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Abstract

For an n-simplex, let @, S denote the maximum, and the minimum dihedral angles of the simplex, respectively.
It is proved that the inequality @ < arccos(1/n) < B always holds, and either side equality implies that the n-
simplex is a regular simplex. Similar inequalities are also given for a star-simplex, which is defined as a simplex
that has a vertex (apex) such that the angles between distinct edges incident to the apex are all equal. Further, an
explicit formula for the dihedral angle of a star-simplex between two distinct facets sharing the apex in common is

presented in terms of the angle between two edges incident to the apex.
Keywords: dihedral angle, star-simplex, lateral angle
1. Introduction

Let o be an n-dimensional simplex (n-simplex) in R", n > 2, and let f;, f; be two distinct facets of o-. The dihedral
angle Z(f;, f;) between the facets f;, f; is defined as the supplement of the angle between the unit outer normal

vectors of the facets f;, f;. For n > 3, the sum of (”;1) dihedral angles of an n-simplex is not constant. Indeed, the
following holds (see Gaddum, 1952, 1956).

> The sum of the (";1) dihedral angles of an n-simplex lies between [”24" Jm and (;)ﬂ' and the sum can take any
value in this range.

A dihedral angle is called acute (resp. nonobtuse) if the angle is less than (resp. not greater than) /2. The next
result seems first appeared in Fielder (1954), and rediscovered again in Leng (2003).

> Every n-simplex has at least n acute dihedral angles.

For an n-simplex o, let @ = a(0), B = B(0) denote the minimum value and the maximum value of the dihedral
angles in o, respectively. If o is a regular n-simplex, then @ = 8 = arccos % In the 2-dimensional case n = 2, since
the sum of the interior angles of a triangle is 7, we have @ < 71/3 < S and @ = /3 © S = n/3. A similar assertion
also holds in n > 3, though the sum of dihedral angles are not constant. The next is the main result of this paper.

Theorem 1 For every n-simplex, @ < arccos % < B holds. Moreover, if either side equality holds, then the other
side equality also holds and the simplex becomes a regular simplex.

We present a similar result for a family of star-simplexes. A star-simplex with vertex angle 0 is defined to be a
simplex that has a vertex v such that the plane angle between any two distinct edges incident to v is equal to 6.
The vertex v is called the apex of the star-simplex. If those edges incident to the apex are of the same length, then
the star-simplex is called a regular star-simplex. In a star-simplex, the dihedral angles between two distinct facets
sharing the apex in common are all equal, and their common value is called the lateral angle of the star-simplex.
Theorem 2 In an n-dimensional star-simplex with vertex angle 0, the lateral angle 6 = 6(0) is given by
cos @
cosd = —— . 1
1+(mn-2)cosb M

It follows from (1) that (6) is a monotone increasing function of 8 in 0 < 6 < arccos % and

_ 1
6(0) = arccos
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1

n

0(3) = arccos

8(%) = /2

-1

d(arccos =) = .

Theorem 3 An n-dimensional star-simplex with vertex angle 0 (resp. lateral angle 6) exists if and only if

0 < 8 < arccos

n— n-—

1
1 (resp. arccos 1 <0< ﬂ).

Let ¢(0) = arccos (% Vn—n(n—1)cos 5). This is the other value of dihedral angles in a regular star-simplex with
lateral angle 6. Note that () is strictly monotone decreasing in arccos n'j < 0 < m, and g(arccos %) = arccos %
Theorem 4 For an n-dimensional star-simplex o with vertex angle 6, the following holds:

(1)If0 < @ < 7/3 (i.e. arccos 1+ < § < arccos 1), then 0 < @ < 6 < ¢(6) < B < =6, and B = ¢(0) implies that o
is a regular star-simplex.

Q) Ifn/3<60<n/2 (e arccos% <0 <m/2), then) < a < @(d) <5 <B<nmn-0, and a = p(0) implies that o is a
regular star-simplex.

(3) If /2 < 6 < arccos ﬁ (ie. /2 <6 <), then 0 < a < p(d) <6 =, and a = p(0) implies that o is a regular
star-simplex.

2. Proof of Theorem 1

Let S(O, x) ¢ R" denote a sphere with center O and radius x.

. —_— —> — .
Lemma 1 For an n-simplex o, let OPy, OPy,...,OP, be the unit outer normal vectors of the facets of o. Then,
Py, ..., P, span a simplex that contains O in its interior.

Proof. We may suppose that S (O, 1) is the inscribed sphere of o, and the n + 1 points Py, ..., P, are the contact
points of S (O, 1) with the n + 1 facets of 0. Then, no closed hemisphere of S (O, 1) can contain these n + 1 points,
for otherwise, the inscribed sphere S (O, 1) of o can slip out of the simplex o. Hence, O is an interior point of the
simplex spanned by P, ..., P,. |

Let us recall here some values concerning a regular simplex. If a regular n-simplex has unit circumradius, then

o the radius of its inscribed sphere is equal to 1/n,

o its edge-length is equal to /(n) := y2(n + 1)/n, and
1

n'

o its dihedral angle is equal to arccos

Note that /() is strictly monotone decreasing in n, and the edge-length of a regular n-simplex with circumradius R
is given by R - I(n).

For a set V of n + 1 points on a unit sphere S(0,1) c R”, let a(V), b(V) denote the minimum value and the
maximum value of the Euclidean distance |PQ| for P,Q € V, P # Q. If V spans a regular simplex, then we have
a(V) =b(V) = l(n).

Lemma 2 Suppose that a set V of n + 1 points on S(O, 1) C R" spans an n-simplex (V) that contains O in its
interior. Then

(1) a(V) < l(n), and if the equality holds, then (V) is a regular n-simplex.
(2) b(V) = l(n), and if the equality holds, then (V) is a regular n-simplex.
Proof. (1) We use the following result in Deza and Maehara (1994):
(x) For any m points Py, P,,..., P, on S(O,R), we have
m’R = )" PP,
i<j

and the equality holds if and only if # > P =0.
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Applying (¥) to the point set V on S (0O, 1), we have (n + 1)*> > ("Zl)a(V)z. This implies that a(V) < I(n), and the
equality holds only when |PQ| = I(n) for all P,Q € V, P # Q, which implies that (V) is a regular n-simplex.

(2) Proof is by induction on the dimension n. For n = 2, (2) can be easily seen. Suppose that (2) is true for every
(n — 1)-simplex, and let us consider the n-dimensional case. We use the circumradius-inradius inequality for an
n-simplex (see, e.g., Klamkin & Tsintsifas, 1979):

(%) The radius r of the inscribed sphere and the radius R of the circumscribed sphere of an n-simplex
always satisfy r < R/n.

Let 7 = (V). Since O is an interior point of 7, there is an xy > 0 such that S (O, xo) is tangent to a facet f of T and
S(0, xp) C 7. This xo must be smaller than or equal to the radius ry of the inscribed sphere of 7. Since ry < 1/n by

(*x), we have /1 — x(z) > L1 - r(z) > +/1 — (1/n)2. The edge length of a regular (n — 1)-simplex with circumradius

1= (1/n)?is given by /1 — (1/n)? - I(n — 1), which is equal to I(n) as easily verified. Note that the contact point
of S (0, xp) and the facet f is the circum-center of the facet f, and it is an interior point of f. Hence, we can apply

the inductive hypothesis to the set V; of n vertices of the facet f on a sphere of radius /1 — x(z) in R"~!. Therefore,

b(Vy) = J1=x2-1n—1) = 1= (1/n)? - I(n - 1) = I(n).

Thus, b(V) > b(Vy) > I(n).

Now, suppose that b(V) = I(n). Then, for 0 < x < 1/n, no facet of 7 can touch S (0O, x), for otherwise, we have
b(Vy) > I(n) for some facet f of 7, as easily seen. Hence we can deduce, from r < 1/n, that the sphere S (O, 1/n)
must be tangent to all facets of 7. In this case, b(V) = I(n) implies that all edge-lengths of 7 are equal to /(n), and T
is a regular n-simplex. ]

Proof [Proof of Theorem 1]. Let o be an n-simplex and fy, fi,. .., f, be the facets of 0. Let O_Pt be the unit outer
normal vectors of the facets f;. Then P; € S(O, 1). Let V = {Py,..., P,}, and 7 be the simplex spanned by V. By
Lemma 1, O is an interior point of 7. The dihedral angle Z(f;, f;) of the facets f;, f; (i # j) and the angle ZP;OP;
are related as

l(ﬁ,fj) =T — ZP,OPJ

By the cosine law, ZP;OP; = arccos(1 — %|P,~Pj|2), and |P;P;| = I(n) if and only if ZP;OP; = arccos _71 Since
arccos x is monotone decreasing for 0 < x < 7, it follows from the inequality a(V) < I(n) < b(V) in Lemma 2 that
the minimum value of ZP;OP; is less than or equal to arccos = and the maximum value of ZP;OP; is greater than
or equal to arccos =1 Now, since

n

-1
arccos — = ;1 — arccos —,
n n
the theorem follows. O
3. Proof of Theorems 2 and 3
Proof [Proof of Theorem 2]. Let (vg, vi, ..., v,) be an n-dimensional star-simplex with vertex angle 6, and suppose
v is the apex. Let a; = vo_vz, i =1,2,...,n To compute the lateral angle §, we may suppose that [vov;| = 1 for
i=1,2,...,n. Let n; denote the unit outer normal vector of the facet opposite to the vertex v;. Then cosd = —n;-n,.

We can write n; as
n = xa; + x3az + -+ x,a, +ya,

with some x,...,x,,y € R. Since @; - ny =0 fori# 1 and a; - a; = cos ¢ for i # j, we have

O=xi+(x2+x3--+ X, —X;)C0sd +ycoso
= x;(1 —cosd) + T cosd + ycos o,

where T = x; + x3 + - - + x,,. Therefore, x, = x3 = --- = x;,. Thus, we may put n;, and (by symmetry) n, as
ny =x(a2+a3 +--~+an)+ya1,

nzzx(a1+a3+~--+a,,)+ya2.
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Since @, - ny =0 and n; - n; = 1, we have

0=x(1+((m—-2)cos6)+ ycos¥, 2)
1=x*(n—1+n—-1)n-2)cosb) +y* + 2xy(n — 1) cos 6. (3)

Subtracting (2) X (n — 1)x from (3), we have
1 =y* + xy(n—1)cos@ 4)
On the other hand,
ni - m = y* cosf+ 2xy(l + (n —2)cos 0) + x*(n — 2 + (n* — 3n + 3) cos O).
Using (3),

n-m-1= y2(0059 -D+ xz(—l + cos ) + 2xy(1 — cos 6)
= —(x = y)*(1 — cos b).

Hence
n-n=—(x—y)>( —cosé) + 1 5)

Lett = (—cos6)/(1 + (n —2)cosh). Then, x = ty by (2), and substituting this in (4), we have
v =1 +1(n—1)cos6)".
Now, from (5) we have

—(t - 1*(1 — cos 6)
1+tn—1)cosé

n -np = —yz(t— 1)2(1 —cosf)+1=

Simplifying this, we get
—cosf

1+(m—-2)cosd’
Since cos § = —n, - ny, we have the theorem. U

ny-np =

Proof [Proof of Theorem 3]. It is enough to show that an n-dimensional star-simplex of lateral angle ¢ exists if and
only if

arccos - <6 <.
The necessity of § < mis obvious. Let o be an n-dimensional star-simplex with lateral angle ¢, and let fy, fi,..., fx
be the facets of o, f be the facet opposite to the apex. Let 0—)Pl be the unit outer normal vectors of the facets f;. Then
P; € S(O, 1), and the simplex (P, ..., P,) is aregular (n — 1)-simplex. By Lemma 1, the simplex (Py, Py, ..., P,)
contains O in its interior. Hence its facet (Py, ..., P,) does not contain O. Therefore, the circumradius of the facet

(Py,...,P,)isless than 1. Let Q be the circumcenter of (P, ..., P,). Since this facet is a regular (n — 1)-simplex,
we have /P QP, = arccos . Since ZP|OP, < ZP1QP;, we have ZP10P, < arccos —-. Hence

6=n—-LP,OP, >7z'—arccosn_1 =arccosn_
Thus, § > arccos ﬁ
Proof of the converse is easy now, and it is omitted. |
4. Proof of Theorem 4
Lemma 3 Let T denote a (variable) n-dimensional star-simplex with lateral angle 6, and let wy, . . . , w, be the dihe-

dral angles between the facet opposite to the apex and other facets. Then (i) inf minw; = 0, supmax w; =7 — 9,
T 1 T 1
and (ii) max min w; = min max w; = ¢(9).
T 1 T 1
Proof. Let fy, fi1,..., [, be the facets of 7, f; be the facet opposite to the apex, and let O_P: be the unit outer normal
vector of f;. Then P; € §(0,1). Let P; € S(O, 1) denote the antipodal point of P;. Since Z(f;, f;) = n — ZP,OP;,

we have
Z(fi, ) = ZP,-OP;.
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Since Z(f;, fj) =6 for 1 <i < j <n, we may put

w; = Z(fi, fo) = LP;,OP;, for i=1,2,...,n

Since the simplex (P, P1, ..., P,) contains O in its interior by Lemma 1, OP( passes through an interior point of
the facet (Py,...,P,). Hence, w; < LP,OP, =n—-6fori=1,2,...,n If Pj approaches Py, then w; — 0, and
wy; — ZP,OP, = m—§. Hence we have (i). Since the facet (P, ..., P,) is a regular (n — 1) simplex, the maximum

value of minw,; = min ZP;OP; is attained when OPy passes through the center Q := %(Pl + Py +---+ Py of
1 1
the facet (Py,..., P,). Therefore, cos(max minw;) = |OQ|. Similarly, we have cos(min max w;) = |OQ|. Let us
T 1 T 1

compute |[POJ.

— —>

y = 1 — —— ——
001" = 00Q-0Q = = (OP; +---+ OPy) - (OPy +--- + OPy)
n

1 —_— =
—|n+2 > OP;-OF;

I<i<j<n

= iz (n +n(n - 1) cos(m — 6))
n

= iz(n—n(n— 1)cos o).
n

Thus |0Q| = 1 vn = n(n = T) cos 6, and (ii) follows. O

Proof [Proof of Theorem 4]. Let 7 be a (variable) n-dimensional star-simplex with lateral angle 6, and let
Jo, fi...., [ be the facets of 7, fy opposite to the apex. Let w; = Z(f:, fo).

(1) Suppose 0 < 6 < «/3 (i.e. arccos —— < § < arccos %). In this case, ¢(8) > 6. By Lemma 3, we have

n—1
inf min w; = 0, and
max min{d, wy, . . ., w,} = min{d, max min w;} = min{d, ¢(d)} = 9J.
T T

Hence 0 < @ < 6. Similarly, we have sup max w; = 7 — ¢ and
T 1

min max{d, wi, ..., w,} = max{d, p(d)} = ¢(5).

T

Therefore, ¢(6) < B < — 3. If B = ¢(0), then by the proof of Lemma 3, we see that o is a regular star-simplex.

(2) Suppose /3 < 0 < /2 (i.e. arccos% < 0 < «/2). In this case, () < J, and similarly to Case 1, we have
0<a<(d);0<p<m—0,and a = ¢(9) implies that o is a regular star-simplex.

(3) Suppose /2 < 8 < arccos % (i.e. m/2 £ 6 < m). Since (g) dihedral angles of 7 are equal to 6 > 7/2 and since

every n-simplex has at least n acute dihedral angles, the remaining (”;1) - (g) = n dihedral angles must be all acute.

Hence g = 6. Clearly 0 < @ < ¢(0), and @ = ¢(6) implies that o is a regular star-simplex. (|
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