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Abstract

For an n-simplex, let α, β denote the maximum, and the minimum dihedral angles of the simplex, respectively.

It is proved that the inequality α ≤ arccos(1/n) ≤ β always holds, and either side equality implies that the n-

simplex is a regular simplex. Similar inequalities are also given for a star-simplex, which is defined as a simplex

that has a vertex (apex) such that the angles between distinct edges incident to the apex are all equal. Further, an

explicit formula for the dihedral angle of a star-simplex between two distinct facets sharing the apex in common is

presented in terms of the angle between two edges incident to the apex.
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1. Introduction

Let σ be an n-dimensional simplex (n-simplex) in R
n, n ≥ 2, and let fi, f j be two distinct facets of σ. The dihedral

angle ∠( fi, f j) between the facets fi, f j is defined as the supplement of the angle between the unit outer normal

vectors of the facets fi, f j. For n ≥ 3, the sum of
(

n+1
2

)
dihedral angles of an n-simplex is not constant. Indeed, the

following holds (see Gaddum, 1952, 1956).

� The sum of the
(

n+1
2

)
dihedral angles of an n-simplex lies between � n2−1

4
�π and

(
n
2

)
π, and the sum can take any

value in this range.

A dihedral angle is called acute (resp. nonobtuse) if the angle is less than (resp. not greater than) π/2. The next

result seems first appeared in Fielder (1954), and rediscovered again in Leng (2003).

� Every n-simplex has at least n acute dihedral angles.

For an n-simplex σ, let α = α(σ), β = β(σ) denote the minimum value and the maximum value of the dihedral

angles in σ, respectively. If σ is a regular n-simplex, then α = β = arccos 1
n . In the 2-dimensional case n = 2, since

the sum of the interior angles of a triangle is π, we have α ≤ π/3 ≤ β and α = π/3⇔ β = π/3. A similar assertion

also holds in n ≥ 3, though the sum of dihedral angles are not constant. The next is the main result of this paper.

Theorem 1 For every n-simplex, α ≤ arccos 1
n ≤ β holds. Moreover, if either side equality holds, then the other

side equality also holds and the simplex becomes a regular simplex.

We present a similar result for a family of star-simplexes. A star-simplex with vertex angle θ is defined to be a

simplex that has a vertex v such that the plane angle between any two distinct edges incident to v is equal to θ.
The vertex v is called the apex of the star-simplex. If those edges incident to the apex are of the same length, then

the star-simplex is called a regular star-simplex. In a star-simplex, the dihedral angles between two distinct facets

sharing the apex in common are all equal, and their common value is called the lateral angle of the star-simplex.

Theorem 2 In an n-dimensional star-simplex with vertex angle θ, the lateral angle δ = δ(θ) is given by

cos δ =
cos θ

1 + (n − 2) cos θ
. (1)

It follows from (1) that δ(θ) is a monotone increasing function of θ in 0 ≤ θ ≤ arccos −1
n−1

, and

δ(0) = arccos 1
n−1

79



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 5, No. 2; 2013

δ( π
3
) = arccos 1

n

δ( π
2
) = π/2

δ(arccos −1
n−1

) = π.

Theorem 3 An n-dimensional star-simplex with vertex angle θ (resp. lateral angle δ) exists if and only if

0 < θ < arccos
−1

n − 1

(
resp. arccos

1

n − 1
< δ < π

)
.

Let ϕ(δ) = arccos
(

1
n

√
n − n(n − 1) cos δ

)
. This is the other value of dihedral angles in a regular star-simplex with

lateral angle δ. Note that ϕ(δ) is strictly monotone decreasing in arccos 1
n−1
< δ < π, and ϕ(arccos 1

n ) = arccos 1
n .

Theorem 4 For an n-dimensional star-simplex σ with vertex angle θ, the following holds:

(1) If 0 < θ < π/3 (i.e. arccos 1
n−1
< δ < arccos 1

n ), then 0 < α ≤ δ < ϕ(δ) ≤ β < π − δ, and β = ϕ(δ) implies that σ
is a regular star-simplex.

(2) If π/3 ≤ θ < π/2 (i.e. arccos 1
n ≤ δ < π/2), then 0 < α ≤ ϕ(δ) ≤ δ ≤ β < π − δ, and α = ϕ(δ) implies that σ is a

regular star-simplex.

(3) If π/2 ≤ θ < arccos −1
n−1

(i.e. π/2 ≤ δ < π), then 0 < α ≤ ϕ(δ) < δ = β, and α = ϕ(δ) implies that σ is a regular
star-simplex.

2. Proof of Theorem 1

Let S (O, x) ⊂ R
n denote a sphere with center O and radius x.

Lemma 1 For an n-simplex σ, let
−−−→
OP0,

−−−→
OP1, . . . ,

−−−→
OPn be the unit outer normal vectors of the facets of σ. Then,

P0, . . . , Pn span a simplex that contains O in its interior.

Proof. We may suppose that S (O, 1) is the inscribed sphere of σ, and the n + 1 points P0, . . . , Pn are the contact

points of S (O, 1) with the n + 1 facets of σ. Then, no closed hemisphere of S (O, 1) can contain these n + 1 points,

for otherwise, the inscribed sphere S (O, 1) of σ can slip out of the simplex σ. Hence, O is an interior point of the

simplex spanned by P0, . . . , Pn. �
Let us recall here some values concerning a regular simplex. If a regular n-simplex has unit circumradius, then

◦ the radius of its inscribed sphere is equal to 1/n,

◦ its edge-length is equal to l(n) :=
√

2(n + 1)/n, and

◦ its dihedral angle is equal to arccos 1
n .

Note that l(n) is strictly monotone decreasing in n, and the edge-length of a regular n-simplex with circumradius R
is given by R · l(n).

For a set V of n + 1 points on a unit sphere S (O, 1) ⊂ R
n, let a(V), b(V) denote the minimum value and the

maximum value of the Euclidean distance |PQ| for P,Q ∈ V , P � Q. If V spans a regular simplex, then we have

a(V) = b(V) = l(n).

Lemma 2 Suppose that a set V of n + 1 points on S (O, 1) ⊂ R
n spans an n-simplex 〈V〉 that contains O in its

interior. Then

(1) a(V) ≤ l(n), and if the equality holds, then 〈V〉 is a regular n-simplex.

(2) b(V) ≥ l(n), and if the equality holds, then 〈V〉 is a regular n-simplex.

Proof. (1) We use the following result in Deza and Maehara (1994):

(∗) For any m points P1, P2, . . . , Pm on S (O,R), we have

m2R2 ≥
∑
i< j

|PiPj|2,

and the equality holds if and only if 1
m
∑

Pi = O.
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Applying (∗) to the point set V on S (O, 1), we have (n + 1)2 ≥
(

n+1
2

)
a(V)2. This implies that a(V) ≤ l(n), and the

equality holds only when |PQ| = l(n) for all P,Q ∈ V, P � Q, which implies that 〈V〉 is a regular n-simplex.

(2) Proof is by induction on the dimension n. For n = 2, (2) can be easily seen. Suppose that (2) is true for every

(n − 1)-simplex, and let us consider the n-dimensional case. We use the circumradius-inradius inequality for an

n-simplex (see, e.g., Klamkin & Tsintsifas, 1979):

(∗∗) The radius r of the inscribed sphere and the radius R of the circumscribed sphere of an n-simplex

always satisfy r ≤ R/n.

Let τ = 〈V〉. Since O is an interior point of τ, there is an x0 > 0 such that S (O, x0) is tangent to a facet f of τ and

S (O, x0) ⊂ τ. This x0 must be smaller than or equal to the radius r0 of the inscribed sphere of τ. Since r0 ≤ 1/n by

(∗∗), we have
√

1 − x2
0
≥
√

1 − r2
0
≥ √1 − (1/n)2. The edge length of a regular (n − 1)-simplex with circumradius√

1 − (1/n)2 is given by
√

1 − (1/n)2 · l(n − 1), which is equal to l(n) as easily verified. Note that the contact point

of S (O, x0) and the facet f is the circum-center of the facet f , and it is an interior point of f . Hence, we can apply

the inductive hypothesis to the set Vf of n vertices of the facet f on a sphere of radius
√

1 − x2
0

in R
n−1. Therefore,

b(Vf ) ≥
√

1 − x2
0
· l(n − 1) ≥

√
1 − (1/n)2 · l(n − 1) = l(n).

Thus, b(V) ≥ b(Vf ) ≥ l(n).

Now, suppose that b(V) = l(n). Then, for 0 < x < 1/n, no facet of τ can touch S (O, x), for otherwise, we have

b(Vf ) > l(n) for some facet f of τ, as easily seen. Hence we can deduce, from r ≤ 1/n, that the sphere S (O, 1/n)

must be tangent to all facets of τ. In this case, b(V) = l(n) implies that all edge-lengths of τ are equal to l(n), and τ
is a regular n-simplex. �

Proof [Proof of Theorem 1]. Let σ be an n-simplex and f0, f1, . . . , fn be the facets of σ. Let
−−→
OPi be the unit outer

normal vectors of the facets fi. Then Pi ∈ S (O, 1). Let V = {P0, . . . , Pn}, and τ be the simplex spanned by V . By

Lemma 1, O is an interior point of τ. The dihedral angle ∠( fi, f j) of the facets fi, f j (i � j) and the angle ∠PiOPj

are related as

∠( fi, f j) = π − ∠PiOPj.

By the cosine law, ∠PiOPj = arccos(1 − 1
2
|PiPj|2), and |PiPj| = l(n) if and only if ∠PiOPj = arccos −1

n . Since

arccos x is monotone decreasing for 0 < x < π, it follows from the inequality a(V) ≤ l(n) ≤ b(V) in Lemma 2 that

the minimum value of ∠PiOPj is less than or equal to arccos −1
n and the maximum value of ∠PiOPj is greater than

or equal to arccos −1
n . Now, since

arccos
1

n
= π − arccos

−1

n
,

the theorem follows. �
3. Proof of Theorems 2 and 3

Proof [Proof of Theorem 2]. Let 〈v0, v1, . . . , vn〉 be an n-dimensional star-simplex with vertex angle θ, and suppose

v0 is the apex. Let ai =
−−→v0vi, i = 1, 2, . . . , n. To compute the lateral angle δ, we may suppose that |v0vi| = 1 for

i = 1, 2, . . . , n. Let ni denote the unit outer normal vector of the facet opposite to the vertex vi. Then cos δ = −n1 ·n2.

We can write n1 as

n1 = x2a2 + x3a3 + · · · + xnan + ya1

with some x2, . . . , xn, y ∈ R. Since ai · n1 = 0 for i � 1 and ai · a j = cos δ for i � j, we have

0 = xi + (x2 + x3 · · · + xn − xi) cos δ + y cos δ

= xi(1 − cos δ) + T cos δ + y cos δ,

where T = x2 + x3 + · · · + xn. Therefore, x2 = x3 = · · · = xn. Thus, we may put n1, and (by symmetry) n2 as

n1 = x(a2 + a3 + · · · + an) + ya1,

n2 = x(a1 + a3 + · · · + an) + ya2.
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Since a2 · n1 = 0 and n1 · n1 = 1, we have

0 = x(1 + (n − 2) cos θ) + y cos θ, (2)

1 = x2(n − 1 + (n − 1)(n − 2) cos θ) + y2 + 2xy(n − 1) cos θ. (3)

Subtracting (2) × (n − 1)x from (3), we have

1 = y2 + xy(n − 1) cos θ (4)

On the other hand,

n1 · n2 = y2 cos θ + 2xy(1 + (n − 2) cos θ) + x2(n − 2 + (n2 − 3n + 3) cos θ).

Using (3),

n1 · n2 − 1 = y2(cos θ − 1) + x2(−1 + cos θ) + 2xy(1 − cos θ)

= −(x − y)2(1 − cos θ).

Hence

n1 · n2 = −(x − y)2(1 − cos θ) + 1 (5)

Let t = (− cos θ)/(1 + (n − 2) cos θ). Then, x = ty by (2), and substituting this in (4), we have

y2 = (1 + t(n − 1) cos θ)−1.

Now, from (5) we have

n1 · n2 = −y2(t − 1)2(1 − cos θ) + 1 =
−(t − 1)2(1 − cos θ)

1 + t(n − 1) cos θ
+ 1.

Simplifying this, we get

n1 · n2 =
− cos θ

1 + (n − 2) cos θ
.

Since cos δ = −n1 · n2, we have the theorem. �
Proof [Proof of Theorem 3]. It is enough to show that an n-dimensional star-simplex of lateral angle δ exists if and

only if

arccos 1
n−1
< δ < π.

The necessity of δ < π is obvious. Let σ be an n-dimensional star-simplex with lateral angle δ, and let f0, f1, . . . , fn
be the facets ofσ, f0 be the facet opposite to the apex. Let

−−→
OPi be the unit outer normal vectors of the facets fi. Then

Pi ∈ S (O, 1), and the simplex 〈P1, . . . , Pn〉 is a regular (n − 1)-simplex. By Lemma 1, the simplex 〈P0, P1, . . . , Pn〉
contains O in its interior. Hence its facet 〈P1, . . . , Pn〉 does not contain O. Therefore, the circumradius of the facet

〈P1, . . . , Pn〉 is less than 1. Let Q be the circumcenter of 〈P1, . . . , Pn〉. Since this facet is a regular (n − 1)-simplex,

we have ∠P1QP2 = arccos −1
n−1

. Since ∠P1OP2 < ∠P1QP2, we have ∠P1OP2 < arccos −1
n−1

. Hence

δ = π − ∠P1OP2 > π − arccos
−1

n − 1
= arccos

1

n − 1
.

Thus, δ > arccos 1
n−1

.

Proof of the converse is easy now, and it is omitted. �
4. Proof of Theorem 4

Lemma 3 Let τ denote a (variable) n-dimensional star-simplex with lateral angle δ, and let ω1, . . . , ωn be the dihe-
dral angles between the facet opposite to the apex and other facets. Then (i) inf

τ
min

i
ωi = 0, sup

τ
max

i
ωi = π − δ,

and (ii) max
τ

min
i
ωi = min

τ
max

i
ωi = ϕ(δ).

Proof. Let f0, f1, . . . , fn be the facets of τ, f0 be the facet opposite to the apex, and let
−−→
OPi be the unit outer normal

vector of fi. Then Pi ∈ S (O, 1). Let P∗i ∈ S (O, 1) denote the antipodal point of Pi. Since ∠( fi, f j) = π − ∠PiOPj,

we have

∠( fi, f j) = ∠PiOP∗j .
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Since ∠( fi, f j) = δ for 1 ≤ i < j ≤ n, we may put

ωi = ∠( fi, f0) = ∠PiOP∗0 for i = 1, 2, . . . , n.

Since the simplex 〈P0, P1, . . . , Pn〉 contains O in its interior by Lemma 1, OP∗
0

passes through an interior point of

the facet 〈P1, . . . , Pn〉. Hence, ωi < ∠P1OP2 = π − δ for i = 1, 2, . . . , n. If P∗0 approaches P1, then ω1 → 0, and

ω2 → ∠P1OP2 = π− δ. Hence we have (i). Since the facet 〈P1, . . . , Pn〉 is a regular (n− 1) simplex, the maximum

value of min
i
ωi = min

i
∠PiOP∗0 is attained when OP∗0 passes through the center Q := 1

n (P1 + P2 + · · · + Pn) of

the facet 〈P1, . . . , Pn〉. Therefore, cos(max
τ

min
i
ωi) = |OQ|. Similarly, we have cos(min

τ
max

i
ωi) = |OQ|. Let us

compute |PQ|2.

|OQ|2 = −−→OQ · −−→OQ =
1

n2
(
−−−→
OP1 + · · · + −−−→OPn) · (−−−→OP1 + · · · + −−−→OPn)

=
1

n2

⎛⎜⎜⎜⎜⎜⎜⎝n + 2
∑

1≤i< j≤n

−−→
OPi · −−−→OPj

⎞⎟⎟⎟⎟⎟⎟⎠
=

1

n2
(n + n(n − 1) cos(π − δ))

=
1

n2
(n − n(n − 1) cos δ) .

Thus |OQ| = 1
n

√
n − n(n − 1) cos δ, and (ii) follows. �

Proof [Proof of Theorem 4]. Let τ be a (variable) n-dimensional star-simplex with lateral angle δ, and let

f0, f1, . . . , fn be the facets of τ, f0 opposite to the apex. Let ωi = ∠( fi, f0).

(1) Suppose 0 < θ < π/3 (i.e. arccos 1
n−1
< δ < arccos 1

n ). In this case, ϕ(δ) > δ. By Lemma 3, we have

inf
τ

min
i
ωi = 0, and

max
τ

min{δ, ω1, . . . , ωn} = min{δ,max
τ

minωi} = min{δ, ϕ(δ)} = δ.
Hence 0 < α ≤ δ. Similarly, we have sup

τ
max

i
ωi = π − δ and

min
τ

max{δ, ω1, . . . , ωn} = max
τ
{δ, ϕ(δ)} = ϕ(δ).

Therefore, ϕ(δ) ≤ β < π − δ. If β = ϕ(δ), then by the proof of Lemma 3, we see that σ is a regular star-simplex.

(2) Suppose π/3 ≤ θ < π/2 (i.e. arccos 1
n ≤ δ < π/2). In this case, ϕ(δ) ≤ δ, and similarly to Case 1, we have

0 < α ≤ ϕ(δ); δ ≤ β < π − δ, and α = ϕ(δ) implies that σ is a regular star-simplex.

(3) Suppose π/2 ≤ θ < arccos −1
n−1

(i.e. π/2 ≤ δ < π). Since
(

n
2

)
dihedral angles of τ are equal to δ ≥ π/2 and since

every n-simplex has at least n acute dihedral angles, the remaining
(

n+1
2

)
−
(

n
2

)
= n dihedral angles must be all acute.

Hence β = δ. Clearly 0 < α ≤ ϕ(δ), and α = ϕ(δ) implies that σ is a regular star-simplex. �
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