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Abstract

In this paper we introduce the notions of MT L algebra of fractions and maximal MT L algebra of quotients for
a MT L algebra and prove constructively the existence of a maximal MT L algebra of quotients (see Buşneag &
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1. Introduction

A localization ring AF associated with a Gabriel topology F for a ring A is a very important construction in

ring theory. For the therm localization we have in view Chapter IV: Localization in N. Popescu’s book (1971).

The notion of complete ring of quotients for a commutative ring is introduced in Lambek’s book (1966). This

localization is relative to the dense ideals and is a special case of localization ring. Schmid define in 1980, the

concept of maximal lattice of quotients for a distributive lattice using partial morphisms introduced by Findlay and

Lambek (1966). The multipliers (defined for a distributive lattice by W. H. Cornish in 1974 and 1980) plays an

important role in this constructions.

Basic (Fuzzy) logic (BL from now on) is the many-valued residuated logic introduced by Hájek in 1998 to cope

with the logic of continuous t-norms and their residua. Monoidal logic (ML from now on), introduced by Hőhle

(1995), is a logic whose algebraic counterpart is the class of residuated lattices; MT L algebras (see Esteva &

Godo, 2001) are algebraic structures for the Esteva-Godo monoidal t-norm based logic (MT L), a many-valued

propositional calculus that formalizes the structure of the real unit interval [0, 1], induced by a left-continuous

t-norm. MT L algebras were independently introduced in Flondor, Georgescu, and Iorgulescu (2001) under the

name weak-BL algebras. The results obtained in this paper for MT L algebras are analogously to the ones obtained

for BL algebras in Buşneag and Piciu (2005). The main difference is that the equation x � (x → y) = x ∧ y is not

valid for MT L algebras.

This paper is organized as follows: Section 2 is dedicated to basic definitions and rules of calculus in MT L algebras.

In Section 3 we introduce the notion of multiplier for a MT L algebra. In the proof of Lemma 9 and Lemma 10 we

have used mainly the rules c13 and c16 which are specific for MT L algebras (by Proposition 4 and Corollary 5).

This explain why in this paper we have considered the particular case of MT L algebras and not the general case of

residuated lattice.

In Section 4 we introduce the notions of MT L algebra of fractions and maximal MT L algebra of quotients for a

MT L algebra. In Theorem 30 we prove the existence of the maximal MT L algebra of quotients for a MT L algebra.

This paper is a very important step in a future study of localization in the category of MT L algebras (and more

general, in the category of residuated lattices).

For a survey relative to notion of fractions and localization in algebra of logic see Rudeanu (2010).
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2. Definitions and First Properties

In this section we review the basic results relative to MT L algebras with more details and examples.

Definition 1 An algebra (L,∧,∨,�,→, 0, 1) of type (2, 2, 2, 2, 0, 0) equipped with an order ≤ is a residuated lattice

(Blyth & Janovitz, 1972; Galatos, Jipsen, Kowalski, & Ono, 2007; Turunen, 1999), if it satisfies:

(LR1) (L,∧,∨, 0, 1) is a bounded lattice relative to order ≤;

(LR2) (L,�, 1) is an ordered commutative monoid;

(LR3) (�,→) is an adjoint pair (z ≤ x→ y iff x � z ≤ y for every x, y, z ∈ L).

For examples of residuated lattices see Buşneag and Piciu (2006), Galatos et al. (2007), and Turunen (1999).

In this section by L we denote the universe of a residuated lattice. We denote x∗ = x → 0 and x∗∗ = (x∗)∗, for

x ∈ L.

We review some rules of calculus for residuated lattices:

Theorem 1 (Buşneag & Piciu, 2006; Galatos et al., 2007) Let x, y, z ∈ L. Then:

(c1) x→ x = 1, 1→ x = x, 0→ x = 1, y ≤ x→ y, x � (x→ y) ≤ y, x→ 1 = 1, x � 0 = 0;

(c2) x ≤ y iff x→ y = 1;

(c3) x ≤ y implies x � z ≤ y � z, z→ x ≤ z→ y and y→ z ≤ x→ z;

(c4) x→ (y→ z) = (x � y)→ z = y→ (x→ z), so (x � y)∗ = x→ y∗ = y→ x∗;

(c5) x � x∗ = 0 and x � y = 0 iff x ≤ y∗;

(c6) x � (y ∨ z) = (x � y) ∨ (x � z);

(c7) x→ (y ∧ z) = (x→ y) ∧ (x→ z).

We shall denote B(L) = {x ∈ L: x is a complemented element in (L,∧,∨, 0, 1)}, which is a Boolean algebra (called

the Boolean center of L).

Theorem 2 (Buşneag & Piciu, 2006) For a ∈ L, a ∈ B(L) iff a ∨ a∗ = 1.

Theorem 3 (Buşneag & Piciu, 2006; Galatos et al., 2007) If a1, a2 ∈ B(L) and x, y ∈ L, then:

(c8) a1�x = a1 ∧ x;

(c9) x � (x→ a1) = a1 ∧ x, a1 � (a1 → x) = a1 ∧ x;

(c10) a1 � (x→ y) = a1 � [(a1 � x)→ (a1 � y)];

(c11) x � (a1 → a2) = x � [(x � a1)→ (x � a2)].

Definition 2 (Esteva & Godo, 2001) A MT L algebra is a residuated lattice satisfying the preliniarity equation:

(c12) (x→ y) ∨ (y→ x) = 1.

The variety of MT L algebras will be denoted byMTL.

Example 1 (Iorgulescu, 2004) Let L = {0, a, b, c, d, 1}, with 0 < a, b < c < 1, 0 < b < d < 1, but a, b and, respective

c, d are incomparable. Then (L,∧,∨,�,→, 0, 1) is an MT L algebra, where the operations � and→ are defined as

follows:

→ 0 a b c d 1

0 1 1 1 1 1 1

a d 1 d 1 d 1

b c c 1 1 1 1

c b c d 1 d 1

d a a c c 1 1

1 0 a b c d 1

� 0 a b c d 1

0 0 0 0 0 0 0

a 0 a 0 a 0 a
b 0 0 0 0 b b
c 0 a 0 a b c
d 0 0 b b d d
1 0 a b c d 1

Proposition 4 (Esteva & Godo, 2001) Let L be a residuated lattice. The following conditions are equivalent:

(i) L ∈ MTL;
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(ii) L is a subdirect product of linearly ordered residuated lattices;

(iii) (c13) x→ (y ∨ z) = (x→ y) ∨ (x→ z), for any x, y, z ∈ L;

(iv) (c14) (x ∧ y)→ z = (x→ z) ∨ (y→ z), for any x, y, z ∈ L.

Corollary 5 (Esteva & Godo, 2001; Flondor, Georgescu, & Iorgulescu, 2001) Let L ∈ MTL. For every x, y, z ∈ L:

(c15) (x ∧ y)∗ = x∗ ∨ y∗;

(c16) x � (y ∧ z) = (x � y) ∧ (x � z);

(c17) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z);

(c18) x ∨ y = ((x→ y)→ y) ∧ ((y→ x)→ x).

Remark 1 A MT L algebra L is a BL algebra iff in L is verified the divisibility condition: x � (x → y) = x ∧ y. So,

BL algebras are examples of MT L algebras; for an example of MT L algebra which is not BL algebra see Turunen

(1999, p. 16). Also, every linearly ordered residuated lattice is a MT L algebra.

3. Multipliers on a MTL Algebra

By L we denote the universe of a MT L algebra.

Let Id(L) = {I: I is an ideal in the lattice (L,∧,∨, 0, 1)} (see Balbes & Dwinger, 1974) and I(L) the set of all

decreasing subsets of L.We have that, I(L) ⊆ Id(L) and if J1, J2 ∈ I(L), then J1 ∩ J2 ∈ I(L). Also, if J ∈ I(L),
then 0 ∈ J.

Definition 3 A map p : J → L, with J ∈ I(L), is a partial multiplier on L if it verifies the axioms:

(M1) p(a � x) = a � p(x), a ∈ B(L), x ∈ J;

(M2) x � (x→ p(x)) = p(x), x ∈ J;

(M3) If a ∈ B(L) ∩ J, then p(a) ∈ B(L);

(M4) x ∧ p(a) = a ∧ p(x), a ∈ B(L) ∩ J, x ∈ J.

Remark 2 Since x � (x→ p(x)) ≤ x, from (M2) we conclude that p(x) ≤ x, for x ∈ J.

Remark 3 We use multiplier instead partial multiplier.

By d(p) ∈ I(L) we denote the domain of p; we call p total if d(p) = L.

Example 2 Let a ∈ B(L) and J ∈ I(L). Then the map pa: J → L, pa(x) = a ∧ x
(c8)
= a � x, for every x ∈ J is a

multiplier on L.We called this multiplier principal.

The axioms (M1), (M3) and (M4) are verified as in the case of BL algebras (see Buşneag & Piciu, 2005). Also, for

x ∈ J, x � (x → pa(x)) = x � (x → (a ∧ x))
(c7)
= x � [(x → a) ∧ (x → x)] = x � (x → a)

(c9)
= a ∧ x = pa(x), hence

(M2 ) is verified.

We denote pa by pa if d(pa) = L. In particular, for a = 0, 1 the maps p0 = 0: L → L, p0(x) = 0(x) = 0, for every

x ∈ L and p1 = 1: L→ L, p1(x) = 1(x) = x, for every x ∈ L are total multipliers on L.

Remark 4 From (M4), if J = L, then for a = 1 we deduce that x∧ p(1) = p(x), so every total multiplier is principal.

For a ∈ L and J = (a] = {x ∈ L: x ≤ a} ∈ I(L) we consider the map ga: J → L, ga(x) = a � (a → x) for every

x ∈ J.

Lemma 6 ga verify (M1), (M3) and (M4).

Proof. (M1). For x ∈ J and e ∈ B(L)∩ J (hence x ≤ a, e ∈ B(L) and e ≤ a) we have: ga(e� x) = a� (a→ (e� x))
(c8)
=

a�(a→ (e∧x))
(c7)
= a�[(a→ e)∧(a→ x)]

(c16)
= [a�(a→ e)]∧[a�(a→ x)] = (a∧e)∧ga(x) = e∧ga(x) = e�ga(x).

(M3). If e ∈ B(L) ∩ J, then e ∈ B(L) and e ≤ a, hence ga(e) = a � (a→ e) = a ∧ e = e ∈ B(L).

(M4). Consider x ∈ J and e ∈ B(L) ∩ J (that is, x, e ≤ a and e ∈ B(L)). Thus, e∧ ga(x) = e ∧ [a � (a → x)] =

e � a � (a→ x) = (e ∧ a) � (a→ x) = e � (a→ x) and x∧ ga(e) = x ∧ [a � (a→ e)] = x ∧ (a ∧ e) = x ∧ e = e � x.
Since x ≤ a→ x, then e � x ≤ e � (a→ x), hence x∧ ga(e) ≤ e∧ ga(x).

From e ≤ a we deduce that a → x ≤ e → x hence e � (a → x) ≤ x. Then e � (a → x) ≤ e ∧ x = e � x, hence e∧
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ga(x) = x∧ ga(e). �
Following Lemma 6, we can obtain an example of multiplier which is not principal.

For this, we consider L = [0, 1] (see Turunen, 1999, p. 16) and for all x, y ∈ L we define

x � y = 0, if x + y ≤
1

2
and x � y = x ∧ y, if x + y >

1

2

x→ y = 1 if x ≤ y and x→ y = max{
1

2
− x, y} if x > y.

Then (L,∧,∨,�,→, 0, 1) is a MT L−algebra. Obviously, L is not a BL−algebra and B(L) = {0, 1}.

Lemma 7 g 1
3
: ( 1

3
] = [0, 1

3
] → L = [0, 1], g 1

3
(x) = 1

3
� ( 1

3
→ x) for every 0 ≤ x ≤ 1

3
is a multiplier on L = [0, 1]

which is not principal.

Proof. Following Lemma 6, it is suffice to prove that g 1
3

verify (M2), that is, x � (x → g 1
3
(x)) = g 1

3
(x), for every

0 ≤ x ≤ 1
3
.

For 0 ≤ x ≤ 1
3

we have 1
3
→ x = max{ 1

2
− 1

3
, x} = max{ 1

6
, x} = 1

6
if 0 ≤ x ≤ 1

6
and 1

3
→ x = x if 1

6
< x ≤ 1

3
, so

g 1
3
(x) = 1

3
� 1

6
= 0 for 0 ≤ x ≤ 1

6
and g 1

3
(x) = 1

3
� x for 1

6
< x ≤ 1

3
.

Since for x > 1
6
, 1

3
+ x > 1

3
+ 1

6
= 1

2
we deduce that g 1

3
(x) = 1

3
� x = 1

3
∧ x = x, so g 1

3
(x) = 0, for 0 ≤ x ≤ 1

6
and

g 1
3
(x) = x, for 1

6
< x ≤ 1

3
.

Then x→ g 1
3
(x) = x→ 0 = max{ 1

2
− x, 0} = 1

2
− x for 0 < x ≤ 1

6
and x→ g 1

3
(x) = x→ x = 1, for 1

6
< x ≤ 1

3
. For

x = 0, 0→ g 1
3
(0) = 1.

So x � (x → g 1
3
(x)) = x � ( 1

2
− x) = 0, for 0 ≤ x ≤ 1

6
and x � (x → g 1

3
(x)) = x � 1 = x, for 1

6
< x ≤ 1

3
. For

x = 0, 0 � (0→ g 1
3
(0)) = 0.

We deduce that x � (x → g 1
3
(x)) = g 1

3
(x), for every 0 ≤ x ≤ 1

3
, that is g 1

3
verify (M2), hence g 1

3
is a multiplier

on L = [0, 1]. It is easy to prove that B(L) = {0, 1}, so if suppose by contrary that g 1
3

is principal, then g 1
3
= p0

or g 1
3
= p1 (with p0, p1: [0, 1

3
] → [0, 1]). Since g 1

3
( 1

3
) = 1

3
� ( 1

3
→ 1

3
) = 1

3
� 1 = 1

3
and p0( 1

3
) = 0 it follows that

g 1
3
� p0 .

Also, g 1
3
( 1

6
) = 1

3
� ( 1

3
→ 1

6
) = 1

3
� 0 = 0 and p1( 1

6
) = 1

6
, so g 1

3
� p1. �

For J ∈ I(L), let M(J, L) = {p: J → L | p is a multiplier on L}, M(L) =
⋃
{M(J, L): J ∈ I(L)} and M(L) = {p:

L→ L | p is a multiplier on L}.

Proposition 8 If J1, J2 ∈ I(L) and pi ∈ M(Ji, L), i = 1, 2, then

(c19) p1(t) � [t → p2(t)] = p2(t) � [t → p1(t)], for every t ∈ J1∩ J2.

Proof. For t ∈ J1∩ J2 we have p1(t)� [t → p2(t)]
(M2)
= t � (t → p1(t))� (t → p2(t)) = [t � (t → p2(t))]� (t → p1(t))

(M2)
= p2(t) � [t → p1(t)]. �

Definition 4 For J1, J2 ∈ I(L) and pi ∈ M(Ji, L), i = 1, 2, we define p1∧ p2, p1∨ p2, p1⊗ p2, p1 � p2: J1∩ J2 → L

by (p1 ∧ p2)(t) = p1(t) ∧ p2(t), (p1 ∨ p2)(t) = p1(t) ∨ p2(t), (p1 ⊗ p2)(t) = p1(t) � [t → p2(t)]
(c19)
= p2(t) � [t →

p1(t)], (p1 � p2)(t) = t � [p1(t)→ p2(t)], for every t ∈ J1∩ J2.

Lemma 9 p1 ∧ p2 ∈ M(J1 ∩ J2, L).

Proof. It is sufficient to verify only (M2) (for (M1), (M3) and (M4) see Buşneag & Piciu, 2005).

For any t ∈ J1∩ J2 we have t � [t → (p1 ∧ p2)(t)] = t � [t → (p1(t) ∧ p2(t))]
(c7)
= t � [(t → p1(t)) ∧ (t → p2(t))]

(c16)
=

[t � (t → p1(t))] ∧ [t � (t → p2(t))]
(M2)
= p1(t) ∧ p2(t) = (p1 ∧ p2)(t). �

Lemma 10 p1 ∨ p2 ∈ M(J1 ∩ J2, L).

Proof. The axioms (M1), (M3) and (M4) are verified as in the case of BL algebras (see Buşneag & Piciu, 2005). To

verify (M2), let t ∈ J1∩ J2. Then t�[t → (p1∨p2)(t)] = t�[t → (p1(t)∨p2(t))]
(c13)
= t�[(t → p1(t))∨(t → p2(t))]

(c6)
=

[t � (t → p1(t))] ∨[t � (t → p2(t))]
(M2)
= p1(t) ∨ p2(t) = (p1 ∨ p2)(t). �
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Lemma 11 p1 ⊗ p2 ∈ M(J1 ∩ J2, L).

Proof. (M1) is verified as in the case of BL algebras (see Buşneag, & Piciu, 2005), using (c10). To prove (M2), let

t ∈ J1∩ J2 and denote p = p1 ⊗ p2.

To prove the equality t � (t → p(t)) = p(t) it is sufficient to prove that p(t) ≤ t � (t → p(t)). We have p(t) =
p1(t) � (t → p2(t)) = t � (t → p1(t)) � (t → p2(t)) and t � (t → p(t)) = t � [t → (p1(t) � (t → p2(t)))] =
t � [t → (t � (t → p1(t)) � (t → p2(t)))]. So, to prove that p(t) ≤ t � (t → p(t)) it is sufficient to prove that

t � (t → p1(t)) � (t → p2(t)) ≤ t � [t → (t � (t → p1(t)) � (t → p2(t)))], that is, ϕ ≤ t → (t � ϕ) (with

ϕ
not
= (t → p1(t)) � (t → p2(t))), which is true, since ϕ→ [t → (t � ϕ)]

(c4)
= (ϕ � t)→ (t � ϕ) = 1. (M3) and (M4) are

verified as in the case of BL algebras (see Buşneag & Piciu, 2005), using (c10) and (c11). �
Lemma 12 p1 � p2 ∈ M(J1 ∩ J2, L).

Proof. (M1) is verified as in the case of BL algebras (see Buşneag & Piciu, 2005) using (c10). To prove (M2), let

t ∈ J1∩ J2 and denote p = p1 � p2 : J1 ∩ J2 → L; then p(t) = t � [p1(t) → p2(t)].We have p1(t) → p2(t) ≤ t →
[t � (p1(t)→ p2(t))], hence t � [p1(t)→ p2(t)] ≤ t � [t → (t � (p1(t)→ p2(t)))]⇔ p(t) ≤ t � [t → p(t)]⇔ p(t) =
t � [t → p(t)].

(M3) and (M4 ) are verified as in the case of BL algebras (see Buşneag, & Piciu, 2005) using (c10) and (c11). �
Proposition 13

(i) For every p ∈ M(L), p ⊗ 1 = 1 ⊗ p = p;

(ii) For every p1, p2, p3 ∈ M(L), p1 ⊗ (p2 ⊗ p3) = (p1 ⊗ p2) ⊗ p3 and for every t ∈ d(p1) ∩ d(p2) ∩ d(p3),
p1(t) ≤ (p2 � p3)(t) iff (p1 ⊗ p2)(t) ≤ p3(t);

(iii) For every p1, p2 ∈ M(L) and t ∈ d(p1) ∩ d(p2), (p1 � p2)(t) ∨ (p2 � p1)(t) = 1(t).

Proof. (i) If J = dom(p) and t ∈ J, then (p ⊗ 1)(t) = p(t) � (t → 1(t)) = p(t) � (t → t) = p(t) � 1 = p(t) and

(1 ⊗ p)(t) = t � (t → p(t)) = p(t), that is, p ⊗ 1 = 1 ⊗ p = p.

(ii) Let pi ∈ M(Ji, L) where Ji ∈ I(L), i = 1, 2, 3. Thus, for t ∈ J1 ∩ J2 ∩ J3 we have [p1 ⊗ (p2 ⊗ p3)](t) =
((p2 ⊗ p3)(t)) � (t → p1(t)) = [p2(t) � (t → p3(t))] � (t → p1(t)) = p2(t) � [(t → p3(t)) � (t → p1(t))] =
= p2(t) � [(t → p1(t)) � (t → p3(t))] = [p2(t) � (t → p1(t))] � (t → p3(t)) = ((p1 ⊗ p2)(t)) � (t → p3(t)) =
[(p1 ⊗ p2) ⊗ p3](t), that is the operation ⊗ is associative.

For t ∈ J1 ∩ J2 ∩ J3 we have p1(t) ≤ (p2 � p3)(t)⇔ p1(t) ≤ t � [p2(t)→ p3(t)]. So, by (c3), p1(t) � [t → p2(t)] ≤
t � (t → p2(t)) � (p2(t) → p3(t))

(M2)
⇔ p1(t) � [t → p2(t)] ≤ p2(t) � (p2(t) → p3(t)) ≤ p3(t) ⇔ (p1 ⊗ p2)(t) ≤ p3(t),

for any t ∈ J1∩ J2∩ J3, that is, p1⊗ p2 ≤ p3. Conversely, if (p1⊗ p2)(t) ≤ p3(t) we have p2(t)� [t → p1(t)] ≤ p3(t),

for any t ∈ J1 ∩ J2 ∩ J3. Obviously, t → p1(t) ≤ p2(t) → p3(t)
(c3)
⇔ t � (t → p1(t)) ≤ t � (p2(t) → p3(t)) ⇔ p1(t) ≤

(p2 � p3)(t).

(iii) We have (p1 � p2)(t) ∨ (p2 � p1)(t) = [t � (p1(t) → p2(t))] ∨ [t � (p2(t) → p1(t))] = t � [(p1(t) →
p2(t)) ∨ (p2(t)→ p1(t))] = t � 1 = t = 1(t). �
Corollary 14 (M(L),∧,∨,⊗,�, 0, 1) is a MT L algebra.

Definition 5 (Esteva & Godo, 2001; Freytes, 2004) A MT L algebra L is called

(i) an IMT L algebra (involutive algebra) if it satisfies the equation

(I) x∗∗ = x;

(ii) a S MT L algebra if it satisfies the equation

(S ) x ∧ x∗ = 0;

(iii) a WNM algebra (weak nilpotent minimum) if it satisfies the equation

(W) (x � y)∗ ∨ [(x ∧ y)→ (x � y)] = 1;

(iv) a ΠS MT L algebra if it is a S MT L algebra satisfying the equation

(Π) [z∗∗ � ((x � z)→ (y � z))]→ (x→ y) = 1.
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Theorem 15

(i) If L is a BL algebra, then for every f1, f2 ∈ M(L), ( f1⊗( f1 � f2))(x) = ( f1∧ f2)(x), for every x ∈ d( f1)∩d( f2);

(ii) If L is an IMT L algebra, then f ∗∗ = f , for every f ∈ M(L);

(iii) If L is a S MT L algebra, then for every f ∈ M(L), f ∧ f ∗ = 0;

(iv) If L is a WNM algebra, then for every f1, f2 ∈ M(L), ( f1 ⊗ f2)∗ ∨ (( f1 ∧ f2)� ( f1 ⊗ f2)) = 1;

(v) If L is a ΠS MT L algebra, then for every f , g, h ∈ M(L), [h∗∗ ⊗ (( f ⊗ h)� (g ⊗ h))]� ( f � g) = 1.

Proof. (i) Suppose L is a BL algebra (see Remark 1). Let f1, f2 ∈ M(L), f1: J1 → L, f2: J2 → L,with J1, J2 ∈ I(L).
For every x ∈ J1 ∩ J2 we have ( f1 ⊗ ( f1 � f2))(x) = ( f1 ∧ f2)(x)⇔ ( f1 � f2)(x) � [x → f1(x)] = f1(x) ∧ f2(x)

⇔ x � [ f1(x) → f2(x)] � [x → f1(x)] = f1(x) ∧ f2(x)⇔ (x � [x → f1(x)]) � [ f1(x) → f2(x)] = f1(x) ∧ f2(x)
(M2)
⇔

f1(x) � [ f1(x)→ f2(x)] = f1(x) ∧ f2(x), which is true because L is supposed a BL algebra.

(ii) Suppose L is an IMT L algebra. For f ∈ M(L), f : J → L and x ∈ J, we have f ∗∗ = ( f � 0) � 0 and

f ∗∗(x) = x � [x � f ∗(x)]∗
(c4)
= x � [x→ ( f (x))∗∗]

(I)
= x � [x→ f (x)]

(M2)
= f (x), hence f ∗∗ = f .

(iii) Suppose L is a S MT L algebra. If f ∈ M(L), f : L → L, then the equation f ∧ f ∗ = 0 is equivalent with

f ∧ ( f � 0) = 0⇔ f (x) ∧ [x � ( f (x))∗] = 0, for every x ∈ L, which is clearly (since f (x) ∧ [x � ( f (x))∗] ≤
f (x) ∧ ( f (x))∗ = 0), hence f ∧ f ∗ = 0.

(iv) Suppose L is a WNM algebra. Let f1, f2 ∈ M(L), f1, f2: L→ L and x ∈ L.We denote a = f1(x), b = f2(x).We

have (( f1 ⊗ f2)∗ ∨ (( f1 ∧ f2)� ( f1 ⊗ f2)))(x) = (( f1 ⊗ f2)∗(x))∨ (x� (( f1 ∧ f2)(x)→ ( f1 ⊗ f2)(x))) = (x� (a� (x→
b))∗) ∨ (x � ((a ∧ b)→ (a � (x→ b))))

(c6)
= x � ((a � (x→ b))∗ ∨ ((a ∧ b)→ (a � (x→ b)))).

Since b ≤ x→ b we deduce that a∧b ≤ a∧ (x→ b), hence (using (c3)) (a∧ (x→ b))→ (a� (x→ b)) ≤ (a∧b)→
(a � (x→ b)).

Since L is supposed a WNM−algebra we obtain 1 = (a � (x → b))∗ ∨ ((a ∧ (x → b)) → (a � (x → b)))

≤ (a � (x → b))∗ ∨ ((a ∧ b) → (a � (x → b))), hence (a � (x → b))∗ ∨ ((a ∧ b) → (a � (x → b))) = 1. Then

(( f1 ⊗ f2)∗ ∨ (( f1 ∧ f2)� ( f1 ⊗ f2)))(x) = x � 1 = x = 1(x)⇔ ( f1 ⊗ f2)∗ ∨ (( f1 ∧ f2)� ( f1 ⊗ f2)) = 1.

(v) Suppose now L is a ΠS MT L algebra. From the condition x ∧ x∗ = 0 (x ∈ L), we deduce that x∗ ∨ x∗∗
(c15)
=

(x ∧ x∗)∗ = 0∗ = 1, that is, x∗ ∈ B(L). For f , g, h: L → L, and x ∈ L we denote a1 = f (x), a2 = g(x) and

a3 = h(x). Then h∗∗(x) = x � (x → a∗∗3 )
(c9)
= x ∧ a∗∗3

(c8)
= x � a∗∗3 , [h∗∗ ⊗ (( f ⊗ h) � (g ⊗ h))](x) = [x →

h∗∗(x)] � [x � [( f ⊗ h)(x) → (g ⊗ h)(x)]] = [x → (x � a∗∗3 )] � [x � [((x → a1) � a3) → ((x → a2) � a3)]] =

[x � (x→ (x � a∗∗3 ))] � [((x→ a1) � a3)→ ((x→ a2) � a3)]
(c1)
≤ (x � a∗∗3 ) � [((x→ a1) � a3)→ ((x→ a2) � a3)] =

x � [a∗∗3 � [((x → a1) � a3) → ((x → a2) � a3)]]
(Π)
≤ x � [(x → a1) → (x → a2)] = x � [(x � (x → a1)) → a2]

(M2)
=

x � (a1 → a2) = ( f � g)(x), hence [h∗∗ ⊗ (( f ⊗ h)� (g ⊗ h))]� ( f � g) = 1. �
Corollary 16 If L is a BL algebra (resp. an IMT L algebra, a S MT L algebra, a WNM algebra, a ΠS MT L
algebra) then M(L) is a BL algebra (resp. an IMT L algebra, a S MT L algebra, a WNM algebra, a ΠS MT L
algebra).

Using the rules (c6), (c10) and (c11) we obtain:

Lemma 17 vL : B(L)→ M(L), vL(a) = pa for every a ∈ B(L), is a monomorphism of MT L algebras.

Definition 6 A subset J ⊆ L is called regular if for every x, y ∈ L such that x ∧ f = y ∧ f for every f ∈ B(L) ∩ J,
then x = y.

Denote Re g(L) the set of all regular subset of L.

Example 3 We give an example of non-trivial regular subset in a MT L algebra. Consider L = {0, a, b, c, d, 1} the

MT L-algebra from Example 1. We have that B(L) = {0, a, d, 1} and if consider J = {0, b, d, a}, then J ∈ I(L). It
is easy to prove that for any x, y ∈ L with x � y, there is f ∈ J ∩ B(L) = {0, a, d} such that x ∧ f � y ∧ f , that is,

J ∈ Reg(L).

Remark 5 The condition J ∈ Reg(L) is equivalent with: if x, y ∈ L and px|J∩B(L) = py|J∩B(L), then x = y.

Lemma 18 If J1, J2 ∈ I(L) ∩ Reg(L), then J1 ∩ J2 ∈ I(L) ∩ Reg(L).
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Denote Mreg(L) = {p ∈ M(L): d(p) ∈ I(L) ∩ Reg(L)}.

Remark 6 By Lemmas 9-12 and 18 we deduce that if p1, p2 ∈ Mreg(L), then p1 ⊗ p2, p1 � p2 ∈ Mreg(L).

Proposition 19 Let p: J → L be a multiplier on L with J ∈ I(L) ∩ Reg(L). Then (p ∨ p∗)(x) = x, for every x ∈ J.

Proof. Let a ∈ B(L) ∩ J and x ∈ J. Then

a ∧ [p ∨ p∗](x) = a ∧ [p(x) ∨ (x � (p(x))∗)] = [a ∧ p(x)] ∨ [a ∧ (x � (p(x))∗)]

= [x � p(a)] ∨ [x � a � (p(x))∗]
c10
= [x � p(a)] ∨ [x � a � (a � p(x))∗]

M4
= [x � p(a)] ∨ [x � a � (x � p(a))∗] = [x � p(a)] ∨ [x � a � (x ∧ p(a))∗]
c15
= [x � p(a)] ∨ [x � a � (x∗ ∨ (p(a))∗)]

c6
= [x � p(a)] ∨ [a � ((x � x∗) ∨ (x � (p(a))∗))]

= [x � p(a)] ∨ [a � (0 ∨ (x � (p(a))∗))] = [x � p(a)] ∨ [a � x � (p(a))∗]

= [x � p(a)] ∨ [x � (a � (p(a))∗)]
c6
= x � [p(a) ∨ (a � (p(a))∗)]

= x � [p(a) ∨ (a ∧ (p(a))∗)] = x � [(p(a) ∨ a) ∧ (p(a) ∨ (p(a))∗)]

= x � (a ∧ 1) = x � a = x ∧ a,

so (p ∨ p∗)(x) = x, since J ∈ Reg(L). �
Definition 7 Let two multipliers p1, p2 on L. We say that p2 extends p1 if d(p1) ⊆ d(p2) and p2|d(p1) = p1; if p2

extends p1, we write p1  p2. If we can not be extended a multiplier p to a strictly larger domain, we called p
maximal.

Lemma 20

(i) If p1, p2 ∈ M(L), p ∈ Mreg(L) and p  p1, p  p2, then p1 and p2 coincide on the d(p1) ∩ d(p2);

(ii) any p ∈ Mr(L) can be extended to a maximal multiplier. For any principal multiplier pa, a ∈ B(L), d(pa) ∈
I(L) ∩ Reg(L) there is an uniquely total multiplier pa such that pa  pa and for any non-principal multiplier p
there is a maximal non-principal multiplier r such that p  r.

On Mreg(L) we consider the relation ρL defined by (p1, p2) ∈ ρL iff p1|d(p1)∩d(p2) = p2|d(p1)∩d(p2).

Lemma 21 ρL is an equivalence relation on Mreg(L) compatible with ∧,∨,⊗ and� .
Proof. Obviously, ρL is an equivalence relation on Mreg(L) compatible with ∧ and ∨.

For the compatibility of ρL with ⊗ and� on Mreg(L), let (p1, p2), (r1, r2) ∈ ρL.

Let t ∈ d(p1) ∩ d(p2) ∩ d(r1) ∩ d(r2).We have p1(t) = p2(t) and r1(t) = r2(t), so

(p1 ⊗ r1)(t) = p1(t) � (t → r1(t)) = p2(t) � (t → r2(t)) = (p2 ⊗ r2)(t),

(p1 � r1)(t) = t � [p1(t)→ r1(t)] = t � [p2(t)→ r2(t)] = (p2 � r2)(t),

that is, (p1 ⊗ r1, p2 ⊗ r2), (p1 � r1, p2 � r2) ∈ ρL. �
For p ∈ Mreg(L) with J = d(p) ∈ I(L) ∩ Reg(L), we denote by [p, J] the congruence class of p modulo ρL and

L′′ = Mreg(L)/ρL .

On L′′ we define the order relation [p1, J1] ≤ [p2, J2] iff p1(x) ≤ p2(x), for every x ∈ J1 ∩ J2.

It is a routine to prove the following result:

Lemma 22 (L′′,≤) is a bounded lattice, where for [p1, J1], [p2, J2] ∈ L′′, [p1, J1]∧ [p2, J2] = [p1∧ p2, J1∩ J2] and
[p1, J1] ∨ [p2, J2] = [p1 ∨ p2, J1 ∩ J2], 0 = [0, L], 1 = [1, L].

For [p1, J1], [p2, J2] ∈ L′′, we define [p1, J1] ⊗ [p2, J2] = [p1 ⊗ p2, J1 ∩ J2] and [p1, J1] � [p2, J2] = [p1 �
p2, J1 ∩ J2] (where [p1 ⊗ p2 and p1 � p2 are defined in Definition 4).

Proposition 23 (L′′,∧,∨,⊗,�, 0, 1) is a MT L-algebra.

Proof. We verify the axioms of MT L-algebras.

(LR1) Follows from Lemma 22;

(LR2) Follows from Proposition 13, (i), (ii);
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(LR3) Follows from Proposition 13, (ii);

The preliniarity equation (c12) follows from Proposition 13, (iii). �
Remark 7 From Theorem 2, Propositions 19 and 23 we deduce that L′′ is a Boolean algebra.

Remark 8 If consider F = I(L) ∩ Re g(L) and the partially ordered systems {δI,J}I,J∈F ,I⊆J (for I, J ∈ F , I ⊆ J, δI,J:

M(J, L)→ M(I, L) is defined by δI,J( f ) = f|I), then L′′ = lim �I∈F M(I, L).

Lemma 24 If consider vL : B(L)→ L′′ defined by vL(e) = [pe, L] for any e ∈ B(L), then:

(i) vL is a monomorphism of Boolean algebras;

(ii) vL(B(L)) ∈ Re g(L′′).

Proof. (i) See Lemma 17.

(ii) To prove vL(B(L)) ∈ Re g(L′′), we suppose by contrary that there exist p1, p2 ∈ Mreg(L) such that [p1, d(p1)] �
[p2, d(p2)] (hence we have a ∈ d(p1)∩d(p2) such that p1(a) � p2(a)) and [p1, d(p1)]∧[pe, L] = [p2, d(p2)]∧[pe, L]

for any [pe, L] ∈ vA(B(L)) ∩ B(L′′)⇒ p1(x) ∧ e ∧ x = p2(x) ∧ e ∧ x for any x ∈ d(p1) ∩ d(p2) and any e ∈ B(L).
For e = 1 and x = a we deduce that p1(a) ∧ a = p2(a) ∧ a⇔ p1(a) = p2(a), a contradiction. �
Remark 9 Following Lemma 20 we can identify [pe, L] with pe, for every e ∈ B(L). So, the boolean elements can

be identified with the elements of {pe: e ∈ B(L)}.

Following the above consideration we deduce, as in the case of BL-algebras (see Buşneag & Piciu, 2005), that:

Lemma 25 If [p, d(p)] ∈ L′′ (with p ∈ Mreg(L) and J = d(p) ∈ I(L) ∩ Re g(L)), then J ∩ B(L) ⊆ {e ∈ B(L):
pe ∧ [p, d(p)] ∈ B(L)}.

4. Maximal MTL Algebra of Quotients

In this section by L we denote a MT L-algebra.

Definition 8 A MT L algebra G is called MT L algebra of fractions of L if:

(Fr1) B(L) is a MT L subalgebra of G;

(Fr2) For every f , g, h ∈ G, f � g, there is e ∈ B(L) such that e ∧ f � e ∧ g and e ∧ h ∈ B(L).

We write L  G if G is a MT L algebra of fractions of L.

Definition 9 Q(L) is the maximal MT L algebra of quotients of L if L  Q(L) and for any MT L algebra G with

L  G there is a injective morphism of MT L algebras j: G → Q(L).

Proposition 26 If L is a MT L− algebra and L  G, then G is a Boolean algebra.

Proof. Indeed, if suppose that G is not a Boolean algebra, by Theorem 2, there is f ∈ G such that f ∨ f ∗ � 1. Since

L  G, then there is a boolean element g such that g ∧ f is boolean and g ∧ ( f ∨ f ∗) � g. Since g ∧ f ∈ B(L), then

(g ∧ f ) ∨ (g ∧ f )∗ = 1 ⇒ (g ∧ f ) ∨ (g∗ ∨ f ∗) = 1 ⇒ [(g ∧ f ) ∨ g∗] ∨ f ∗ = 1 ⇒ [(g ∨ g∗) ∧ ( f ∨ g∗)] ∨ f ∗ = 1 ⇒
[1 ∧ ( f ∨ g∗)] ∨ f ∗ = 1 ⇒ ( f ∨ f ∗) ∨ g∗ = 1. By the unicity of the complement of g, we deduce that f ∨ f ∗ = g.
Then from g ∧ ( f ∨ f ∗) � g we obtain g ∧ g � g⇒ g � g, a contradiction. Hence G is a Boolean algebra. �
Corollary 27 Q(L) is a Boolean algebra.

As in Buşneag and Piciu (2005), we have:

Remark 10 If L is a Boolean algebra, obviously, B(L) = L. By Proposition 26, Q(L) is a Boolean algebra; the

axioms M1,M2,M3 are equivalent with M4 and Q(L) is just Dedekind-MacNeille completion of L (Schmid, 1980).

Lemma 28 Let L  G ; then for every f , g ∈ G, f � g, h1, ..., hn ∈ G, there exists a boolean element e such that
e ∧ f � e ∧ g and e ∧ hi ∈ B(L) for i = 1, 2, ..., n (n ≥ 2).

Lemma 29 Let L  G and g ∈ G. Then Ig = {e ∈ B(L): e ∧ g ∈ B(L)} ∈ I(B(L)) ∩ Mreg(L).

Theorem 30 L′′ (defined in Section 3) is the maximal (boolean) MT L algebra Q(L) of quotients of L.

Proof. From Lemma 24, (i), B(L) is a MT L subalgebra of L′′. Consider [ f1, d( f1)], [ f2, d( f2)], [ f3, d( f3)] ∈ L′′ ,

f1, f2, f3 ∈ Mreg(L) such that [ f2, d( f2)] � [ f3, d( f3)]. Then we have x′ ∈ d( f2) ∩ d( f3) with f2(x′) � f3(x′).

Consider J = d( f1) ∈ I(L) ∩ Reg(L) and J[ f1,d( f1)] = {a ∈ B(L) : pa ∧ [ f1, d( f1)] ∈ B(L)}. From Lemma 25,

J ∩ B(L) ⊆ I[ f1,d( f1)]. If suppose that for any a ∈ J ∩ B(L), pa ∧ [ f2, d( f2)] = pa ∧ [ f3, d( f3)], then [pa ∧ f2, d( f2)] =
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[pa ∧ f3, d( f3)], so for any x ∈ d( f2) ∩ d( f3) we have (pa ∧ f2)(x) = (pa ∧ f3)(x) i.e. a ∧ f2(x) = a ∧ f3(x). Because

J ∈ Re g(L), f2(x) = f3(x) for any x ∈ d( f2) ∩ d( f3) so [ f2, d( f2)] = [ f3, d( f3)], a contradiction.

If [ f2, d( f2)] � [ f3, d( f3)], then there is a ∈ J ∩ B(L), such that pa ∧ [ f2, d( f2)] � pa ∧ [ f3, d( f3)].

Since by Lemma 25, J ∩ B(L) ⊆ J[ f1,d( f1)]for this a ∈ J ∩ B(L) we have pa ∧ [ f1, d( f1)] ∈ B(L).

Now, consider G a MT L algebra such that L  G; obviously, B(L) ⊆ B(G)

L  G
↙ j

L′′

By Lemma 29, For a′ ∈ G, Ja′ = {e ∈ B(L): e ∧ a′ ∈ B(L)} ∈ I(B(L)) ∩ Reg(L).

pa′ : Ja′ → L, pa′ (x) = x ∧ a′ is a multiplier. Indeed, (M1) and (M2) are verified, because if e ∈ B(L) and x ∈ Ja′ ,
then pa′(e� x) = (e� x)∧a′ = (e∧ x)∧a′ = e∧ (x∧a′) = e� (x∧a′) = e� pa′(x), and x� (x→ pa′(x)) = x� [x→
(x ∧ a′)]

(c9)
= x ∧ (x ∧ a′) = x ∧ a′ = pa′ (x). To verify (M3), let e ∈ Ja′ ∩ B(L) = Ja′ . Thus, pa′(e) = e ∧ a′ ∈ B(L)

(since e ∈ Ja′ ). The condition (M4) is obviously verified, hence [pa′ , Ja′] ∈ L′′.

We define j: G → L′′, by j(a′) = [pa′ , Ja′ ], for every a′ ∈ G. Obviously, j(0) = 0. For a′, b′ ∈ G and x ∈ Ja′ ∩ Jb′ ,
( j(a′) ⊗ j(b′))(x) = (a′ ∧ x) � [x → (b′ ∧ x)] = (a′ � x) � [x → (b′ ∧ x)] = a′ � [x � (x → (b′ ∧ x))] =

a′ � [x ∧ (b′ ∧ x)] = a′ � (b′ ∧ x) = a′ � (b′ � x) = (a′ � b′) � x = (a′ � b′) ∧ x = j(a′ � b′)(x), hence

j(a′) ⊗ j(b′) = j(a′ � b′) and ( j(a′) � j(b′))(x) = x � [ j(a′)(x) → j(b′)(x)] = x � [(a′ ∧ x) → (b′ ∧ x)] =

x � [(x � a′)→ (x � b′)]
(c10)
= x � (a′ → b′) = x ∧ (a′ → b′) = j(a′ → b′)(x), hence j(a′)� j(b′) = j(a′ → b′).

Now, let a′, b′ ∈ G such that j(a′) = j(b′). It follows that [pa′ , Ja′ ] = [pb′ , Jb′ ], so pa′ (x) = pb′ (x) for any

x ∈ Ja′ ∩ Jb′ . So a′ ∧ x = b′ ∧ x for any x ∈ Ja′ ∩ Jb′ . By Lemma 28, if a′ � b′, since L  G, there is a boolean

element e such that e ∧ a′, e ∧ b′ ∈ B(A) and e ∧ a′ � e ∧ b′ which is contradictory (since e ∧ a′, e ∧ b′ ∈ B(L)

implies e ∈ Ja′ ∩ Jb′ ). �
Proposition 31 Let L be a MT L-algebra. The following are equivalent:

(i) Every maximal multiplier on L has domain L;

(ii) For every multiplier p ∈ M(J, L) there is e ∈ B(L) such that p = pe, (i.e., p(x) = e ∧ x for any x ∈ J);

(iii) Q(L) ≈ B(L).

Proof. (i) ⇒ (ii) Assume (i) and for p ∈ M(J, L) let p′ its the maximal extension (by Lemma 20). By (i), we have

p′: L → L. Put e = p′(1) ∈ B(L) (by M3), then for every x ∈ J , p(x) = p(x) ∧ 1
M4
= x ∧ p(1) = x ∧ e = pe(x), that

is p = pe.

(ii)⇒ (iii) Follow from Lemma 24.

(iii)⇒ (i) Follow from Lemma 20 and Lemma 24. �
Remark 11

1) If L is a MT L algebra with B(L) = L2 and L  G then G = {0, 1}, hence Q(L) = L′′ ≈ L2. Indeed, if

a1, a2, a3 ∈ G, a1 � a2, then there exists e ∈ B(L) (by (Fr2)) such that e ∧ a1 � e ∧ a2 (hence e � 0) and

e ∧ a3 ∈ B(L). Clearly, e = 1, hence a3 ∈ B(L), that is, G = B(L).

2) More general, if L is a MT L−algebra such that B(L) is finite and L  G then G = B(L), hence Q(L) = B(L).
Indeed, since L  G, we have B(L) ⊆ G. Let a ∈ G. Then there is e ∈ B(L) such that e ∧ a ∈ B(L). Q(L) is finite,

so, there is a largest element ea ∈ Q(L) with ea ∧ a ∈ B(L). Suppose ea ∨ a � ea. Then there is e ∈ B(L) such that

e ∧ (ea ∨ a) � e ∧ ea and e ∧ a ∈ B(L). Because e ∧ a ∈ B(L) we deduce e ≤ ea so e = e ∧ (ea ∨ a) � e ∧ ea = e, a
contradiction. Hence ea ∨ a = ea, so a ≤ ea, consequently a = a ∧ ea ∈ Q(L), that is G ⊆ Q(L). Then G = Q(L),
hence Q(L) ≈ B(L).
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