (4) by another

spectral technique called the Tau method (see Ortiz, 1969). Unlike the collocation method, the recursive nature of

the Tau method permits to express the approximate value in a quadrature form, and this feature allows us to derive

integration procedures competitive with the present techniques.

This paper is organized as follows: In Section 2 we recall the main features of the Tau method and we describe how

to construct the Tau approximant in terms of a special polynomial basis called canonical polynomials. Section 3

is devoted to present Tau-based quadratures that estimate univariate oscillatory integrals. The case of multivariate

integrals is discussed in Section 4. Numerical examples confirming our results are provided in the last section.

2. Integration with the Tau Method

The basic idea of the Tau method is to perturb the right hand side of Equation (4) in a way that the resulting per-

turbed equation can be solved analytically. More precisely, we introduce in the right hand side of (4) a perturbation

term HN(x) such that the exact solution FN(x) of the equation

(DFN)(x) := F
′
N(x) + iωg

′
(x)FN(x) = f (x) + HN(x), (6)

can be obtained in a closed form. Here HN(x) is a polynomial of degree depending on a prescribed N ≥ 1 and

whose the coefficients are adjusted in a way that FN(x) is found analytically. Usually HN(x) is chosen as a linear

combination of the Chebyshev or Legendre polynomials. This is due to the fact that the equioscillatory behavior

of those polynomials leads to a uniform distribution of the error throughout the interval of integration (see Ortiz,

1969). But in our context, since the main contribution to the value of I comes from the area of the portions

neighboring the end points of [a, b] (as explained in Huybrechs & Vandewalle, 2006), it is convenient to adopt a

choice for HN(x) that forces the differential Equation (6) and its first N − 1 derivatives to be exact at x = a and

x = b. Of the forms that enjoys this feature is

HN(x) =

⎛⎜⎜⎜⎜⎜⎜⎝
r∑

j=0

τ j(x − a) j

⎞⎟⎟⎟⎟⎟⎟⎠ (x − a)N(x − b)N , (7)

where {τ j, j = 0, 1, 2, ..., r} are free unknown parameters that are computed simultaneously with FN(x) and r is

fixed as explained later. Clearly (6) and (7) imply that dk

dxk [(DFN)(x) − f (x)]|x∈{a,b} = 0 for k = 0, 1, 2, ...,N − 1 as

desired. For simplicity, let us take a = 0 and b = 1. Then (7) becomes

HN(x) =

⎛⎜⎜⎜⎜⎜⎜⎝
r∑

j=0

τ j x j

⎞⎟⎟⎟⎟⎟⎟⎠ xN(x − 1)N =

r∑
j=0

τ j

⎡⎢⎢⎢⎢⎢⎣ N∑
i=0

Ci
N xN+i+ j

⎤⎥⎥⎥⎥⎥⎦ ; Ci
N =

N!

i!(N − i)!
. (8)

The Tau method procedure consists of expressing FN(x) in terms of a special polynomials basis {Qk(x); k ≥ 0}
called canonical polynomials basis. These are defined as follows: For each k ∈ N, let Q̃k be the exact solution of

the differential equation

(DQ̃k)(x) = xk. (9)
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From Ortiz (1969), when the coefficients of the differential operator D are polynomials, the set of functions

{Q̃k(x); k ≥ 0} are generated by a self starting recursive formula. So let us consider first the case of f (x) and

g′(x) being polynomials of degree μ and ν respectively,

f (x) =

μ∑
j=0

β j x j and g′(x) =

ν∑
j=0

α j x j.

Then, for all k ∈ N,

Dxk = kxk−1 + iω
ν∑

j=0

α j x j+k = kDQ̃k−1 + iω
ν−1∑
j=0

α jDQ̃ j+k + iωανxν+k,

and since D is linear, we have

D[xk − kQ̃k−1 − iω
ν−1∑
j=0

α jQ̃ j+k] = iωανxν+k.

Comparing the latter with (9) we find that

Q̃ν+k(x) =
1

iωαν

⎡⎢⎢⎢⎢⎢⎢⎣xk − kQ̃k−1(x) − iω
ν−1∑
j=0

α jQ̃ j+k(x)

⎤⎥⎥⎥⎥⎥⎥⎦ , k ∈ N.

With this formula we can generate all the Q̃k’s except possibly {Q̃0, Q̃1, . . . , Q̃ν−1}. For example, if k = 0 we get

Q̃ν(x) =

(
1

iωαν

)
−
ν−1∑
j=0

α j

αν
Q̃ j(x).

Therefore, each Q̃k(x) can be represented as

Q̃k(x) = Qk(x) +

ν−1∑
j=0

ρk, jQ̃ j(x), (10)

where {Qk; k ∈ N} are called canonical polynomials and generated by the recursion

Qk(x) = 0, k = 0, 1, 2, ..., ν − 1,

Qν+k(x) =
1

iωαν

⎡⎢⎢⎢⎢⎢⎢⎣xk − kQk−1(x) − iω
ν−1∑
j=0

α jQ j+k(x)

⎤⎥⎥⎥⎥⎥⎥⎦ , k ∈ N. (11)

and {ρk,l; k ∈ N} are sequences of complex numbers defined as

ρk,l = δ
l
k (Kronecker’s symbol) for k = 0, 1, 2, ..., ν − 1 and l = 0, 1, 2, ..., ν − 1

ρν+k,l =
1

iωαν

⎡⎢⎢⎢⎢⎢⎢⎣−kρk−1,l − iω
ν−1∑
j=0

α jρ j+k,l

⎤⎥⎥⎥⎥⎥⎥⎦ , k ∈ N and l = 0, 1, 2, ..., ν − 1. (12)

Now, since D is linear, the exact solution of (6) can be formally expressed in terms of {Q̃k} as follows:

FN(x) =

μ∑
j=0

β jQ̃ j(x) +

r∑
j=0

τ j

⎡⎢⎢⎢⎢⎢⎣ N∑
i=0

Ci
N Q̃N+i+ j(x)

⎤⎥⎥⎥⎥⎥⎦
=

μ∑
j=0

β j[Qj(x) +

ν−1∑
l=0

ρ j,lQ̃l(x)] +

r∑
j=0

τ j

⎡⎢⎢⎢⎢⎢⎢⎣
N∑

i=0

Ci
N[QN+i+ j(x) +

ν−1∑
l=0

ρN+i+ j,lQ̃l(x)]

⎤⎥⎥⎥⎥⎥⎥⎦
=

μ∑
j=0

β jQ j(x) +

r∑
j=0

τ j

⎡⎢⎢⎢⎢⎢⎣ N∑
i=0

Ci
N QN+i+ j(x)

⎤⎥⎥⎥⎥⎥⎦ (13)

+

ν−1∑
l=0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μ∑

j=0

β jρ j,l +

r∑
j=0

τ j

⎛⎜⎜⎜⎜⎜⎝ N∑
i=0

Ci
NρN+i+ j,l

⎞⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ Q̃l(x). (14)
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The {τk; k = 0, 1, ..., r} are found then by equating the coefficients of {Q̃l(x); l = 0, 1, 2, ..., ν − 1} in (14) to 0,

r∑
j=0

τ j

⎛⎜⎜⎜⎜⎜⎝ N∑
i=0

Ci
NρN+i+ j,l

⎞⎟⎟⎟⎟⎟⎠ = − μ∑
j=0

β jρ j,l; l = 0, 1, 2, ..., ν − 1. (15)

Now if we choose r = ν − 1, Equation (15) becomes a square algebraic system consisting of ν equations with ν
unknowns {τk; k = 0, 1, ..., ν − 1}, and hence the Tau method approximation FN(x) will be given by (13)

FN(x) =

μ∑
j=0

β jQ j(x) +

ν−1∑
j=0

τ j

⎡⎢⎢⎢⎢⎢⎣ N∑
i=0

Ci
N QN+i+ j(x)

⎤⎥⎥⎥⎥⎥⎦ , (16)

which is a polynomial of degree ≤ 2N − 1.

3. Construction of Algorithms

Once the approximate solution FN(x) to F(x) is obtained as in (16), we go back to the integral (5), and write

I[ω] =

∫ 1

0

f (t)eiωg(t)dt ≈ FN(1)eiωg(1) − FN(0)eiωg(0) ≡ IN[ω]. (17)

We can summarize now all the necessary steps required to compute IN[ω].

3.1 Algorithm TQ(N)

1) Store {αi}νi=0
and {βi}μi=0

.

2) Form {Qk(x)}Nk=0
using (11).

3) Form {ρk,l; k = 0, 1, 2, ...,N; l = 0, 1, 2, ..., ν − 1} using (12).

4) Form Al, j =
∑N

i=0 Ci
NρN+i+ j,l, for l, j = 0, 1, 2, ..., ν − 1.

5) Form Bl = −∑μ
j=0
β jρ j,l, for l = 0, 1, 2, ..., ν − 1.

6) Compute {τ j}ν−1
j=0

through solving system (15):
∑ν−1

j=0 Al, jτ j = Bl; l = 0, 1, 2, ..., ν − 1.

7) Compute FN(1) and FN(0) using (16).

8) Compute IN[ω] = FN(1)eiωg(1) − FN(0)eiωg(0).

If f (x) and g′(x) are not polynomials, then, due to their smoothness, they can be approximated by polynomials

with high degrees of accuracy. In order to be consistent with the form of HN(x) given in (7) we adopt the truncated

two-point Taylor series expansions (see Davis, 1975):

P2N−1(x) = (x − a)N
N−1∑
k=0

Bk

k!
(x − b)k + (x − b)N

N−1∑
k=0

Ak

k!
(x − a)k, (18)

where

Ak =
dk

dxk

[
G(x)

(x − b)N

]
x=a

and Bk =
dk

dxk

[
G(x)

(x − a)N

]
x=b
,

with G(x) standing for g′(x) or f (x). In terms of {xk; k ∈ N} we can write

g′(x) ≈
2N−1∑

j=0

α j x j and f (x) ≈
2N−1∑

j=0

β j x j. (19)

Thus we apply Algorithm TQ(N) with μ = ν = 2N − 1.

For the special cases where N = 1 and N = 2, Algorithm TQ(N) takes the form of quadratures as explained next:

3.2 Tau Quadrature TQ(1)

Let N = 1, a = 0 and b = 1. Then μ = ν = 2N − 1 = 1 and (18) reduces to

P1(x) = xG(1) − (x − 1)G(0)
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which gives, in accordance with (19),

g′(x) ≈ (g′(1) − g′(0))x + g′(0) ≡ α1x + α0 when G = g′,
f (x) ≈ ( f (1) − f (0))x + f (0) ≡ β1x + β0 when G = f ,

where

α0 = g′(0), α1 = g′(1) − g′(0), β0 = f (0), β1 = f (1) − f (0).

The recursions (11)-(12), in turn, become

Qk+1(x) =
1

iωα1

[
xk − kQk−1 − iωα0Qk

]
for k ≥ 0 with Q0 = 0,

ρk+1,0 =
1

iωα1

[−kρk−1,0 − iωα0ρk,0
]

for k ≥ 0 with ρ0,0 = 1.

In particular,

Q1(x) =
1

iωα1

, ρ1,0 = −α0

α1

,

Q2(x) =
1

iωα1

[
x − α0

α1

]
, ρ2,0 = − 1

iωα1

+

[
α0

α1

]2

.

In this case we have r: = ν − 1 = 0 and therefore the Tau perturbation must contain one free parameter τ0 only,

H1(x) = τ0x(x − 1) = τ0(x2 − x),

and the linear system (15) reduces to a single equation with one unknown τ0,

β0ρ0 + β1ρ1 + τ0(ρ2 − ρ1) = 0,

which gives

τ0 =
β0ρ0 + β1ρ1

ρ1 − ρ2

.

Substituting τ0 in F1(x) given by (16) we arrive to

F1(x) = β0Q0 + β1Q1 + τ0(Q2 − Q1) =

[
1

iω
f (1) − f (0) − iω f (0)g′(1)

g′(1) − g′(0) − iωg′(0)g′(1)

]
+

[
f (0)g′(1) − f (1)g′(0)

g′(1) − g′(0) − iωg′(0)g′(1)

]
x.

Thus the integral I[ω] can be approximated by the quadrature

I[ω] :=

∫ 1

0

f (x)eiωg(x)dx ≈ F1(1)eiωg(1) − F1(0)eiωg(0) = ψ1eiωg(1) − ψ0eiωg(0) ≡ I1[ω] (20)

where

ψ0 =
1

iω
f (1) − f (0) − iω f (0)g′(1)

g′(1) − g′(0) − iωg′(0)g′(1)
and ψ1 =

1

iω
f (1) − f (0) − iω f (1)g′(0)

g′(1) − g′(0) − iωg′(0)g′(1)
, (21)

provided that the denominator in (21) is nonzero. It is clearly seen that quadrature TQ(1) expresses the approximate

integral I1[ω] in terms of the values of { f (x), g′(x)} evaluated at the boundaries of the interval [0, 1]. It is also

important to point out that ψ0 and ψ1 as well as I1[ω] are of O(ω−1) unless g′(0) = 0 or g′(1) = 0.

3.3 Tau Quadrature TQ(2)

The construction of a quadrature for N = 2 proceeds in the same manner as above. Taking N = 2, a = 0 and b = 1,

then μ = ν = 3 and (18)-(19) give

f (x) ≈ (x − 1)2(c0 + c1x) + x2(d0 + d1(x − 1)) ≡
3∑

j=0

α j x j,

g′(x) ≈ (x − 1)2(a0 + a1x) + x2(b0 + b1(x − 1)) ≡
3∑

j=0

β j x j,
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where
a0 = g′(0), b0 = g′(1), a1 = 2g′(0) + g′′(0), b1 = −2g′(1) + g′′(1),

c0 = f (0), d0 = f (1), c1 = 2 f (0) + f ′(0), d1 = −2 f (1) + f ′(1),

or

α0 = g′(0), α1 = g′′(0), α2 = −3g′(0) + 3g′(1) − 2g′′(0) − g′′(1), α3 = 2g′(0) − 2g′(1) + g′′(0) + g′′(1),

β0 = f (0), β1 = f ′(0), β2 = −3 f (0) + 3 f (1) − 2 f ′(0) − f ′(1), β3 = 2 f (0) − 2 f (1) + f ′(0) + f ′(1).

Since r: = ν − 1 = 3 − 1 = 2, we need three free parameters {τ0, τ1, τ2},

H3(x) =

⎛⎜⎜⎜⎜⎜⎜⎝
2∑

j=0

τ j x j

⎞⎟⎟⎟⎟⎟⎟⎠ x3(x − 1)3,

which are found by solving the 3 × 3 linear system resulting from (15). Substituting {τ0, τ1, τ2} in F3(x) given by

(16), we compute F3(1) and F3(0) and arrive to

I[ω] :=

∫ 1

0

f (x)eiωg(x)dx ≈ 1

D

(
ψ1eiωg(1) − ψ0eiωg(0)

)
≈ I2[ω], (22)

where

ψ0 = −6(c1 + d1) + (6a0c0 + 2b1c0 − 2b0c1 + b1c1 + 6b0d0 + 2b1d0 − 2b0d1)iω

+(2b2
0c0 − 2a0b0c0 + a0b1c0 + b2

0c1)ω2 − a0b2
0c0iω3,

ψ1 = −6(c1 + d1) + (6a0c0 − 2a1c0 + 2a0c1 − 2a1d0 + 6b0d0 + 2a0d1 + a1d1)iω

+(2a0b0d0 − 2a2
0d0 + a1b0d0 + a2

0d1)ω2 − a2
0b0d0iω3,

D = −6(a1 + b1)ω + (2a1b0 − 6a2
0 − 6b2

0 − 2a0b1 − a1b1)ω2

+(2a0b2
0 − 2a2

0b0 + a1b2
0 + a2

0b1)iω3 + a2
0b2

0ω
4,

provided that D � 0. Again quadrature TQ(2) expresses I2[ω] in terms of { f (i)(0), g(i)(1); i = 0, 1, 2}. Here

I2[ω] = O(ω−1) when { f (i)(0), g(i)(1); i = 1, 2} are all nonzero.

Finally we point out that in order to apply our results to an arbitrary interval [a, b],∫ b

a
f̃ (t)eiωg̃(t)dt,

we simply shift [a, b] to [0, 1] with x = t−a
b−a and set

∫ b

a
f̃ (t)eiωg̃(t)dt = (b − a)

∫ 1

0

f̃ ((b − a)x + a)eiωg̃((b−a)x+a)dx = (b − a)

∫ 1

0

f (x)eiωg(x)dx,

where f (x) = f̃ ((b − a)x + a) and g(x) = g̃((b − a)x + a).

4. Multivariate Oscillatory Functions

In this section we consider the integral

I[ω] =

∫
Ω

f (x)eiωg(x)dx, (23)

where f (x) and g(x) are smooth functions in a domain Ω ⊂ Rs = R ×R × ... ×R, (s ≥ 1), dx = dx1dx2 . . . dxs and

ω >> 1 is a large real number.

The integration procedure presented in the previous section can be readily extended to multivariate highly oscil-

latory integrals of the form (1) with s ≥ 2, see (Olver, 2006) and (Iserles & Nørsett, 2006). To this end we need

some notations: For all k = 1, 2, ..., s set

xk := (xk, xk+1, . . . , xs),
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and let uk and vk be functions of xk+1:

uk = uk(xk+1) and vk = vk(xk+1), k = 1, 2, ..., s − 1,

with us ≡ a and vs ≡ b (constants), and

dxk := dxkdxk+1...dxs.

Then (23) takes the explicit form

I[ω] =

∫ vs

us

∫ vs−1

us−1

. . .

∫ v1

u1

f (x1, x2, . . . , xs)dx1dx2 . . . dxs =

∫ vs

us

∫ vs−1

us−1

. . .

∫ v1

u1

f (x1)dx1.

In order to approximate I we split it into a set of s univariate integrals as follows:

f (−1)(x2) =

∫ v1(x2)

u1(x2)

f (x1)dx1,

f (−2)(x3) =

∫ v2(x3)

u2(x3)

f (−1)(x2)dx2,

...

f (−k)(xk+1) =

∫ vk(xk+1)

uk(xk+1)

f (−k+1)(xk)dxk,

...

f (−s+1)(xs) =

∫ vs−1(xs)

us−1(xs)

f (−s+2)(xs−1)dxs−1,

I[ω] =

∫ vs

us

f (−s+1)(xs)dxs.

Now applying the algorithm TQ(N), developed in the previous section, to the highly oscillatory integral f (−1)(x)

we obtain a new integral approximating f (−2)(x) with one dimension less. We can thus iterate the procedure on

each dimension and obtain { f (−3)(x), f (−4)(x), ..., f (−s+1)(x)} eventually arriving at the univariate integral I[ω] that

can be approximated using the same procedure.

5. Numerical Examples

This section is devoted to illustrate the accuracy of our results through a set of examples.

Example 1 Let us evaluate the definite integral

I[ω] =

∫ 1

0

(x3 + 4x) eiω(x3+x2+x)dx. (24)

The oscillatory behavior of (x3 + 4x) cosω(x3 + x2 + x), the real part of the integrand, is shown in Figure 2 for

ω = 80. We approximated I[ω] by IN[ω] using Algorithm TQ(N) with N = 1, 2, 3, 4, 5 for different values of

frequencies ω. The errors committed by TQ(N), EN[ω] := I[ω] − IN[ω], are listed in Table 1 for some selected

values of the frequency ω. We have also plotted in Figure 2 the scaled error ωN+1EN[ω] for N = 1 and N = 2. One

can easily notice that Algorithm TQ(N) achieves the asymptotic accuracy as in (Levin, 1996): ωN+1EN[ω] = O(1).

In other words, asymptotically we have EN[ω] = O(ω−N−1).
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Figure 2 (Example 1). [left] Plot of (x3 + 4x) cos 80(x3 + x2 + x). [right] Plot of the scaled errors ω2|E1[ω]| (up)

and ω3|E2[ω]| (down) where 10 ≤ ω ≤ 600

Table 1 (Example 1). Integral (24) is approximated by TQ(N), N = 1, 2, 3, 4, 5. List of |EN[ω]| for 10 ≤ ω ≤ 600

ω\N 1 2 3 4 5

10 2.70E-2 3.58E-3 5.00E-4 2.20E-4 1.13E-5

20 7.22E-3 5.99E-4 6.80E-5 2.21E-5 3.62E-7

30 3.34E-3 1.84E-4 1.74E-5 4.11E-6 3.08E-8

40 2.01E-3 7.62E-5 6.18E-6 1.12E-6 8.66E-9

50 1.30E-3 3.89E-5 2.68E-6 3.93E-7 3.22E-9

100 3.17E-4 4.90E-6 1.82E-7 1.34E-8 8.50E-11

150 1.37E-4 1.47E-6 3.65E-8 1.80E-9 8.25E-12

200 7.59E-5 6.23E-7 1.16E-8 4.28E-10 1.52E-12

250 4.93E-5 3.17E-7 4.77E-9 1.41E-10 4.06E-13

300 3.53E-5 1.81E-7 2.30E-9 5.66E-11 1.37E-13

350 2.66E-5 1.13E-7 1.24E-9 2.62E-11 5.46E-14

400 2.06E-5 7.50E-8 7.30E-10 1.34E-11 2.46E-14

450 1.61E-5 5.30E-8 4.56E-10 7.46E-12 1.22E-14

500 1.26E-5 3.92E-8 2.99E-10 4.41E-12 6.48E-15

550 1.01E-5 2.98E-8 2.04E-10 2.74E-12 3.66E-15

600 8.44E-6 2.30E-8 1.44E-10 1.77E-12 2.17E-15

Example 2 In our second integral

I[ω] =

∫ 1

0

1

x + 1
eiω(x2+x+1)1/3

dx, (25)

f (x) =
1

x + 1
and g(x) = (x2 + x + 1)1/3 are not polynomials. So in order to apply Algorithm TQ(N), we replace,

according to (18)-(19), f (x) and g′(x) by f̃ (x) and g̃′(x) that represent their respective Nth truncated two-point

Taylor series expansions at x = 0 and x = 1.

We computed IN[ω] by means of Algorithm TQ(N) with N = 1, 2, 3, 4, 5 and different values of frequencies

ω. The errors |EN[ω]| are displayed in Table 2 for some values of ω and Figure 3-right shows the scaled error

ω2|E1[ω]|. Again, asymptotically we have E1[ω] = O(ω−2).

The calculations were repeated for large frequencies ω where 4000 ≤ ω ≤ 16000: the absolute errors are sum-

marized in Table 3 and a plot of the scaled error ω2|E1[ω]| for ω = 4000, 4020, 4040, ..., 16000 is shown in Figure

3-left. The latter conforms that our results conserve the asymptotic property even when very large frequencies are

considered.
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Figure 3 (Example 2). Plot of the scaled error ω2|E1[ω]| for 40 ≤ ω ≤ 800 [left] and for

ω = 4000, 4020, 4040, ..., 16000 [right]

Table 2 (Example 2). Integral (25) is approximated by TQ(N), N = 1, 2, 3, 4, 5. List of |EN[ω]| for 40 ≤ ω ≤ 1000

ω\N 1 2 3 4 5

40 9.67E-3 1.24E-3 3.89E-4 8.68E-5 1.56E-5

100 1.73E-3 1.17E-4 1.59E-5 2.13E-6 3.11E-7

160 5.67E-4 3.64E-5 2.39E-6 2.61E-7 2.54E-8

220 2.48E-4 1.53E-5 6.70E-7 5.67E-8 4.40E-9

280 1.89E-4 6.63E-6 2.96E-7 1.61E-8 1.17E-9

340 1.55E-4 3.11E-6 1.50E-7 5.85E-9 3.85E-10

400 1.05E-4 2.11E-6 7.39E-8 2.82E-9 1.41E-10

460 6.13E-5 1.66E-6 3.69E-8 1.53E-9 5.82E-11

520 4.77E-5 1.14E-6 2.32E-8 8.13E-10 2.90E-11

580 4.98E-5 6.85E-7 1.73E-8 4.28E-10 1.62E-11

640 4.38E-5 4.73E-7 1.20E-8 2.59E-10 9.00E-12

700 3.04E-5 4.38E-7 7.45E-9 1.82E-10 4.94E-12

760 2.10E-5 3.78E-7 4.90E-9 1.26E-10 2.94E-12

820 2.21E-5 2.70E-7 4.05E-9 8.08E-11 1.98E-12

880 2.32E-5 1.81E-7 3.39E-9 5.23E-11 1.36E-12

940 1.90E-5 1.63E-7 2.47E-9 3.97E-11 8.84E-13

1000 1.29E-5 1.62E-7 1.68E-9 3.19E-11 5.72E-13

Table 3 (Example 2). Integral (25) is approximated by TQ(N), N = 1, 2, 3, 4, 5. List of |EN[ω]| for 4000 ≤ ω ≤
16000

ω\N 1 2 3 4 5

4000 7.67E-7 2.59E-9 6.45E-12 3.15E-14 1.40E-16

5000 7.15E-7 9.98E-10 3.24E-12 8.947E-15 4.07E-17

6000 3.93E-7 7.17E-10 1.36E-12 4.00E-15 1.27E-17

7000 2.97E-7 4.43E-10 7.49E-13 1.83E-15 5.08E-18

8000 2.77E-7 2.47E-10 4.92E-13 8.60E-16 2.41E-18

9000 1.502E-7 2.28E-10 2.50E-13 5.48E-16 1.08E-18

10000 1.72E-7 1.31E-10 1.98E-13 2.86E-16 6.28E-19

11000 1.27E-7 1.10E-10 1.27E-13 1.87E-16 3.42E-19

12000 9.25E-8 9.25E-11 8.28E-14 1.27E-16 1.96E-19

13000 1.07E-7 5.59E-11 7.15E-14 7.48E-17 1.32E-19

14000 6.49E-8 5.95E-11 4.37E-14 5.95E-17 7.69E-20

15000 7.19E-8 4.15E-11 3.77E-14 3.89E-17 5.40E-20

16000 6.49E-8 3.33E-11 2.95E-14 2.78E-17 3.69E-20
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Example 3 We consider now the multivariate oscillatory integral

I[ω] =

∫ 3
2

0

∫ √1−y2

0

(exy + y2 + 1)eiω(cos( y
2
+1)+x2+x)dxdy. (26)

As explained in section 4, we apply TQ(N) twice: First we integrate with respect to x and we get a new integrand

as a function of y. Repeating the same algorithm to this new function gives an approximate value for the required

integral IN[ω]. Table 4 shows the absolute value of the error |EN[ω]| for some values of ω. Figure 4 shows the

scaled error ωN+2|EN[ω]| for N = 1 (down) and N = 2 (up). Here 50 ≤ ω ≤ 10000.

Example 4 Our last example is integrated on the unit semi-disk,

I[ω] =

∫ 1

−1

∫ √1−y2

−
√

1−y2

cos y eiω(x2+y2+3x+4y)dxdy. (27)

Again, as in the previous example, we apply the algorithm presented in Section 4 for multivariate integrals. The

exact values of |EN[ω]| where 500 ≤ ω ≤ 20000 and N = 1, 2 are recorded in Table 4-right. In Figure 4-right we

draw the scaled error ωN+2|EN[ω]| where N = 1 and N = 2.
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Figure 4. [left] (Example 3). Plot of the scaled error ω3|E1[ω]| (up) and ω4|E2[ω]| (down) where 50 ≤ ω ≤ 10000.

[right] (Example 4). Plot of the scaled error ω3|E1[ω]| (up) and ω4|E2[ω]| (down) where 100 ≤ ω ≤ 20000
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Table 4 (Example 3). [left] Integral (26) is approximated by TQ(N), N = 1, 2. List of |EN[ω]| for 100 ≤ ω ≤ 104.

[right] (Example 4). Integral (27) is approximated by TQ(N), N = 1, 2. List of |EN[ω]| for 500 ≤ ω ≤ 20000

ω\N 1 2

100 2.177E-5 4.086E-6

500 2.567E-7 9.808E-9

1000 1.761E-8 6.724E-10

1500 7.518E-9 1.324E-10

2000 2.954E-9 4.194E-11

2500 1.301E-9 1.700E-11

3000 1.179E-9 7.793E-12

3500 3.556E-10 4.386E-12

4000 4.906E-10 2.519E-12

4500 1.836E-10 1.669E-12

5000 2.120E-10 1.070E-12

5500 1.452E-10 7.221E-13

6000 1.039E-10 5.020E-13

6500 1.169E-10 3.516E-13

7000 4.367E-11 2.767E-13

7500 7.235E-11 2.073E-13

8000 2.839E-11 1.691E-13

8500 4.437E-11 1.278E-13

9000 3.234E-11 1.001E-13

9500 2.692E-11 7.926E-14

10000 3.168E-11 6.324E-14

ω\N 1 2

500 1.313E-8 5.905E-10

1000 1.819E-9 3.439E-11

2000 3.017E-10 1.750E-12

3000 9.244E-11 2.956E-13

4000 3.279E-11 1.105E-13

5000 1.310E-11 5.702E-14

6000 7.285E-12 2.978E-14

7000 5.371E-12 1.447E-14

8000 4.234E-12 6.563E-15

9000 3.264E-12 3.618E-15

10000 2.277E-12 2.973E-15

11000 1.341E-12 2.483E-15

12000 7.836E-13 1.823E-15

13000 8.140E-13 1.174E-15

14000 8.882E-13 6.981E-16

15000 7.631E-13 4.832E-16

16000 5.153E-13 4.527E-16

17000 3.037E-13 4.329E-16

18000 2.641E-13 3.631E-16

19000 2.952E-13 2.591E-16

20000 2.883E-13 1.629E-16

6. Conclusion

We have presented an approach to evaluate highly oscillatory integrals of the form (1) and (23). The method applies

to integrals involving moderate frequencies of different sizes and the accuracy of the method improves when the

frequency increases. With our procedures the integral is obtained in terms of the value of the function and its

derivatives at the boundary points. The order of our method is O(ω−N−1) for univariate and O(ω−N−d) if the domain

of the integral is N dimensional.
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