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Abstract

In this paper, we present the Lax-Wendroff theorem of entropy dissipation method for scalar conservation
laws in one space dimension. Suppose that ;(x, f) the numerical solution computed by the entropy dissipation
method converges to a function u(x,7) as [ — oo,then u(x, ) is a weak solution that satisfying the entropy
condition of the conservation law.
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1. Introduction

In this paper we continue to consider entropy dissipating method developed in(Li, Hong-xia, 2004), (Second-
order entropy dissipation scheme for scalar conservation laws in one space dimension, Master’s thesis, No.11903-
99118086)for scalar conservation laws in one space dimension

u+ f)e =0 u(x,0) = up(x) ey
In this paper, we propose and prove a Lax-Wendroft theorem of entropy dissipation method for scalar conser-
vation laws in one space dimension.
2. The Basic Definitions

In this section, we give the basic definitions of the theorem. We will consider the general form of the scheme.The
numerical solution is computed by:

n+l _ n mo_ fn
uj = u; /l(fﬁ% fj_%) 2)
where the numerical flux is:
n A .
f/+% zf(u.’}_k+l9"' ,u.’}_'_ks U"/,'l,p+19." ’U;L‘F[?) (3)
The numerical entropy is computed by:
n+l _ ym fn fn n
U; —Uj—/l(FjJr%—Fj_%)—Dj “4)
where the numerical entropy flux is:
Fl;+% - F(”?—kﬂ’”' ’”l;’+k; U7—P+1"” ’ ;'l+p) ©)
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D7 = D(u7_l, Y u7+l) (6)

k, p, [ are the positive integers.

Definition 2.1 (consistence): If all the /(i = max(j —k + 1, j— 1), -+ ,max(j + k, j + 1)) in (3), (5), (6) are u
and all the U;(i" = j— p+1,---, j+ p) are U(u), (where u € R), then:

[, w U@, -, U@) = fQ) (N
F@, - U@, ,U@) = F@) ®)
D, ---,u)=0 ©)

If u; » u, Uy — U(u), then f Fand D convergence to f(u), F(u) and O in the following: for 0 < g < 1 there
is a constant K (maybe dependent %) such that at u:
|f@jckrts s stjars Ujmpirs - > Ujap) = fQ0D)

<K max (lu;—ul|Ur— U@l (10)
J=k+1<i<j+k
J-p+1<i’ <j+p

|F(uj—k+ls ) uj+k; Uj—p+l9 Y Uj+p) - F(ﬁ)|

<K max (u—l|Us - UG (11)
jlp+1;i’;]j+p
ID@j,- -+ sujsr) — D@, - -+ ,w)l < K max  (juy — ul) (12)
JI<i”<j+l

then the scheme is consistent.

We are going to discuss the theorem as the form in (LeVeque, R.J. , 2002), (LeVeque, R.J. , 1990). First we
define two piecewise constant function u(x, t), U;(x, t) for all x and ¢ from the discrete values {u;f} and {U ;?}:

ul(x,t):u;f,Ul(x,t):U;?, xj7%<x§xj+1 , b <t <t (13)

(S}

3. The New Lax-Wendroff Theorem

Theorem 3.1 (Lax-Wendroff): Consider a sequence of g rids indexedby [ = 1,2, ..., with mesh parameters
ki, hy— 0 as [ — oo. Let uy(x, 1), Uj(x,t) are the numerical approximation computed with the scheme (2)~(5).
Suppose that u;(x, 0), u;(x,t), Uj(x, ) are uniformly bounded functions and converge to the functions u(x, 0),
u(x,t), U(u(x, 1)) as [ — oo, in the sense made precise below. Then u(x, 7) is a entropy satisfying weak solution
of the conservation law.

As in (R.J. LeVeque, 2002), (R.J. LeVeque, 1990), we assume that we have convergence of u;(x, 1), U(x, ) to
u(x,t), U(u(x, 1)) in the following sense:

onQ =[a,b] x[0,f] (a < b,t >20),as [ — oo:

t b

f f legg(x, 1) — u(x, Hldxdt — 0 (14)

0 Ja

t b
f f |Ui(x,t) — U(u(x, t))|dxdt — 0 (15)

0 Ja
As | — oo:

llet; — ulli o — O (16)
U= Ulho—0 (17)

Proof: We will show that the limit function u(x, ) satisfies the weak form, for all ¢ € C(l)(RZ), u(x, t):
00 —+00 00
f f (pru + ¢xf(w))dxdt = — f #(x, 0)u(x, 0)dx (18)
0 —o0 —00
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Let ¢ be a C(l)(R2) test function and multiply the numerical method (2) by ¢(x;,#,) and sum it over all j and

n > 0. We obtain
ko < 5
Z Z Ol )l =iy = = ) Z o)l = f1 ) (19)

n=0 j=—oco n=0 j

I\)

~.

we now use “summation by parts”, and multiply it by A:

Z Z ¢(X],l‘n) ¢(x],tn 1) Z Z ¢(xj+1,tn) ¢(xj,tn)f }

n=1 j=—oo n=1 j=—oo

=—h > ¢(x;, O (20)
Jj=—00
By our assumption that ¢ has compact support, and hence each of the sums is in fact a finite sum.
Since u;(x, 0), u(x, t) are converge to u(x, 0), u(x, ) in L', and ¢(x, 1) is smooth, we get the first term of (20) is
converges to j;)w f_ :o &¢(x, Hu(x, t)dxdt and the third term converges to — f_ D:o ¢(x, 0)u(x, 0)dx. The second term
can be written as:

¢(-x +1,tn) ¢(-x ’tl’l) - - (x +1,tn) ¢(-x ,tn) n
Sty 5 Sty
n=1 j=-oo =1 j=—oco
¢(x]+l,tn) ¢(X], n) n
hk 21
+ ;]_Z_w - (ff,) = ra) 1)

Since f is continuous and the above conditions, the first term of (21) converges to fooo f_ 0:0 &y f(u(x, t))dxdt as

[ — co. Next we will prove that the second term of the right (3.8) converges to 0. Because of f’s consistence,
and ¢ has compact support. ¢ is continuous different, e.t. there is a N > 0, such that |%| <N, (x,1) € R%.
So:

+ tn stn n
iy S LRI OO

n=1 j=—oco
Jtk Jtp o
<KN( ) (hkz Z ! —u”|)+ Z (hk Y > UR = Uhi)
i=j—k+1 n=1 j=—oo '=j-p+1 n=1 j=—oo

Due to (13), (14), the right of the above formulas is:

/+k
= KN (f f [ (x, t) — wy(x + (i — jh, t)|dxdr)

ljk+1

Jp
+ (f f |Ui(x, 1) = Ulug(x + (@ = ph, )dxdn)},

=] p+l

itincludes: I, = [ [ luiCx, 1) = wi(x+ sih, Dldxdr, I, = i 7 1Ui(x, 1) = UCui(x -+ soh, 1)|%dxdr. where—k+ 1 <
s1 <k, —p+1 < sy < pis the positive integer, note:

t b t b
I, < f f lui(x, 1) — u(x, t)|dxdt + f f |u(x,t) — u(x + s1h, t)|dxdt
0 Ja 0 Ja

t b
f f lu(x + s1h,t) — ui(x + s1h, 1)|dxdt,
0 Ja

Sinceu;(x, t) converging to u(x, t) in L', asl — oo, the right term of the above formulas — 0.
Using la + b + c|? < 39(Jal? + |b|? + |c]?), g = 0 we get:

r b r b
I, < 3‘1{[ f |Ui(x, 1) = Ulu(x, 1)|4dxdt + f f |U(u(x, 1)) — U(u(x + s2h, 1)|4dxdt
0 Ja 0 Ja

t b
f f |U(u(x + s2h, 1)) — Uuy(x + s2h, 1)|2dxdt}.
0 Ja
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Due to Holder inequality , fot fa b | f(x, 1)|?dxdt can be controlled by fot fa b |f(x, ldxdt. SinceU(x,t) — U(u(x, t))in
L', right of the above inequality — 0, as [ — .

Above all the second term of the right of (21) — 0, as [ — co. So u(x, f)satisfies:

foo foo(gb,u(x, 1)+ ¢ f(u(x, 1))dxdt = — foo o(x, 0)u(x, 0)dxdt.
0 —00 -

The limit function u(x, ) is a weak solution of the conservation law.
We can prove the solution also satisfies the entropy condition in the same way. Note D'; > 0and ¢(x,1) >0 €

CHR).
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