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Abstract

A (k, t)-list assignment L of a graph G is a mapping which assigns a set of size k to each vertex v of G and

|⋃v∈V(G) L(v)| = t. A graph G is (k, t)-choosable if G has a proper coloring f such that f (v) ∈ L(v) for each

(k, t)-list assignment L.

In 2011, Charoenpanitseri, Punnim and Uiyyasathian proved that every n-vertex graph is (2, t)-choosable for t ≥
2n − 3 and every n-vertex graph containing a triangle is not (2, t)-choosability for t ≤ 2n − 4. Then a complete

result on (2, t)-choosability of an n-vertex graph containing a triangle is revealed. Moreover, they showed that an

n-vertex triangle-free graph is (2, t)-choosable for t ≥ 2n − 6.

In this paper, we first prove that an n-vertex graph containing K3,3 − e is not (2, t)-choosable for t ≤ 2n − 7. Then

we deeply investigates (2, t)-choosablity of an n-vertex graph containing neither a triangle nor K3,3 − e.
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1. Introduction

A k-list assignment L of a graph G is a mapping which assigns a set of size k to each vertex v of G. A (k, t)-list
assignment of G is a k-list assignment with |⋃v∈V(G) L(v)| = t. Given a list assignment L, a proper coloring f of

G is an L-coloring of G if f (v) is chosen from L(v) for every vertex v of G. A graph G is L-colorable if G has an

L-coloring. Particularly, if L is a (k, k)-list assignment of G, then any L-coloring of G is a k-coloring of G. A graph

G is (k, t)-choosable if G is L-colorable for every (k, t)-list assignment L. If a graph G is (k, t)-choosable for each

positive number t then G is called k-choosable.

List coloring is a well-known problem in the field of graph theory. It was first studied by Vizing (1976) and by

Erdős, Rubin and Taylor (1979). They give a characterization of 2-choosable graphs. Recall that a property of 2-

choosable graphs is that all vertices can be colored under the condition every adjacent vertices is labeled by distinct

colors whenever the vertices have exactly two available colors. To prove that a graph is k-choosable, we need to

prove that the graph can be colored for all k-list assignments. Hence, the problem is quite complicated because

of a large number of k-list assignments. For k ≥ 3, there is no characterization of k-choosable graphs. There are

only results for some classes of graphs. For example, all planar graphs are 5-choosable, while some planar graphs

are 3-choosable (See Lam, Shiu, & Song, 2005; Thomassen, 1995; Thomassen, 1994; Zhang, 2005; Zhang & Xu,

2004; Zhang, Xu, & Sun, 2006; Zhu, Lianying, & Wang, 2007).

In order to simplify the problem, (k, t)-choosability is defined. It is a partial problem of k-choosability. Instead

of proving a graph can always be colored for entire k-list assignments, we prove the graph can be colored for

k-list assignments that have exactly t colors. For example, Ganjari et al. (2002) apply (k, t)-choosability of graphs

to generalize the characterization of uniquely 2-list colorable graphs. Recently, (k, t)-choosability of graphs is

explored in Charoenpanitseri, Punnim, and Uiyyasathian (2011). They prove that every n-vertex graph is (k, t)-
choosable for t ≥ kn − k2 + 1 and every n-vertex graph containing Kk+1 is not (k, t)-choosable for t ≤ kn − k2.

In case k = 2, they prove that every n-vertex graph is (2, t)-choosable for t ≥ 2n − 3 and every n-vertex graph

containing a triangle is not (2, t)-choosable for t ≤ 2n−4. Moreover, every n-vertex graph not containing a triangle

is (2, t)-choosable for t ≥ 2n − 6.

In this paper, we first prove that an n-vertex graph containing K3,3 − e is not (2, t)-choosable for 3 ≤ t ≤ 2n − 7.
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Second, an n-vertex graph containing neither a triangle nor K3,3 − e is (2, t)-choosable for t ≥ 2n − 7. Third, an

n-vertex graph containing C5 or a domino is not (2, t)-choosable for 3 ≤ t ≤ 2n − 8. Last but not least, an n-vertex

graph containing neither a triangle, K3,3 − e, a domino, C5, K2,4 nor C4 ·C4 is (2, t)-choosable for t ≥ 2n − 8.

Throughout the paper, G denotes a simple, undirected, finite, connected graph; V(G) and E(G) are the vertex set

and the edge set of G. A cycle is a graph with an equal number of vertices and edges whose vertices can be placed

around a circle so that two vertices are adjacent if and only if they appear consecutively along the circle; the cycle

with n vertices is denoted by Cn. A complete graph is a graph whose vertices are pairwise adjacent; the complete

graph with n vertices is denoted by Kn. A triangle is a complete graph with 3 vertices. A graph G is bipartite
if V(G) is the union of two disjoint independent sets called partite sets. A complete bipartite graph is a bipartite

graph such that two vertices are adjacent if and only if they are in different partite sets; the complete bipartite graph

with partite sets of size a and b is denoted by Ka,b. The graph obtained from deleting an edge from the graph K3,3

is denoted by K3,3 − e.

The subgraph induced by X, denoted by G[X] is the graph obtained from deleting all vertices of V(G) outside X.

A graph G is H-free if G has no induced subgraph which is isomorphic to H. A graph is called triangle-free if it is

K3-free.

When t < k or t > kn, there is no (k, t)-list assignment, so it is automatically (k, t)-choosable. Unless we say

otherwise, our parameters k, n and t in this paper are always numbers such that t ≥ k. If k ≥ n then all of the

n-vertex graphs are (k, t)-choosable.

We start with (2, t)-choosability of K3,3 − e, a domino and cycles.

Example 1.1 A bipartite graph K3,3 − e is not (2, t)-choosable for t = 3, 4, 5.

Proof. Suppose t = 3, 4 or 5. Let L be a (2, t)-list assignment of K3,3 − e as shown in the Figure 1. If a = 2, b = 2

then t = 3, if a = 2, b = 4 then t = 4 and if a = 4, b = 5 then t = 5.

Figure 1. A (2, t)-list assignment L of K3,3 − e where t = 3, 4, 5

If u1 and u2 are labeled by color 1, the vertex v3 cannot labeled. If u1 or u2 is labeled by color 1, then v1 and v2

must be labeled by color a and b, respectively. Consequently, the vertex u3 cannot be labeled. Hence, K3,3 − e is

not L-colorable. Therefore, K3,3 − e is not (2, t)-choosable for t = 3, 4, 5. �
Example 1.2 A domino is not (2, t)-choosable for t = 3, 4.

Proof. Suppose t = 3 or 4. Let L be a (2, t)-list assignment of a domino with the vertex set v1, v2, . . . , v6 as shown

in the figure.

Figure 2. A 2-list assignment L of a domino where a is color 3 or color 4

If v2 is labeled by color 1, then v3 and v5 must be labeled by color 3 and color 2, respectively. Hence v4 cannot be

labeled. If v2 is labeled by color 2, then v1 and v5 must be labeled by color a and color 1, respectively. Hence v6

cannot be labeled. That is, the domino is not L-colorable. Therefore, G is not (2, t)-choosable for t = 3, 4. �
In 2011, Charoenpanitseri, Punnim and Uiyyasathian give a complete result on (k, t)-choosablity of an n-vertex

graph containing Kk+1. Particulary, a complete result on (2, t)-choosability of an n-vertex graph containing a

triangle is revealed as shown in Theorem 1.3.

Theorem 1.3 (Charoenpanitseri et al., 2011) Let G be an n-vertex graph. If G contains a triangle, then it is not
(2, t)-choosable for t ≤ 2n − 4. If G does not contain a triangle, then it is (2, t)-choosable for t ≥ 2n − 6.

Before going to our main results, we will introduce some tools using in our proof. Theorem 1.4 and Lemma 1.5
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are applied when we prove that a graph is (2, t)-choosable for some number t while Lemma 1.6 is applied when we

prove that a graph is not (2, t)-choosable for some number t.

Let S ⊆ V(G). If L is a list assignment of G, we let L|S denote L restricted to S and L(S ) denote
⋃

v∈S L(v).

Theorem 1.4 (Kierstead, 2000) Let L be a list assignment of a graph G and let S ⊆ V(G) be such that |L(S )| < |S |.
If G[S ] is L|S -colorable then G is L-colorable.

Lemma 1.5 (Charoenpanitseri et al., 2011) Let A1, A2, . . . , An be k-sets and J ⊆ {1, 2, . . . , n}. If |⋃n
i=1 Ai| ≥ p, then

|⋃i∈J Ai| ≥ p − (n − |J|)k.

Lemma 1.6 Let H be an m-vertex subgraph of an n-vertex graph G. If H is not (2, t0)-choosable, then G is not
(2, t)-choosable for t0 ≤ t ≤ 2n − 2m + t0.

Proof. Let H be an m-vertex subgraph of an n-vertex graph G. Let t0, t be numbers such that t0 ≤ t ≤ 2n − 2m + t0.

Assume that H is not (2, t0)-choosable. Hence, there is a (2, t0)-list assignment L0 such that H is not L0-colorable.

Then we extend a (2, t0)-list assignment L0 of H to a (2, t)-list assignment L of G by assigning the remaining colors

to the remaining vertices outside V(H). Notice that G has n − m remaining vertices and L has t − t0 remaining

colors. The condition t − t0 ≤ 2n − 2m can confirm the existence of L. Since H is not L0-colorable, G is not

L-colorable. Consequently, G is not (2, t)-choosable. �
2. Main Results

In Charoenpanitseri et al. (2011), the authors show that an n-vertex graph not containing a triangle is (2, t)-
choosable for t ≥ 2n−6. Then we study (2, t)-choosability of a triangle-free graph when t ≤ 2n−7. The first result

is that an n-vertex graph containing K3,3 − e is not (2, t)-choosable for 3 ≤ t ≤ 2n − 7.

Theorem 2.1 An n-vertex graph containing K3,3 − e is not (2, t)-choosable for 3 ≤ t ≤ 2n − 7.

Proof. Let G be an n-vertex graph and t ≤ 2n − 7. By Example 1.1, K3,3 − e is not (2, t)-choosable for t = 3, 4, 5.

Consequently, G is not (2, t)-choosable for t = 3, 4, 5. Notice that K3,3 − e is a 6-vertex subgraph of G and is not

(2, 5)-choosable. By Lemma 1.6, G is not (2, t)-choosable for 5 ≤ t ≤ 2(n − 6) + 5 = 2n − 7. �
Next, we focus on an n-vertex graph containing neither a triangle nor K3,3 − e. Let us introduce a theorem on

(2, t)-choosability of a triangle-free graph.

Theorem 2.2 (Charoenpanitseri et al., 2011) A triangle-free graph with n vertices is (2, 2n − 7)-choosable if and
only if it does not contain K3,3 − e as a subgraph.

We apply the above theorem to obtain the second result in Theorem 2.3.

Theorem 2.3 An n-vertex graph containing neither a triangle nor K3,3 − e is (2, t)-choosable for t ≥ 2n − 7.

Proof. Let G be an n-vertex graph containing neither a triangle nor K3,3 − e. If t ≥ 2n−6, then G is (2, t)-choosable

by Theorem 1.3. If t = 2n − 7, then G is (2, t)-choosable by Theorem 2.2. �
Now, the result in case t ≥ 2n−7 is revealed. Then we keep studying in the remaining case; the case that t ≤ 2n−8.

The third result is that every n-vertex graph containing a domino, C5, K2,4 nor C4 · C4 is not (2, t)-choosable for

3 ≤ t ≤ 2n − 8.

Remark If C4 ·C4 is the graph in Figure 3, then it is not (2, 6)-choosable.

Figure 3. The graph C4 ·C4 and its (2, 6)-list assignment

Proof. Let L be (2, 6)-list assignment as shown in Figure 3. Suppose that C4 · C4 is L-colorable. If v3 is labeled

by color 1, then v2 and v4 must be labeled by color 3 and color 4, respectively. Hence, v1 has no available color;

a contradiction. If v3 is labeled by color 2, then v5 and v7 must be labeled by color 5 and color 6, respectively.

Hence, v6 has no available color; a contradiction. �
Theorem 2.4 An n-vertex graph containing a domino, C5, K2,4 or C4 ·C4 is not (2, t)-choosable for 3 ≤ t ≤ 2n− 8.

Proof. Let G be an n-vertex graph.
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Case 1. G contains a domino as a subgraph. By Example 1.2, a domino is not (2, t)-choosable for t = 3, 4. Clearly,

G is not (2, t)-choosable for t = 3, 4. Notice that a domino is a 6-vertex subgraph of G and it is not (2, 4)-choosable.

By Lemma 1.6, G is not (2, t)-choosable for t ≤ 2(n − 6) + 4 = 2n − 8.

Case 2. G contains C5 as a subgraph. Since C5 is not bipartite, it is not (2, 2)-choosable. Obviously, G is not

(2, 2)-choosable. Notice that C5 is a 5-vertex subgraph of G and it is not (2, 2)-choosable. By Lemma 1.6, G is not

(2, t)-choosable for t ≤ 2(n − 5) + 2 = 2n − 8.

Case 3. G contains K2,4 as a subgraph. Let {x1, x2} and {y1, y2, y3, y4} be partite sets of K2,4. Let L be a (2, 4)-list

assignment of K2,4 such that L(x1) = {1, 2}, L(x2) = {3, 4} and L(y1) = {1, 3}, L(y2) = {1, 4}, L(y3) = {2, 3}, L(y4) =

{2, 4}. Then K2,4 is not L-colorable. Hence, K2,4 is not (2, 4)-choosable. By Lemma 1.6, G is not (2, t)-choosable

for t ≤ 2(n − 6) + 4 = 2n − 8.

Case 4. G contains C4 · C4 as a subgraph. By Remark , C4 · C4 is not (2, 6)-choosable. By Lemma 1.6, G is not

(2, t)-choosable for t ≤ 2(n − 7) + 6 = 2n − 8.

Last, we study an n-vertex graph containing neither a triangle, K3,3 − e, a domino, C5, K2,4 nor C4 · C4. The last

result is that the graph is (2, t)-choosable for t ≥ 2n − 8. �
Theorem 2.5 If an n-vertex graph have no triangle, K3,3−e, domino, C5, K2,4 and C4 ·C4, then it is (2, t)-choosable
for t ≥ 2n − 8.

Proof. Assume that an n-vertex graph G contains neither a triangle, K3,3 − e, a domino C5, K2,4 nor C4 · C4 and

t ≥ 2n − 8. Let L be a (2, t)-list assignment of G and let S ⊆ V(G) be such that |L(S )| < |S |.
Recall that |L(V(G))| = t ≥ 2n−8. By Lemma 1.5, |L(S )| ≥ (2n−8)−2(n−|S |) = 2|S |−8. Then |S | > |L(S )| ≥ 2|S |−8.

Hence, |S | ≤ 7.

Next, we will prove that G[S ] is L|S -colorable in order to apply Theorem 1.4.

If G[S ] has a vertex of degree 1, we may successively delete vertices of degree 1 and consider only the remaining

graph. Hence, we may suppose that G[S ] has no vertex of degree 1.

Case 1. |S | ≤ 5. Since G[S ] contains neither a triangle nor C5, G[S ] is bipartite. Then G[S ] is a subgraph of K2,3

or K1,4 which is 2-choosable. Hence, G[S ] is L|S -colorable.

Case 2. |S | = 6. Since G[S ] contains neither a triangle nor C5, G[S ] is bipartite. Then G[S ] is a subgraph of K1,5,

K2,4 or K3,3.

Case 2.1. G[S ] is a subgraph of K1,5. Then it is 2-choosable.

Case 2.2 G[S ] is a subgraph of K2,4. Then G[S ] is a proper subgraph of K2,4 because G have no K2,4. Hence,

G[S ] is 2-choosable.

Case 2.3. G[S ] is a subgraph of K3,3. Notice that a domino can be obtained from deleting two nonincident edges

from K3,3 but G[S ] has no domino. Since all six vertices has degree at least two, the graph G[S ] must be C6 which

is 2-choosable.

Case 3. |S | = 7. Since t ≥ 2n − 8, we obtain |L(S )| ≥ 6. If |L(S )| ≥ 7, then G is suddenly L-colorable by Theorem

1.4. Suppose that |L(S )| = 6. Since G[S ] contains neither a triangle nor C5, G[S ] is C7 or bipartite.

Case 3.1. G[S ] is C7. Note that Cn is (2, t)-choosable for all t ≥ 3. Then G[S ] is (2, 6)-choosable.

Case 3.2. G[S ] is a subgraph of K1,6. Then it is 2-choosable.

Case 3.3. G[S ] is a subgraph of K2,5. Let {x1, x2} and {y1, y2, y3, y4, y5} be partite sets of K2,5. Since L(S ) = 6,

there is a color c such that c � L(x1) ∪ L(x2). Without loss of generality, suppose that c ∈ L(y5). Hence, y5 is

labeled by color c. Then G[S ] − y5 is a proper subgraph of K2,4 which is 2-choosable. Hence, G[S ] is L-colorable.

Case 3.4. G[S ] is a subgraph of K3,4. Let {x1, x2, x3} and {y1, y2, y3, y4} be partite sets of K2,4. Recall that G[S ]

has no vertex with degree 1. If there is a vertex x ∈ {x1, x2, x3} with degree 4, then G[S ] contains C4 · C4 as a

subgraph. Suppose that x1, x2, x3 have degree at most 3. Since d(y1) + d(y2) + d(y3) + d(y4) ≥ 8, suppose that x1

and x2 has degree 3. Without loss of generality, suppose that x1 is adjacent to y1, y2, y3. Notice that x2 cannot be

adjacent to all three vertices y1, y2, y3 because y4 has degree at least 2. Without loss of generality, suppose that x2

is adjacent to y1, y2, y4. Since y3 and y4 has degree at least 2, the vertex x3 is adjacent to y3 and y4. If x3 is adjacent

to y1 or y2, then G[S ] contains a domino as a subgraph. Suppose that x3 is not adjacent to y1, y2. Then G[S ] must
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be the graph shown in Figure 4.

Figure 4. A subgraph of K3,4

If there is a color c that appears in only one vertex, then we can label the vertex by color c and the remaining

vertices can be labeled. If there is an edge e that endpoints has no common color, then G[S ] − e is easily be

colored. Suppose that each color appears in at least 2 vertices and endpoints of each edge share a common color.

Since G[S ] has 7 vertices and 6 colors, a color appears in 4 vertices and 5 colors appear in 2 vertices, or 2 colors

appear in 3 vertices and 4 colors appear in 2 vertices.

Case 3.4.1. x1 and x2 has a common color, say color 1. Unless L(y3) = {1, 2}, L(y4) = {1, 3} and L(x3) = {2, 3},
we can label x1, x2 by color 1 and the remaining vertices can always be labeled. If L(y3) = {1, 2}, L(y4) = {1, 3} and

L(x3) = {2, 3}, then 2, 3 � L(y1), L(y2). Hence, we can label y3, y4 by color 1, label x3 by color 2 and the remaining

vertices can be labeled.

Case 3.4.2. x1 and x3 has a common color. The proof is similar to Case 3.4.1.

Case 3.4.3. No two vertices from x1, x2, x3 has a common color. Let L(x1) = {1, 2}, L(x2) = {3, 4} and

L(x3) = {5, 6}. If y1 and y2 has a common color, say color 1, then we label y1, y2 by color 1; hence, the remaining

vertices can be labeled in this order x1, y3, x3, y4, x2. Suppose that y1 and y2 has no common color. Moreover,

endpoints of each edge share a common color. Then L(y1) = {1, 3} and L(y2) = {2, 4}. If y3 and y4 have a common

color, then we use the color to label y3 and y4 and the remaining vertices can be labeled. Suppose that y3 and

y4 have no common color. Without of generality, suppose that L(y3) = {1, 5} and L(y4) = {3, 6}. Then we label

x1, x2, x3, y1, y2, y3, y4 by color 1, 4, 6, 3, 2, 5, 3, respectively. �
3. Applications

In this section, we apply our main results to some classes of graphs such as grid graphs and hypercube graphs. We

start this section with definitions and examples of the two classes of graphs.

A grid graph is a unit distance graph corresponding to the square lattice, so that it is isomorphic to the graph having

a vertex corresponding to every pair of integers (a, b), and an edge connecting (a, b) to (a+ 1, b) and (a, b+ 1). The

finite grid graph G(m, n) is an m × n rectangular graph isomorphic to the one obtained by restricting the ordered

pairs to the range 0 ≤ a < m, 0 ≤ b < n. A domino is G(2, 3) (See examples in Figure 5).

Figure 5. Examples of grid graphs

An a-hypercube graph, denoted by Qa, is the graph whose vertices are the a tuples with entries in {0, 1} and whose

edges are the pair of a-tuples that differ in exactly one position (See examples in Figure 6).

Figure 6. Examples of hypercubes

According to the four main result, (2, t)-choosability of some classes of graphs are obtained.

Theorem 3.1 Let t ≥ 3 and G be an n-vertex triangle-free and K3,3 − e-free graph containing a domino, C5, K2,4

or C4 ·C4. Then G is (2, t)-choosable if and only if t ≥ 2n − 7.

Proof. Let G be an n-vertex triangle-free and K3,3 − e-free graph containing a domino and t ≥ 3.
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Case 1. t ≤ 2n − 8. Then G is not (2, t)-choosable by Theorem 2.4 because a domino, C5, K2,4 or C4 · C4 is a

subgraph of G.

Case 2. t = 2n − 7. Recall that G is an n-vertex triangle-free and K3,3 − e-free graph. Then G is (2, t)-choosable by

Theorem 2.3.

Case 3. t ≥ 2n − 6. Recall that G does not contain a triangle as a subgraph. Then G is (2, t)-choosable by Theorem

1.3. �
The next two following theorems follow from Theorem 3.1.

Remark 3.2 Let a ≥ 2 and b ≥ 3. A grid graph G(a, b) is (2, t)-choosable if and only if t = 2 or t ≥ 2ab − 7.

Remark 3.3 An n-hypercube graph Qa where a ≥ 3 is (2, t)-choosable if and only if t = 2 or t ≥ 2a+1 − 7

A complete result of (2, t)-choosability is obtained not only for grid graphs and hypercube graphs but also for all

classes of graphs containing one of the following subgraph; a domino, C5, K2,4 or C4 ·C4.

Acknowledgements

The author would like to thank Rangsit University (Thailand) for all supports. In addition, the author would like to

express special thank to Dr. Kittikorn Nakprasit for a valuable comment.

References

Charoenpanitseri, W., Punnim, N., & Uiyyasathian, C. (2011). On (k, t)−choosability of graphs. Ars Combin., 99,

321-333.
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