MTL Algebra of Fractions and Maximal MTL Algebra of Quotients

Dana Piciu¹, Antoneta Jeflea² & Justin Paralescu¹

¹ Faculty of Exact Sciences, Department of Mathematics, University of Craiova, Craiova, Romania

² Faculty of Bookkeeping Financial Management, University Spiru Haret, Constantza, Romania

Correspondence: Dana Piciu, Faculty of Exact Sciences, Department of Mathematics, University of Craiova, 13, Al. I. Cuza st., Craiova 200585, Romania. Tel: 40-251-413-728. E-mail: danap@central.ucv.ro

Received: April 8, 2013Accepted: May 16, 2013Online Published: May 28, 2013doi:10.5539/jmr.v5n2p115URL: http://dx.doi.org/10.5539/jmr.v5n2p115

Abstract

In this paper we introduce the notions of *MTL algebra of fractions* and *maximal MTL algebra of quotients for a MTL algebra* and prove constructively the existence of a maximal *MTL* algebra of quotients (see Buşneag & Piciu, 2005, for *BL* algebras).

Keywords: residuated lattice, Boolean algebra, *MTL* algebra, *BL* algebra, multiplier, *MTL* algebra of fractions, maximal *MTL* algebra of quotients

AMS Subject Classification 2010: 06D72, 03G25

1. Introduction

A localization ring $A_{\mathcal{F}}$ associated with a Gabriel topology \mathcal{F} for a ring A is a very important construction in ring theory. For the therm *localization* we have in view Chapter IV: *Localization* in N. Popescu's book (1971). The notion of *complete ring of quotients* for a commutative ring is introduced in Lambek's book (1966). This localization is relative to the *dense ideals* and is a special case of localization ring. Schmid define in 1980, the concept of *maximal lattice of quotients* for a distributive lattice using partial morphisms introduced by Findlay and Lambek (1966). The *multipliers* (defined for a distributive lattice by W. H. Cornish in 1974 and 1980) plays an important role in this constructions.

Basic (Fuzzy) logic (BL from now on) is the many-valued residuated logic introduced by Hájek in 1998 to cope with the logic of continuous t-norms and their residua. *Monoidal logic (ML* from now on), introduced by Hőhle (1995), is a logic whose algebraic counterpart is the class of residuated lattices; *MTL* algebras (see Esteva & Godo, 2001) are algebraic structures for the Esteva-Godo monoidal t-norm based logic (*MTL*), a many-valued propositional calculus that formalizes the structure of the real unit interval [0, 1], induced by a left-continuous t-norm. *MTL* algebras were independently introduced in Flondor, Georgescu, and Iorgulescu (2001) under the name *weak-BL algebras*. The results obtained in this paper for *MTL* algebras are analogously to the ones obtained for *BL* algebras in Buşneag and Piciu (2005). The main difference is that the equation $x \odot (x \rightarrow y) = x \land y$ is not valid for *MTL* algebras.

This paper is organized as follows: Section 2 is dedicated to basic definitions and rules of calculus in MTL algebras. In Section 3 we introduce the notion of *multiplier* for a MTL algebra. In the proof of Lemma 9 and Lemma 10 we have used mainly the rules c_{13} and c_{16} which are specific for MTL algebras (by Proposition 4 and Corollary 5). This explain why in this paper we have considered the particular case of MTL algebras and not the general case of residuated lattice.

In Section 4 we introduce the notions of *MTL algebra of fractions* and *maximal MTL algebra of quotients* for a *MTL* algebra. In Theorem 30 we prove the existence of the maximal *MTL* algebra of quotients for a *MTL* algebra.

This paper is a very important step in a future study of localization in the category of *MTL* algebras (and more general, in the category of residuated lattices).

For a survey relative to notion of fractions and localization in algebra of logic see Rudeanu (2010).

2. Definitions and First Properties

In this section we review the basic results relative to MTL algebras with more details and examples.

Definition 1 An algebra $(L, \land, \lor, \odot, \rightarrow, 0, 1)$ of type (2, 2, 2, 2, 0, 0) equipped with an order \leq is a residuated lattice (Blyth & Janovitz, 1972; Galatos, Jipsen, Kowalski, & Ono, 2007; Turunen, 1999), if it satisfies:

 (LR_1) $(L, \land, \lor, 0, 1)$ is a bounded lattice relative to order \leq ;

 (LR_2) $(L, \odot, 1)$ is an ordered commutative monoid;

 $(LR_3)(\odot, \rightarrow)$ is an adjoint pair $(z \le x \rightarrow y \text{ iff } x \odot z \le y \text{ for every } x, y, z \in L).$

For examples of residuated lattices see Buşneag and Piciu (2006), Galatos et al. (2007), and Turunen (1999).

In this section by *L* we denote the universe of a residuated lattice. We denote $x^* = x \rightarrow 0$ and $x^{**} = (x^*)^*$, for $x \in L$.

We review some rules of calculus for residuated lattices:

Theorem 1 (Buşneag & Piciu, 2006; Galatos et al., 2007) Let $x, y, z \in L$. Then:

- $(c_1) x \rightarrow x = 1, 1 \rightarrow x = x, 0 \rightarrow x = 1, y \le x \rightarrow y, x \odot (x \rightarrow y) \le y, x \rightarrow 1 = 1, x \odot 0 = 0;$
- $(c_2) x \le y iff x \to y = 1;$

(c₃) $x \le y$ implies $x \odot z \le y \odot z, z \to x \le z \to y$ and $y \to z \le x \to z$;

 $(c_4) x \rightarrow (y \rightarrow z) = (x \odot y) \rightarrow z = y \rightarrow (x \rightarrow z), so (x \odot y)^* = x \rightarrow y^* = y \rightarrow x^*;$

- (c₅) $x \odot x^* = 0$ and $x \odot y = 0$ iff $x \le y^*$;
- $(c_6) \ x \odot (y \lor z) = (x \odot y) \lor (x \odot z);$
- $(c_7) x \to (y \land z) = (x \to y) \land (x \to z).$

We shall denote $B(L) = \{x \in L: x \text{ is a complemented element in } (L, \land, \lor, 0, 1)\}$, which is a Boolean algebra (called the *Boolean center* of *L*).

Theorem 2 (Buşneag & Piciu, 2006) For $a \in L$, $a \in B(L)$ iff $a \lor a^* = 1$.

Theorem 3 (Buşneag & Piciu, 2006; Galatos et al., 2007) If $a_1, a_2 \in B(L)$ and $x, y \in L$, then:

- $(c_8) a_1 \odot x = a_1 \land x;$ $(c_9) x \odot (x \to a_1) = a_1 \land x, a_1 \odot (a_1 \to x) = a_1 \land x;$ $(c_{10}) a_1 \odot (x \to y) = a_1 \odot [(a_1 \odot x) \to (a_1 \odot y)];$
- $(c_{11}) x \odot (a_1 \to a_2) = x \odot [(x \odot a_1) \to (x \odot a_2)].$

Definition 2 (Esteva & Godo, 2001) A MTL algebra is a residuated lattice satisfying the preliniarity equation:

 $(c_{12}) (x \to y) \lor (y \to x) = 1.$

The variety of MTL algebras will be denoted by MTL.

Example 1 (Iorgulescu, 2004) Let $L = \{0, a, b, c, d, 1\}$, with 0 < a, b < c < 1, 0 < b < d < 1, but a, b and, respective c, d are incomparable. Then $(L, \land, \lor, \odot, \rightarrow, 0, 1)$ is an *MTL* algebra, where the operations \odot and \rightarrow are defined as follows:

\rightarrow	0	а	b	С	d	1		\odot	0	а	b	С	d	1
0	1	1	1	1	1	1	-	0	0	0	0	0	0	0
					d			a	0	а	0	а	0	а
b	С	С	1	1	1	1		b	0	0	0	0	b	b
С	b	С	d	1	d	1		С	0	а	0	a	b	С
d	a	а	С	С	1	1		d	0	0	b	b	d	d
1	0	а	b	С	d	1		1	0	а	b	С	d	1

Proposition 4 (Esteva & Godo, 2001) Let L be a residuated lattice. The following conditions are equivalent:

(*i*) $L \in \mathcal{MTL}$;

(ii) L is a subdirect product of linearly ordered residuated lattices;

(*iii*) (c_{13}) $x \to (y \lor z) = (x \to y) \lor (x \to z)$, for any $x, y, z \in L$;

 $(iv) (c_{14}) (x \land y) \rightarrow z = (x \rightarrow z) \lor (y \rightarrow z)$, for any $x, y, z \in L$.

Corollary 5 (Esteva & Godo, 2001; Flondor, Georgescu, & Iorgulescu, 2001) Let $L \in MT \mathcal{L}$. For every $x, y, z \in L$:

$$(c_{15}) (x \wedge y)^* = x^* \vee y^*;$$

 $(c_{16}) \ x \odot (y \land z) = (x \odot y) \land (x \odot z);$

$$(c_{17}) x \land (y \lor z) = (x \land y) \lor (x \land z);$$

 $(c_{18}) x \lor y = ((x \to y) \to y) \land ((y \to x) \to x).$

Remark 1 A *MTL* algebra *L* is a *BL* algebra iff in *L* is verified the divisibility condition: $x \odot (x \rightarrow y) = x \land y$. So, *BL* algebras are examples of *MTL* algebras; for an example of *MTL* algebra which is not *BL* algebra see Turunen (1999, p. 16). Also, every linearly ordered residuated lattice is a *MTL* algebra.

3. Multipliers on a MTL Algebra

By L we denote the universe of a MTL algebra.

Let $I_d(L) = \{I: I \text{ is an ideal in the lattice } (L, \land, \lor, 0, 1)\}$ (see Balbes & Dwinger, 1974) and I(L) the set of all decreasing subsets of L. We have that, $I(L) \subseteq I_d(L)$ and if $J_1, J_2 \in I(L)$, then $J_1 \cap J_2 \in I(L)$. Also, if $J \in I(L)$, then $0 \in J$.

Definition 3 A map $p: J \to L$, with $J \in \mathcal{I}(L)$, is a partial multiplier on L if it verifies the axioms:

 $(M_1) p(a \odot x) = a \odot p(x), a \in B(L), x \in J;$

 $(M_2) \ x \odot (x \to p(x)) = p(x), \ x \in J;$

 (M_3) If $a \in B(L) \cap J$, then $p(a) \in B(L)$;

 $(M_4) x \wedge p(a) = a \wedge p(x), a \in B(L) \cap J, x \in J.$

Remark 2 Since $x \odot (x \to p(x)) \le x$, from (M_2) we conclude that $p(x) \le x$, for $x \in J$.

Remark 3 We use *multiplier* instead *partial multiplier*.

By $d(p) \in \mathcal{I}(L)$ we denote the domain of p; we call p total if d(p) = L.

Example 2 Let $a \in B(L)$ and $J \in I(L)$. Then the map $p_a: J \to L$, $p_a(x) = a \land x \stackrel{(c_8)}{=} a \odot x$, for every $x \in J$ is a multiplier on *L*. We called this multiplier *principal*.

The axioms $(M_1), (M_3)$ and (M_4) are verified as in the case of *BL* algebras (see Buşneag & Piciu, 2005). Also, for $x \in J, x \odot (x \to p_a(x)) = x \odot (x \to (a \land x)) \stackrel{(c_1)}{=} x \odot [(x \to a) \land (x \to x)] = x \odot (x \to a) \stackrel{(c_2)}{=} a \land x = p_a(x)$, hence (M_2) is verified.

We denote p_a by $\overline{p_a}$ if $d(p_a) = L$. In particular, for a = 0, 1 the maps $\overline{p_0} = \mathbf{0}: L \to L, \overline{p_0}(x) = \mathbf{0}(x) = 0$, for every $x \in L$ and $\overline{p_1} = \mathbf{1}: L \to L, \overline{p_1}(x) = \mathbf{1}(x) = x$, for every $x \in L$ are total multipliers on L.

Remark 4 From (M_4) , if J = L, then for a = 1 we deduce that $x \wedge p(1) = p(x)$, so every total multiplier is principal. For $a \in L$ and $J = (a] = \{x \in L: x \le a\} \in I(L)$ we consider the map $g_a: J \to L, g_a(x) = a \odot (a \to x)$ for every $x \in J$.

Lemma 6 g_a verify $(M_1), (M_3)$ and (M_4) .

Proof. (M_1) . For $x \in J$ and $e \in B(L) \cap J$ (hence $x \le a, e \in B(L)$ and $e \le a$) we have: $g_a(e \odot x) = a \odot (a \to (e \odot x)) \stackrel{(c_8)}{=} a \odot (a \to (e \land x)) \stackrel{(c_7)}{=} a \odot [(a \to e) \land (a \to x)] \stackrel{(c_{16})}{=} [a \odot (a \to e)] \land [a \odot (a \to x)] = (a \land e) \land g_a(x) = e \land g_a(x) = e \odot g_a(x).$

 (M_3) . If $e \in B(L) \cap J$, then $e \in B(L)$ and $e \le a$, hence $g_a(e) = a \odot (a \rightarrow e) = a \land e = e \in B(L)$.

 (M_4) . Consider $x \in J$ and $e \in B(L) \cap J$ (that is, $x, e \leq a$ and $e \in B(L)$). Thus, $e \wedge g_a(x) = e \wedge [a \odot (a \to x)] = e \odot a \odot (a \to x) = (e \wedge a) \odot (a \to x) = e \odot (a \to x)$ and $x \wedge g_a(e) = x \wedge [a \odot (a \to e)] = x \wedge (a \wedge e) = x \wedge e = e \odot x$. Since $x \leq a \to x$, then $e \odot x \leq e \odot (a \to x)$, hence $x \wedge g_a(e) \leq e \wedge g_a(x)$.

From $e \le a$ we deduce that $a \to x \le e \to x$ hence $e \odot (a \to x) \le x$. Then $e \odot (a \to x) \le e \land x = e \odot x$, hence $e \land$

 $g_a(x) = x \wedge g_a(e).$

Following Lemma 6, we can obtain an example of multiplier which is not principal.

For this, we consider L = [0, 1] (see Turunen, 1999, p. 16) and for all $x, y \in L$ we define

$$x \odot y = 0$$
, if $x + y \le \frac{1}{2}$ and $x \odot y = x \land y$, if $x + y > \frac{1}{2}$
 $x \to y = 1$ if $x \le y$ and $x \to y = \max\{\frac{1}{2} - x, y\}$ if $x > y$.

Then $(L, \land, \lor, \odot, \rightarrow, 0, 1)$ is a *MTL*-algebra. Obviously, *L* is not a *BL*-algebra and *B*(*L*) = {0, 1}.

Lemma 7 $g_{\frac{1}{3}}$: $(\frac{1}{3}] = [0, \frac{1}{3}] \rightarrow L = [0, 1], g_{\frac{1}{3}}(x) = \frac{1}{3} \odot (\frac{1}{3} \rightarrow x)$ for every $0 \le x \le \frac{1}{3}$ is a multiplier on L = [0, 1] which is not principal.

Proof. Following Lemma 6, it is suffice to prove that $g_{\frac{1}{3}}$ verify (M_2) , that is, $x \odot (x \to g_{\frac{1}{3}}(x)) = g_{\frac{1}{3}}(x)$, for every $0 \le x \le \frac{1}{3}$.

For $0 \le x \le \frac{1}{3}$ we have $\frac{1}{3} \to x = \max\{\frac{1}{2} - \frac{1}{3}, x\} = \max\{\frac{1}{6}, x\} = \frac{1}{6}$ if $0 \le x \le \frac{1}{6}$ and $\frac{1}{3} \to x = x$ if $\frac{1}{6} < x \le \frac{1}{3}$, so $g_{\frac{1}{3}}(x) = \frac{1}{3} \odot \frac{1}{6} = 0$ for $0 \le x \le \frac{1}{6}$ and $g_{\frac{1}{3}}(x) = \frac{1}{3} \odot x$ for $\frac{1}{6} < x \le \frac{1}{3}$.

Since for $x > \frac{1}{6}, \frac{1}{3} + x > \frac{1}{3} + \frac{1}{6} = \frac{1}{2}$ we deduce that $g_{\frac{1}{3}}(x) = \frac{1}{3} \odot x = \frac{1}{3} \land x = x$, so $g_{\frac{1}{3}}(x) = 0$, for $0 \le x \le \frac{1}{6}$ and $g_{\frac{1}{3}}(x) = x$, for $\frac{1}{6} < x \le \frac{1}{3}$.

Then $x \to g_{\frac{1}{3}}(x) = x \to 0 = \max\{\frac{1}{2} - x, 0\} = \frac{1}{2} - x$ for $0 < x \le \frac{1}{6}$ and $x \to g_{\frac{1}{3}}(x) = x \to x = 1$, for $\frac{1}{6} < x \le \frac{1}{3}$. For $x = 0, 0 \to g_{\frac{1}{3}}(0) = 1$.

So $x \odot (x \to g_{\frac{1}{3}}(x)) = x \odot (\frac{1}{2} - x) = 0$, for $0 \le x \le \frac{1}{6}$ and $x \odot (x \to g_{\frac{1}{3}}(x)) = x \odot 1 = x$, for $\frac{1}{6} < x \le \frac{1}{3}$. For $x = 0, 0 \odot (0 \to g_{\frac{1}{2}}(0)) = 0$.

We deduce that $x \odot (x \to g_{\frac{1}{3}}(x)) = g_{\frac{1}{3}}(x)$, for every $0 \le x \le \frac{1}{3}$, that is $g_{\frac{1}{3}}$ verify (M_2) , hence $g_{\frac{1}{3}}$ is a multiplier on L = [0, 1]. It is easy to prove that $B(L) = \{0, 1\}$, so if suppose by contrary that $g_{\frac{1}{3}}$ is principal, then $g_{\frac{1}{3}} = p_0$ or $g_{\frac{1}{3}} = p_1$ (with $p_0, p_1: [0, \frac{1}{3}] \to [0, 1]$). Since $g_{\frac{1}{3}}(\frac{1}{3}) = \frac{1}{3} \odot (\frac{1}{3} \to \frac{1}{3}) = \frac{1}{3} \odot 1 = \frac{1}{3}$ and $p_0(\frac{1}{3}) = 0$ it follows that $g_{\frac{1}{3}} \ne p_0$.

Also,
$$g_{\frac{1}{3}}(\frac{1}{6}) = \frac{1}{3} \odot (\frac{1}{3} \to \frac{1}{6}) = \frac{1}{3} \odot 0 = 0$$
 and $p_1(\frac{1}{6}) = \frac{1}{6}$, so $g_{\frac{1}{3}} \neq p_1$.

For $J \in I(L)$, let $M(J,L) = \{p: J \to L \mid p \text{ is a multiplier on } L\}$, $M(L) = \bigcup \{M(J,L): J \in I(L)\}$ and $\overline{M}(L) = \{p: L \to L \mid p \text{ is a multiplier on } L\}$.

Proposition 8 If $J_1, J_2 \in \mathcal{I}(L)$ and $p_i \in M(J_i, L), i = 1, 2$, then

 $(c_{19}) p_1(t) \odot [t \rightarrow p_2(t)] = p_2(t) \odot [t \rightarrow p_1(t)], for every t \in J_1 \cap J_2.$

Proof. For $t \in J_1 \cap J_2$ we have $p_1(t) \odot [t \to p_2(t)] \stackrel{(M_2)}{=} t \odot (t \to p_1(t)) \odot (t \to p_2(t)) = [t \odot (t \to p_2(t))] \odot (t \to p_1(t))$ $\stackrel{(M_2)}{=} p_2(t) \odot [t \to p_1(t)].$

Definition 4 For $J_1, J_2 \in \mathcal{I}(L)$ and $p_i \in \mathcal{M}(J_i, L)$, i = 1, 2, we define $p_1 \wedge p_2$, $p_1 \vee p_2$, $p_1 \otimes p_2$, $p_1 \rightsquigarrow p_2$: $J_1 \cap J_2 \rightarrow L$ by $(p_1 \wedge p_2)(t) = p_1(t) \wedge p_2(t)$, $(p_1 \vee p_2)(t) = p_1(t) \vee p_2(t)$, $(p_1 \otimes p_2)(t) = p_1(t) \odot [t \rightarrow p_2(t)] \stackrel{(c_{19})}{=} p_2(t) \odot [t \rightarrow p_1(t)]$, $(p_1 \rightsquigarrow p_2)(t) = t \odot [p_1(t) \rightarrow p_2(t)]$, for every $t \in J_1 \cap J_2$.

Lemma 9 $p_1 \land p_2 \in M(J_1 \cap J_2, L)$.

Proof. It is sufficient to verify only (M_2) (for $(M_1), (M_3)$ and (M_4) see Buşneag & Piciu, 2005).

For any
$$t \in J_1 \cap J_2$$
 we have $t \odot [t \to (p_1 \land p_2)(t)] = t \odot [t \to (p_1(t) \land p_2(t))] \stackrel{(c_7)}{=} t \odot [(t \to p_1(t)) \land (t \to p_2(t))] \stackrel{(c_{16})}{=} [t \odot (t \to p_1(t))] \land [t \odot (t \to p_2(t))] \stackrel{(M_2)}{=} p_1(t) \land p_2(t) = (p_1 \land p_2)(t).$

Lemma 10 $p_1 \lor p_2 \in M(J_1 \cap J_2, L)$.

Proof. The axioms $(M_1), (M_3)$ and (M_4) are verified as in the case of *BL* algebras (see Buşneag & Piciu, 2005). To verify (M_2) , let $t \in J_1 \cap J_2$. Then $t \odot [t \to (p_1 \lor p_2)(t)] = t \odot [t \to (p_1(t) \lor p_2(t))] \stackrel{(c_{13})}{=} t \odot [(t \to p_1(t)) \lor (t \to p_2(t))] \stackrel{(c_6)}{=} [t \odot (t \to p_1(t))] \lor [t \odot (t \to p_2(t))] \stackrel{(M_2)}{=} p_1(t) \lor p_2(t) = (p_1 \lor p_2)(t).$

Lemma 11 $p_1 \otimes p_2 \in M(J_1 \cap J_2, L)$.

Proof. (M_1) is verified as in the case of *BL* algebras (see Buşneag, & Piciu, 2005), using (c_{10}) . To prove (M_2) , let $t \in J_1 \cap J_2$ and denote $p = p_1 \otimes p_2$.

To prove the equality $t \odot (t \to p(t)) = p(t)$ it is sufficient to prove that $p(t) \le t \odot (t \to p(t))$. We have $p(t) = p_1(t) \odot (t \to p_2(t)) = t \odot (t \to p_1(t)) \odot (t \to p_2(t))$ and $t \odot (t \to p(t)) = t \odot [t \to (p_1(t) \odot (t \to p_2(t)))] = t \odot [t \to (t \odot (t \to p_1(t)) \odot (t \to p_2(t)))]$. So, to prove that $p(t) \le t \odot (t \to p(t))$ it is sufficient to prove that $t \odot (t \to p_1(t)) \odot (t \to p_2(t)) \le t \odot [t \to (t \odot (t \to p_1(t)) \odot (t \to p_2(t))] \le t \odot [t \to (t \odot (t \to p_1(t)) \odot (t \to p_2(t))]$, that is, $\varphi \le t \to (t \odot \varphi)$ (with $\varphi \stackrel{not}{=} (t \to p_1(t)) \odot (t \to p_2(t))$), which is true, since $\varphi \to [t \to (t \odot \varphi)] \stackrel{(c_4)}{=} (\varphi \odot t) \to (t \odot \varphi) = 1$. (M_3) and (M_4) are verified as in the case of BL algebras (see Buşneag & Piciu, 2005), using (c_{10}) and (c_{11}) .

Lemma 12 $p_1 \rightsquigarrow p_2 \in M(J_1 \cap J_2, L)$.

Proof. (M_1) is verified as in the case of *BL* algebras (see Buşneag & Piciu, 2005) using (c_{10}) . To prove (M_2) , let $t \in J_1 \cap J_2$ and denote $p = p_1 \rightsquigarrow p_2 : J_1 \cap J_2 \rightarrow L$; then $p(t) = t \odot [p_1(t) \rightarrow p_2(t)]$. We have $p_1(t) \rightarrow p_2(t) \le t \rightarrow [t \odot (p_1(t) \rightarrow p_2(t))]$, hence $t \odot [p_1(t) \rightarrow p_2(t)] \le t \odot [t \rightarrow (t \odot (p_1(t) \rightarrow p_2(t)))] \Leftrightarrow p(t) \le t \odot [t \rightarrow p(t)] \Leftrightarrow p(t) = t \odot [t \rightarrow p(t)]$.

 (M_3) and (M_4) are verified as in the case of *BL* algebras (see Buşneag, & Piciu, 2005) using (c_{10}) and (c_{11}) .

Proposition 13

(*i*) For every $p \in M(L)$, $p \otimes 1 = 1 \otimes p = p$;

(*ii*) For every $p_1, p_2, p_3 \in M(L), p_1 \otimes (p_2 \otimes p_3) = (p_1 \otimes p_2) \otimes p_3$ and for every $t \in d(p_1) \cap d(p_2) \cap d(p_3), p_1(t) \leq (p_2 \rightsquigarrow p_3)(t)$ iff $(p_1 \otimes p_2)(t) \leq p_3(t)$;

(*iii*) For every $p_1, p_2 \in M(L)$ and $t \in d(p_1) \cap d(p_2), (p_1 \rightsquigarrow p_2)(t) \lor (p_2 \rightsquigarrow p_1)(t) = \mathbf{1}(t)$.

Proof. (*i*) If J = dom(p) and $t \in J$, then $(p \otimes 1)(t) = p(t) \odot (t \rightarrow 1(t)) = p(t) \odot (t \rightarrow t) = p(t) \odot 1 = p(t)$ and $(1 \otimes p)(t) = t \odot (t \rightarrow p(t)) = p(t)$, that is, $p \otimes 1 = 1 \otimes p = p$.

(*ii*) Let $p_i \in M(J_i, L)$ where $J_i \in I(L)$, i = 1, 2, 3. Thus, for $t \in J_1 \cap J_2 \cap J_3$ we have $[p_1 \otimes (p_2 \otimes p_3)](t) = ((p_2 \otimes p_3)(t)) \odot (t \rightarrow p_1(t)) = [p_2(t) \odot (t \rightarrow p_3(t))] \odot (t \rightarrow p_1(t)) = p_2(t) \odot [(t \rightarrow p_3(t)) \odot (t \rightarrow p_1(t))] = p_2(t) \odot [(t \rightarrow p_1(t)) \odot (t \rightarrow p_3(t))] = [p_2(t) \odot (t \rightarrow p_1(t))] \odot (t \rightarrow p_3(t)) = ((p_1 \otimes p_2)(t)) \odot (t \rightarrow p_3(t)) = [(p_1 \otimes p_2) \otimes p_3](t)$, that is the operation \otimes is associative.

For $t \in J_1 \cap J_2 \cap J_3$ we have $p_1(t) \leq (p_2 \rightsquigarrow p_3)(t) \Leftrightarrow p_1(t) \leq t \odot [p_2(t) \rightarrow p_3(t)]$. So, by (c_3) , $p_1(t) \odot [t \rightarrow p_2(t)] \leq t \odot (t \rightarrow p_2(t)) \odot (p_2(t) \rightarrow p_3(t)) \stackrel{(M_2)}{\Leftrightarrow} p_1(t) \odot [t \rightarrow p_2(t)] \leq p_2(t) \odot (p_2(t) \rightarrow p_3(t)) \leq p_3(t) \Leftrightarrow (p_1 \otimes p_2)(t) \leq p_3(t)$, for any $t \in J_1 \cap J_2 \cap J_3$, that is, $p_1 \otimes p_2 \leq p_3$. Conversely, if $(p_1 \otimes p_2)(t) \leq p_3(t)$ we have $p_2(t) \odot [t \rightarrow p_1(t)] \leq p_3(t)$, for any $t \in J_1 \cap J_2 \cap J_3$. Obviously, $t \rightarrow p_1(t) \leq p_2(t) \rightarrow p_3(t) \stackrel{(c_3)}{\Leftrightarrow} t \odot (t \rightarrow p_1(t)) \leq t \odot (p_2(t) \rightarrow p_3(t)) \Leftrightarrow p_1(t) \leq (p_2 \rightsquigarrow p_3)(t)$.

(*iii*) We have $(p_1 \rightsquigarrow p_2)(t) \lor (p_2 \rightsquigarrow p_1)(t) = [t \odot (p_1(t) \rightarrow p_2(t))] \lor [t \odot (p_2(t) \rightarrow p_1(t))] = t \odot [(p_1(t) \rightarrow p_2(t)) \lor (p_2(t) \rightarrow p_1(t))] = t \odot 1 = t = \mathbf{1}(t).$

Corollary 14 ($\overline{M}(L)$, \land , \lor , \otimes , \rightsquigarrow , **0**, **1**) *is a MTL algebra.*

Definition 5 (Esteva & Godo, 2001; Freytes, 2004) A MTL algebra L is called

(*i*) an *IMTL* algebra (involutive algebra) if it satisfies the equation

(*I*) $x^{**} = x;$

(ii) a SMTL algebra if it satisfies the equation

 $(S) x \wedge x^* = 0;$

(iii) a WNM algebra (weak nilpotent minimum) if it satisfies the equation

 $(W) (x \odot y)^* \lor [(x \land y) \to (x \odot y)] = 1;$

(iv) a $\Pi S MTL$ algebra if it is a S MTL algebra satisfying the equation

 $(\Pi) \ [z^{**} \odot ((x \odot z) \to (y \odot z))] \to (x \to y) = 1.$

Theorem 15

(*i*) If *L* is a *BL* algebra, then for every $f_1, f_2 \in M(L)$, $(f_1 \otimes (f_1 \rightsquigarrow f_2))(x) = (f_1 \land f_2)(x)$, for every $x \in d(f_1) \cap d(f_2)$; (*ii*) If *L* is an *IMTL* algebra, then $f^{**} = f$, for every $f \in M(L)$;

(iii) If L is a SMTL algebra, then for every $f \in \overline{M}(L)$, $f \wedge f^* = 0$;

(iv) If L is a WNM algebra, then for every $f_1, f_2 \in \overline{M}(L), (f_1 \otimes f_2)^* \vee ((f_1 \wedge f_2) \rightsquigarrow (f_1 \otimes f_2)) = 1;$

(v) If *L* is a $\Pi S MTL$ algebra, then for every $f, g, h \in \overline{M}(L), [h^{**} \otimes ((f \otimes h) \rightsquigarrow (g \otimes h))] \rightsquigarrow (f \rightsquigarrow g) = 1$.

Proof. (*i*) Suppose *L* is a *BL* algebra (see Remark 1). Let $f_1, f_2 \in M(L), f_1: J_1 \to L, f_2: J_2 \to L$, with $J_1, J_2 \in I(L)$. For every $x \in J_1 \cap J_2$ we have $(f_1 \otimes (f_1 \rightsquigarrow f_2))(x) = (f_1 \wedge f_2)(x) \Leftrightarrow (f_1 \rightsquigarrow f_2)(x) \odot [x \to f_1(x)] = f_1(x) \wedge f_2(x)$ $\Leftrightarrow x \odot [f_1(x) \to f_2(x)] \odot [x \to f_1(x)] = f_1(x) \wedge f_2(x) \Leftrightarrow (x \odot [x \to f_1(x)]) \odot [f_1(x) \to f_2(x)] = f_1(x) \wedge f_2(x) \Leftrightarrow f_1(x) \odot [f_1(x) \to f_2(x)] = f_1(x) \wedge f_2(x)$, which is true because *L* is supposed a *BL* algebra.

(*ii*) Suppose *L* is an *IMTL* algebra. For $f \in M(L), f: J \to L$ and $x \in J$, we have $f^{**} = (f \rightsquigarrow \mathbf{0}) \rightsquigarrow \mathbf{0}$ and $f^{**}(x) = x \odot [x \odot f^*(x)]^* \stackrel{(c_4)}{=} x \odot [x \to (f(x))^{**}] \stackrel{(l)}{=} x \odot [x \to f(x)] \stackrel{(M_2)}{=} f(x)$, hence $f^{**} = f$.

(*iii*) Suppose *L* is a *SMTL* algebra. If $f \in \overline{M}(L)$, $f: L \to L$, then the equation $f \wedge f^* = \mathbf{0}$ is equivalent with $f \wedge (f \rightsquigarrow \mathbf{0}) = \mathbf{0} \Leftrightarrow f(x) \wedge [x \odot (f(x))^*] = 0$, for every $x \in L$, which is clearly (since $f(x) \wedge [x \odot (f(x))^*] \leq f(x) \wedge (f(x))^* = 0$), hence $f \wedge f^* = \mathbf{0}$.

(*iv*) Suppose *L* is a *WNM* algebra. Let $f_1, f_2 \in \overline{M}(L), f_1, f_2: L \to L$ and $x \in L$. We denote $a = f_1(x), b = f_2(x)$. We have $((f_1 \otimes f_2)^* \vee ((f_1 \wedge f_2) \rightsquigarrow (f_1 \otimes f_2)))(x) = ((f_1 \otimes f_2)^*(x)) \vee (x \odot ((f_1 \wedge f_2)(x) \to (f_1 \otimes f_2)(x))) = (x \odot (a \odot (x \to b))^*) \vee (x \odot ((a \wedge b) \to (a \odot (x \to b)))) \stackrel{(c_6)}{=} x \odot ((a \odot (x \to b))^* \vee ((a \wedge b) \to (a \odot (x \to b))))$.

Since $b \le x \to b$ we deduce that $a \land b \le a \land (x \to b)$, hence $(using (c_3)) (a \land (x \to b)) \to (a \odot (x \to b)) \le (a \land b) \to (a \odot (x \to b))$.

Since *L* is supposed a *WNM*-algebra we obtain $1 = (a \odot (x \rightarrow b))^* \lor ((a \land (x \rightarrow b)) \rightarrow (a \odot (x \rightarrow b))) \le (a \odot (x \rightarrow b))) \le (a \odot (x \rightarrow b)))$, hence $(a \odot (x \rightarrow b))^* \lor ((a \land b) \rightarrow (a \odot (x \rightarrow b))) = 1$. Then $((f_1 \otimes f_2)^* \lor ((f_1 \land f_2) \rightsquigarrow (f_1 \otimes f_2)))(x) = x \odot 1 = x = \mathbf{1}(x) \Leftrightarrow (f_1 \otimes f_2)^* \lor ((f_1 \land f_2) \rightsquigarrow (f_1 \otimes f_2)) = \mathbf{1}$.

(v) Suppose now *L* is a IIS *MTL* algebra. From the condition $x \wedge x^* = 0$ ($x \in L$), we deduce that $x^* \vee x^{**} \stackrel{(c_{15})}{=} (x \wedge x^*)^* = 0^* = 1$, that is, $x^* \in B(L)$. For *f*, *g*, *h*: $L \to L$, and $x \in L$ we denote $a_1 = f(x), a_2 = g(x)$ and $a_3 = h(x)$. Then $h^{**}(x) = x \odot (x \to a_3^{**}) \stackrel{(c_9)}{=} x \wedge a_3^{**} \stackrel{(c_8)}{=} x \odot a_3^{**}$, $[h^{**} \otimes ((f \otimes h) \rightsquigarrow (g \otimes h))](x) = [x \to h^{**}(x)] \odot [x \odot [(f \otimes h)(x) \to (g \otimes h)(x)]] = [x \to (x \odot a_3^{**})] \odot [x \odot [((x \to a_1) \odot a_3) \to ((x \to a_2) \odot a_3)]] = [x \odot (x \odot (x \to (x \odot a_3^{**}))] \odot [((x \to a_1) \odot a_3) \to ((x \to a_2) \odot a_3)]] = [x \odot [a_3^{**} \odot [((x \to a_1) \odot a_3) \to ((x \to a_2) \odot a_3)]] \stackrel{(II)}{\leq} x \odot [(x \to a_1) \to (x \to a_2)] = x \odot [(x \odot (x \to a_1)) \to a_2] \stackrel{(M_2)}{=} x \odot (a_1 \to a_2) = (f \to g)(x)$, hence $[h^{**} \otimes ((f \otimes h) \rightsquigarrow (g \otimes h))] \rightsquigarrow (f \to g) = 1$.

Corollary 16 If L is a BL algebra (resp. an IMTL algebra, a SMTL algebra, a WNM algebra, a $\Pi SMTL$ algebra) then $\overline{M}(L)$ is a BL algebra (resp. an IMTL algebra, a SMTL algebra, a WNM algebra, a $\Pi SMTL$ algebra).

Using the rules (c_6) , (c_{10}) and (c_{11}) we obtain:

Lemma 17 $v_L : B(L) \to \overline{M}(L), v_L(a) = \overline{p_a}$ for every $a \in B(L)$, is a monomorphism of MTL algebras.

Definition 6 A subset $J \subseteq L$ is called regular if for every $x, y \in L$ such that $x \wedge f = y \wedge f$ for every $f \in B(L) \cap J$, then x = y.

Denote $\operatorname{Re} g(L)$ the set of all regular subset of *L*.

Example 3 We give an example of non-trivial regular subset in a *MTL* algebra. Consider $L = \{0, a, b, c, d, 1\}$ the *MTL*-algebra from Example 1. We have that $B(L) = \{0, a, d, 1\}$ and if consider $J = \{0, b, d, a\}$, then $J \in I(L)$. It is easy to prove that for any $x, y \in L$ with $x \neq y$, there is $f \in J \cap B(L) = \{0, a, d\}$ such that $x \wedge f \neq y \wedge f$, that is, $J \in Reg(L)$.

Remark 5 The condition $J \in Reg(L)$ is equivalent with: if $x, y \in L$ and $p_{x|J \cap B(L)} = p_{y|J \cap B(L)}$, then x = y.

Lemma 18 If $J_1, J_2 \in \mathcal{I}(L) \cap Reg(L)$, then $J_1 \cap J_2 \in \mathcal{I}(L) \cap Reg(L)$.

Denote $M_{reg}(L) = \{p \in M(L): d(p) \in I(L) \cap Reg(L)\}.$

Remark 6 By Lemmas 9-12 and 18 we deduce that if $p_1, p_2 \in M_{reg}(L)$, then $p_1 \otimes p_2, p_1 \rightsquigarrow p_2 \in M_{reg}(L)$. **Proposition 19** Let $p: J \to L$ be a multiplier on L with $J \in I(L) \cap Reg(L)$. Then $(p \lor p^*)(x) = x$, for every $x \in J$. *Proof.* Let $a \in B(L) \cap J$ and $x \in J$. Then

$$\begin{aligned} a \wedge [p \vee p^*](x) &= a \wedge [p(x) \vee (x \odot (p(x))^*)] = [a \wedge p(x)] \vee [a \wedge (x \odot (p(x))^*)] \\ &= [x \odot p(a)] \vee [x \odot a \odot (p(x))^*] \stackrel{c_{10}}{=} [x \odot p(a)] \vee [x \odot a \odot (a \odot p(x))^*] \\ \stackrel{M_4}{=} [x \odot p(a)] \vee [x \odot a \odot (x \odot p(a))^*] = [x \odot p(a)] \vee [x \odot a \odot (x \wedge p(a))^*] \\ \stackrel{c_{15}}{=} [x \odot p(a)] \vee [x \odot a \odot (x^* \vee (p(a))^*)] \stackrel{c_6}{=} [x \odot p(a)] \vee [a \odot ((x \odot x^*) \vee (x \odot (p(a))^*))] \\ &= [x \odot p(a)] \vee [a \odot (0 \vee (x \odot (p(a))^*))] = [x \odot p(a)] \vee [a \odot x \odot (p(a))^*] \\ &= [x \odot p(a)] \vee [x \odot (a \odot (p(a))^*)] \stackrel{c_6}{=} x \odot [p(a) \vee (a \odot (p(a))^*)] \\ &= x \odot [p(a) \vee (a \wedge (p(a))^*)] = x \odot [(p(a) \vee a) \wedge (p(a) \vee (p(a))^*)] \\ &= x \odot (a \wedge 1) = x \odot a = x \wedge a, \end{aligned}$$

so $(p \lor p^*)(x) = x$, since $J \in Reg(L)$.

Definition 7 Let two multipliers p_1, p_2 on L. We say that p_2 extends p_1 if $d(p_1) \subseteq d(p_2)$ and $p_{2|d(p_1)} = p_1$; if p_2 extends p_1 , we write $p_1 \sqsubseteq p_2$. If we can not be extended a multiplier p to a strictly larger domain, we called p maximal.

Lemma 20

(*i*) If $p_1, p_2 \in M(L)$, $p \in M_{reg}(L)$ and $p \sqsubseteq p_1, p \sqsubseteq p_2$, then p_1 and p_2 coincide on the $d(p_1) \cap d(p_2)$;

(*ii*) any $p \in M_r(L)$ can be extended to a maximal multiplier. For any principal multiplier $p_a, a \in B(L), d(p_a) \in I(L) \cap Reg(L)$ there is an uniquely total multiplier $\overline{p_a}$ such that $p_a \sqsubseteq \overline{p_a}$ and for any non-principal multiplier p there is a maximal non-principal multiplier r such that $p \sqsubseteq r$.

On $M_{reg}(L)$ we consider the relation ρ_L defined by $(p_1, p_2) \in \rho_L$ iff $p_{1|d(p_1) \cap d(p_2)} = p_{2|d(p_1) \cap d(p_2)}$.

Lemma 21 ρ_L is an equivalence relation on $M_{reg}(L)$ compatible with \land, \lor, \otimes and \rightsquigarrow .

Proof. Obviously, ρ_L is an equivalence relation on $M_{reg}(L)$ compatible with \wedge and \vee .

For the compatibility of ρ_L with \otimes and \rightsquigarrow on $M_{reg}(L)$, let $(p_1, p_2), (r_1, r_2) \in \rho_L$.

Let $t \in d(p_1) \cap d(p_2) \cap d(r_1) \cap d(r_2)$. We have $p_1(t) = p_2(t)$ and $r_1(t) = r_2(t)$, so

$$(p_1 \otimes r_1)(t) = p_1(t) \odot (t \to r_1(t)) = p_2(t) \odot (t \to r_2(t)) = (p_2 \otimes r_2)(t),$$

$$(p_1 \rightsquigarrow r_1)(t) = t \odot [p_1(t) \rightarrow r_1(t)] = t \odot [p_2(t) \rightarrow r_2(t)] = (p_2 \rightsquigarrow r_2)(t),$$

that is, $(p_1 \otimes r_1, p_2 \otimes r_2), (p_1 \rightsquigarrow r_1, p_2 \rightsquigarrow r_2) \in \rho_L$.

For $p \in M_{reg}(L)$ with $J = d(p) \in \mathcal{I}(L) \cap Reg(L)$, we denote by [p, J] the congruence class of p modulo ρ_L and $L'' = M_{reg}(L)/\rho_L$.

On *L*'' we define the order relation $[p_1, J_1] \leq [p_2, J_2]$ iff $p_1(x) \leq p_2(x)$, for every $x \in J_1 \cap J_2$.

It is a routine to prove the following result:

Lemma 22 (L'', \leq) is a bounded lattice, where for $[p_1, J_1], [p_2, J_2] \in L'', [p_1, J_1] \land [p_2, J_2] = [p_1 \land p_2, J_1 \cap J_2]$ and $[p_1, J_1] \lor [p_2, J_2] = [p_1 \lor p_2, J_1 \cap J_2], \mathbf{0} = [\mathbf{0}, L], \mathbf{1} = [\mathbf{1}, L].$

For $[p_1, J_1], [p_2, J_2] \in L''$, we define $[p_1, J_1] \otimes [p_2, J_2] = [p_1 \otimes p_2, J_1 \cap J_2]$ and $[p_1, J_1] \rightsquigarrow [p_2, J_2] = [p_1 \rightsquigarrow p_2, J_1 \cap J_2]$ (where $[p_1 \otimes p_2$ and $p_1 \rightsquigarrow p_2$ are defined in Definition 4).

Proposition 23 $(L'', \land, \lor, \otimes, \rightsquigarrow, \mathbf{0}, \mathbf{1})$ *is a MTL-algebra*.

Proof. We verify the axioms of *MTL*-algebras.

- (LR_1) Follows from Lemma 22;
- (LR_2) Follows from Proposition 13, (i), (ii);

(*LR*₃) Follows from Proposition 13, (*ii*);

The preliniarity equation (c_{12}) follows from Proposition 13, *(iii)*.

Remark 7 From Theorem 2, Propositions 19 and 23 we deduce that L'' is a Boolean algebra.

Remark 8 If consider $\mathcal{F} = \mathcal{I}(L) \cap \text{Re } g(L)$ and the partially ordered systems $\{\delta_{I,J}\}_{I,J \in \mathcal{F}, I \subseteq J}$ (for $I, J \in \mathcal{F}, I \subseteq J, \delta_{I,J}$: $M(J,L) \to M(I,L)$ is defined by $\delta_{I,J}(f) = f_{|I}$), then $L'' = \lim_{I \in \mathcal{F}} M(I,L)$.

Lemma 24 If consider $\overline{v_L} : B(L) \to L''$ defined by $\overline{v_L}(e) = [\overline{p_e}, L]$ for any $e \in B(L)$, then:

(i) $\overline{v_L}$ is a monomorphism of Boolean algebras;

(*ii*) $\overline{v_L}(B(L)) \in \operatorname{Re} g(L'')$.

Proof. (i) See Lemma 17.

(*ii*) To prove $\overline{v_L}(B(L)) \in \text{Re } g(L'')$, we suppose by contrary that there exist $p_1, p_2 \in M_{reg}(L)$ such that $[p_1, d(p_1)] \neq [p_2, d(p_2)]$ (hence we have $a \in d(p_1) \cap d(p_2)$ such that $p_1(a) \neq p_2(a)$) and $[p_1, d(p_1)] \wedge [\overline{p_e}, L] = [p_2, d(p_2)] \wedge [\overline{p_e}, L]$ for any $[\overline{p_e}, L] \in \overline{v_A}(B(L)) \cap B(L'') \Rightarrow p_1(x) \land e \land x = p_2(x) \land e \land x$ for any $x \in d(p_1) \cap d(p_2)$ and any $e \in B(L)$. For e = 1 and x = a we deduce that $p_1(a) \land a = p_2(a) \land a \Leftrightarrow p_1(a) = p_2(a)$, a contradiction.

Remark 9 Following Lemma 20 we can identify $[\overline{p_e}, L]$ with $\overline{p_e}$, for every $e \in B(L)$. So, the boolean elements can be identified with the elements of $\{\overline{p_e}: e \in B(L)\}$.

Following the above consideration we deduce, as in the case of BL-algebras (see Buşneag & Piciu, 2005), that:

Lemma 25 If $[p, d(p)] \in L''$ (with $p \in M_{reg}(L)$ and $J = d(p) \in I(L) \cap \operatorname{Re} g(L)$), then $J \cap B(L) \subseteq \{e \in B(L): \overline{p_e} \land [p, d(p)] \in B(L)\}$.

4. Maximal MTL Algebra of Quotients

In this section by L we denote a *MTL*-algebra.

Definition 8 A *MTL* algebra *G* is called *MTL* algebra of fractions of *L* if:

 $(Fr_1) B(L)$ is a *MTL* subalgebra of *G*;

 (Fr_2) For every $f, g, h \in G, f \neq g$, there is $e \in B(L)$ such that $e \wedge f \neq e \wedge g$ and $e \wedge h \in B(L)$.

We write $L \sqsubseteq G$ if G is a *MTL* algebra of fractions of L.

Definition 9 Q(L) is the maximal *MTL* algebra of quotients of *L* if $L \subseteq Q(L)$ and for any *MTL* algebra *G* with $L \subseteq G$ there is a injective morphism of *MTL* algebras $j: G \to Q(L)$.

Proposition 26 If L is a MTL- algebra and $L \sqsubseteq G$, then G is a Boolean algebra.

Proof. Indeed, if suppose that *G* is not a Boolean algebra, by Theorem 2, there is $f \in G$ such that $f \vee f^* \neq 1$. Since $L \sqsubseteq G$, then there is a boolean element *g* such that $g \wedge f$ is boolean and $g \wedge (f \vee f^*) \neq g$. Since $g \wedge f \in B(L)$, then $(g \wedge f) \vee (g \wedge f)^* = 1 \Rightarrow (g \wedge f) \vee (g^* \vee f^*) = 1 \Rightarrow [(g \wedge f) \vee g^*] \vee f^* = 1 \Rightarrow [(g \vee g^*) \wedge (f \vee g^*)] \vee f^* = 1 \Rightarrow [1 \wedge (f \vee g^*)] \vee f^* = 1 \Rightarrow (f \vee f^*) \vee g^* = 1$. By the unicity of the complement of *g*, we deduce that $f \vee f^* = g$. Then from $g \wedge (f \vee f^*) \neq g$ we obtain $g \wedge g \neq g \Rightarrow g \neq g$, a contradiction. Hence *G* is a Boolean algebra.

Corollary 27 Q(L) is a Boolean algebra.

As in Buşneag and Piciu (2005), we have:

Remark 10 If L is a Boolean algebra, obviously, B(L) = L. By Proposition 26, Q(L) is a Boolean algebra; the axioms M_1, M_2, M_3 are equivalent with M_4 and Q(L) is just Dedekind-MacNeille completion of L (Schmid, 1980).

Lemma 28 Let $L \sqsubseteq G$; then for every $f, g \in G, f \neq g, h_1, ..., h_n \in G$, there exists a boolean element e such that $e \land f \neq e \land g$ and $e \land h_i \in B(L)$ for i = 1, 2, ..., n $(n \ge 2)$.

Lemma 29 Let $L \sqsubseteq G$ and $g \in G$. Then $I_g = \{e \in B(L): e \land g \in B(L)\} \in I(B(L)) \cap M_{reg}(L)$.

Theorem 30 L'' (defined in Section 3) is the maximal (boolean) MTL algebra Q(L) of quotients of L.

Proof. From Lemma 24, (*i*), B(L) is a MTL subalgebra of L''. Consider $[f_1, d(f_1)], [f_2, d(f_2)], [f_3, d(f_3)] \in L''$, $f_1, f_2, f_3 \in M_{reg}(L)$ such that $[f_2, d(f_2)] \neq [f_3, d(f_3)]$. Then we have $x' \in d(f_2) \cap d(f_3)$ with $f_2(x') \neq f_3(x')$.

Consider $J = d(f_1) \in I(L) \cap Reg(L)$ and $J_{[f_1,d(f_1)]} = \{a \in B(L) : \overline{p_a} \land [f_1,d(f_1)] \in B(L)\}$. From Lemma 25, $J \cap B(L) \subseteq I_{[f_1,d(f_1)]}$. If suppose that for any $a \in J \cap B(L)$, $\overline{p_a} \land [f_2,d(f_2)] = \overline{p_a} \land [f_3,d(f_3)]$, then $[\overline{p_a} \land f_2,d(f_2)] = \overline{p_a} \land [f_3,d(f_3)]$.

 $[\overline{p_a} \wedge f_3, d(f_3)]$, so for any $x \in d(f_2) \cap d(f_3)$ we have $(\overline{p_a} \wedge f_2)(x) = (\overline{p_a} \wedge f_3)(x)$ i.e. $a \wedge f_2(x) = a \wedge f_3(x)$. Because $J \in \operatorname{Re} g(L), f_2(x) = f_3(x)$ for any $x \in d(f_2) \cap d(f_3)$ so $[f_2, d(f_2)] = [f_3, d(f_3)]$, a contradiction.

If $[f_2, d(f_2)] \neq [f_3, d(f_3)]$, then there is $a \in J \cap B(L)$, such that $\overline{p_a} \wedge [f_2, d(f_2)] \neq \overline{p_a} \wedge [f_3, d(f_3)]$.

Since by Lemma 25, $J \cap B(L) \subseteq J_{[f_1,d(f_1)]}$ for this $a \in J \cap B(L)$ we have $\overline{p_a} \wedge [f_1,d(f_1)] \in B(L)$.

Now, consider *G* a *MTL* algebra such that $L \sqsubseteq G$; obviously, $B(L) \subseteq B(G)$

$$L \sqsubseteq G$$

 \swarrow
 L''

By Lemma 29, For $a' \in G$, $J_{a'} = \{e \in B(L): e \land a' \in B(L)\} \in \mathcal{I}(B(L)) \cap Reg(L)$.

 $p_{a'}: J_{a'} \to L, p_{a'}(x) = x \land a'$ is a multiplier. Indeed, (M_1) and (M_2) are verified, because if $e \in B(L)$ and $x \in J_{a'}$, then $p_{a'}(e \odot x) = (e \odot x) \land a' = (e \land x) \land a' = e \land (x \land a') = e \odot (x \land a') = e \odot p_{a'}(x)$, and $x \odot (x \to p_{a'}(x)) = x \odot [x \to (x \land a')] \stackrel{(c_0)}{=} x \land (x \land a') = x \land a' = p_{a'}(x)$. To verify (M_3) , let $e \in J_{a'} \cap B(L) = J_{a'}$. Thus, $p_{a'}(e) = e \land a' \in B(L)$ (since $e \in J_{a'}$). The condition (M_4) is obviously verified, hence $[p_{a'}, J_{a'}] \in L''$.

We define $j: G \to L''$, by $j(a') = [p_{a'}, J_{a'}]$, for every $a' \in G$. Obviously, j(0) = 0. For $a', b' \in G$ and $x \in J_{a'} \cap J_{b'}$, $(j(a') \otimes j(b'))(x) = (a' \land x) \odot [x \to (b' \land x)] = (a' \odot x) \odot [x \to (b' \land x)] = a' \odot [x \odot (x \to (b' \land x))] = a' \odot [x \land (b' \land x)] = a' \odot (b' \land x) = a' \odot (b' \land x) = (a' \odot b') \odot x = (a' \odot b') \land x = j(a' \odot b')(x)$, hence $j(a') \otimes j(b') = j(a' \odot b')$ and $(j(a') \rightsquigarrow j(b'))(x) = x \odot [j(a')(x) \to j(b')(x)] = x \odot [(a' \land x) \to (b' \land x)] = x \odot [(x \odot a') \to (x \odot b')] \stackrel{(c_{10})}{=} x \odot (a' \to b') = x \land (a' \to b') = j(a' \to b')(x)$, hence $j(a') \rightsquigarrow j(b') = j(a' \to b')$.

Now, let $a', b' \in G$ such that j(a') = j(b'). It follows that $[p_{a'}, J_{a'}] = [p_{b'}, J_{b'}]$, so $p_{a'}(x) = p_{b'}(x)$ for any $x \in J_{a'} \cap J_{b'}$. So $a' \wedge x = b' \wedge x$ for any $x \in J_{a'} \cap J_{b'}$. By Lemma 28, if $a' \neq b'$, since $L \sqsubseteq G$, there is a boolean element *e* such that $e \wedge a', e \wedge b' \in B(A)$ and $e \wedge a' \neq e \wedge b'$ which is contradictory (since $e \wedge a', e \wedge b' \in B(L)$ implies $e \in J_{a'} \cap J_{b'}$).

Proposition 31 Let L be a MTL-algebra. The following are equivalent:

(*i*) Every maximal multiplier on *L* has domain *L*;

- (*ii*) For every multiplier $p \in M(J, L)$ there is $e \in B(L)$ such that $p = p_e$, (i.e., $p(x) = e \land x$ for any $x \in J$);
- (*iii*) $Q(L) \approx B(L)$.

Proof. (*i*) \Rightarrow (*ii*) Assume (*i*) and for $p \in M(J, L)$ let p' its the maximal extension (by Lemma 20). By (*i*), we have $p': L \rightarrow L$. Put $e = p'(1) \in B(L)$ (by M_3), then for every $x \in J$, $p(x) = p(x) \wedge 1 \stackrel{M_4}{=} x \wedge p(1) = x \wedge e = p_e(x)$, that is $p = p_e$.

 $(ii) \Rightarrow (iii)$ Follow from Lemma 24.

 $(iii) \Rightarrow (i)$ Follow from Lemma 20 and Lemma 24.

Remark 11

1) If *L* is a *MTL* algebra with $B(L) = L_2$ and $L \sqsubseteq G$ then $G = \{0, 1\}$, hence $Q(L) = L'' \approx L_2$. Indeed, if $a_1, a_2, a_3 \in G, a_1 \neq a_2$, then there exists $e \in B(L)$ (by (Fr_2)) such that $e \land a_1 \neq e \land a_2$ (hence $e \neq 0$) and $e \land a_3 \in B(L)$. Clearly, e = 1, hence $a_3 \in B(L)$, that is, G = B(L).

2) More general, if *L* is a *MTL*-algebra such that *B*(*L*) is finite and $L \sqsubseteq G$ then G = B(L), hence Q(L) = B(L). Indeed, since $L \sqsubseteq G$, we have $B(L) \subseteq G$. Let $a \in G$. Then there is $e \in B(L)$ such that $e \land a \in B(L)$. Q(L) is finite, so, there is a largest element $e_a \in Q(L)$ with $e_a \land a \in B(L)$. Suppose $e_a \lor a \neq e_a$. Then there is $e \in B(L)$ such that $e \land (e_a \lor a) \neq e \land e_a$ and $e \land a \in B(L)$. Because $e \land a \in B(L)$ we deduce $e \leq e_a$ so $e = e \land (e_a \lor a) \neq e \land e_a = e_a$, so $a \leq e_a$, consequently $a = a \land e_a \in Q(L)$, that is $G \subseteq Q(L)$. Then G = Q(L), hence $Q(L) \approx B(L)$.

References

Balbes, R., & Dwinger, Ph. (1974). Distributive Lattices. University of Missouri Press.

Blyth, T. S., & Janovitz, M. F. (1972). Residuation Theory. Pergamon Press.

Buşneag, D., & Piciu, D. (2005). BL-algebra of fractions and maximal BL-algebra of quotients. Soft Computing,

9(7), 544-555. http://dx.doi.org/10.1007/s00500-004-0372-9

- Buşneag, D., & Piciu, D. (2006). Residuated lattice of fractions relative to a ∧-closed system. *Bull. Math. Sc. Math. Roumanie, Tome 49*(97), No. 1, 13-24.
- Cornish, W. H. (1974). The multiplier extension of a distributive lattice. *Journal of Algebra*, 32(2), 339-355. http://dx.doi.org/10.1016/0021-8693(74)90143-4
- Cornish, W. H. (1980). A multiplier approach to implicative BCK-algebras. *Mathematics Seminar Notes*, 8(1), Kobe University.
- Esteva, F., & Godo, L. (2001). Monoidal t-norm based logic: towards a logic for left-continuous t-norms. *Fuzzy* Sets and Systems, 124(3), 271-288. http://dx.doi.org/10.1016/S0165-0114(01)00098-7
- Flondor, P., Georgescu, G., & Iorgulescu, A. (2001). Pseudo t-norms and pseudo-BL algebras. *Soft Computing*, 5(5), 355-371.
- Freytes, H. (2004). Injectives in residuated algebras. Algebra Universalis, 51(4), 373-393.
- Galatos, N., Jipsen, P., Kowalski, T., & Ono, H. (2007). Residuated lattices: an algebraic glimpse at structural logic. *Studies in Logic and the Foundations of Math.*, 151, Elsevier Science.
- Georgescu, G. (1991). F-multipliers and localization of distributive lattices II. Zeitschr. f. math. Logik und Grundlagen d. Math. Bd., 37, 293-300.
- Hájek, P. (1998). *Metamathematics of fuzzy logic*. Trends in Logic-Studia Logica Library 4. Dordrecht: Kluwer Acad. Publ.
- Hőhle, U. (1995). Commutative, residuated l-monoids. In U. Hőhle & P. Klement (Eds.), *Non-classical Logics* and *Their Aplications to Fuzzy Subsets* (pp. 53-106). Dordrecht: Kluwer Academic Publishers.
- Idziak, P. M. (1984). Lattice operations in BCK-algebras. Mathematica Japonica, 29, 839-846.
- Iorgulescu, A. (2004). *Classes of BCK algebras-Part III*. Preprint Series of The Institute of Mathematics of the Romanian Academy, preprint nr.3, 1-37.
- Lambek, J. (1966). Lectures on Rings and Modules. Blaisdell Publishing Company.
- Popescu, N. (1971). Abelian categories, Ed. Academiei, București.
- Popescu, N. (1973). Abelian categories with applications to rings and modules. New York: Academic Press.
- Piciu, D. (2007). Algebras of fuzzy logic, Ed. Universitaria, Craiova,
- Rudeanu, S. (2010). Localizations and Fractions in Algebra of Logic. J. of Mult.-Valued Logic & Soft Computing, 16(3-5), 467-504.
- Schmid, J. (1980). Multipliers on distributive lattices and rings of quotients. *Houston Journal of Mathematics*, 6(3), 401-425.
- Turunen, E. (1999). Mathematics Behind Fuzzy Logic. Physica-Verlag.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).