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Abstract

In this paper we have introduced the concept of Topological Transformation Groups in fuzzy setting as a natural

transition from the corresponding crisp structure and study some properties thereof. Classical results on orbits,

orbit closure, invariant subsets are investigated in this setting. Finally we have constructed some new fuzzy

topological transformation groups from given ones.
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1. Introduction

A classical Topological Transformation Group is a structure (π, G, X,) where G is a topological group, X is a

topological space and π is a continuous function from G × X → X satisfying π(0, x) = x and π(s, π(t, x)) =

π(s + t, x), where 0 is the identity of G. In this paper we fuzzify the above concept as a natural transition from

the corresponding crisp structure. For this fuzzification we will consider a fuzzy topological group (Chu-hai

Yu, 1987), a fuzzy topological space and a fuzzy continuous map from G × X → X satisfying the above stated

conditions. Throughout our discussion the fuzzy topology on any set will contain all the constant fuzzy subsets.

In other words we will use Lowen (R. Lowen, 1976) definition of fuzzy topology.

2. Preliminaries

In this section we recall some preliminary definitions and results to be used in the sequel.

Let X be a non-empty set. A fuzzy set in X is an element of the set IX of all functions from X into the unit

interval I. A fuzzy point of a set X is a fuzzy subset which takes non-zero value at a single point and zero at

every other point. The fuzzy point which takes value α � 0 at x ∈ X, and zero elsewhere is denoted by xα . If

x ∈ X, then the fuzzy point x1 will be denoted simply by x. Let λ be a fuzzy subset of X. Suppose λ(x) = α

for x ∈ X. Then λ can be expressed as union of all its fuzzy points, i.e, λ = ∨x∈X xα. Here ∨ denote union.

We will use the same notation ∨ to denote supremum of a set of numbers. Similarly ∧ will be used to denote

intersection of fuzzy sets as well as infimum of a set of real numbers.

Let λ and μ be fuzzy subsets of X, then we write λ ⊆ μ whenever λ(x) ≤ μ(x). Let λ be a fuzzy subset of a

group (G, +). Then we define a fuzzy subset −λ as −λ(x) = λ(−x). If f is a function from X into Y and μ ∈ IY ,

then f −1(μ) is the fuzzy set in X defined by f −1(μ)(x) = μ( f (x)). Equivalently, f −1(−μ) = μ ◦ f . Also, for

ρ ∈ IX , f (ρ), is the member of IY which is defined by

f (ρ)(y) =

{
sup{ρ(x) : x ∈ f −1[y]} if f −1[y]is not empty

0 otherwise
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For the definition of a fuzzy topology, we will use the one given by Lowen (1976) since his definition is more

appropriate in our case. So, throughout this paper, by a fuzzy topology on a set X we will mean a sub-collection

τ of IX satisfying the following conditions:

(i) τ contains every constant fuzzy subset in X ;

(ii) If μ1, μ2 ∈ τ, then μ1 ∧ μ2 ∈ τ;
(iii) if μi ∈ τ for each i ∈ A, then ∨i∈Aμi ∈ τ.
A fuzzy topological space is a set X on which there is given a fuzzy topology τ. The elements of τ are the open

fuzzy sets in X. Complement of an open fuzzy set is called a closed fuzzy set. Interior of a fuzzy set λ is the

union of all the open fuzzy set contained in λ and the closure of λ is the intersection of all fuzzy set containing

λ. The interior and closure of λ will be denoted by λo and clλ respectively. A map f from a fuzzy topological

space X to a fuzzy topological space Y, is called continuous if f −1(μ) is open in X for each open fuzzy set μ

in Y. Let X be a fuzzy topological space and x ∈ X. A fuzzy set μ in X is called a neighborhood of the fuzzy

point xα if there exists an open fuzzy set ρ with ρ ⊆ μ and xα ∈ ρ ⊆ μ. Given a crisp topological space (X, T ),

the collection �(T ), of all fuzzy sets in X which are lower semicontinuous, as functions from X to the unit

interval I = [0, 1] equipped with the usual topology, is a fuzzy topology on X (Lowen, 1976). We will refer

to the fuzzy topology �(T ) as the fuzzy topology generated by the usual topology T. If (X, T j) j∈J is a family

of crisp topological spaces and T the product topology on X =
∏

j∈J X j, then �(T ) is the product of the fuzzy

topologies �(T j), j ∈ J (Lowen, 1977).

Result 2.1. (A. K. Katsaras, 1981) Let (Xi, Ti), i = 1, 2, 3, be crisp topological spaces, X = X1 × X2, T the

product of the topologies T1 , T2 and f : (X, T ) → (X3, T3) a continuous map. If δ is the product of the fuzzy

topologies �(T1) and �(T2), then

f : (X, δ) → (X3, �(T3))

is fuzzy continuous.

Proof. Let μ ∈ �(τ3). Then μ is a lower semicontinuous function from (X3, T3) to the unit interval I. Since

f is continuous with respect to the topologies T and T3, it follows that the function f −1(μ) = μ ◦ f is a lower

semicontinuous function from (X, T) to the unit interval. Thus f −1(μ) ∈ �(T ) = δ. This completes the proof.

Result 2.2. Let ( π, G, X) be a classical topological transformation group. If we equip G and X with the induced

fuzzy topologies and G × X, with the corresponding product fuzzy topology, then the mapping π: G × X → X
is fuzzy continuous.

Proof. It follows from the previous result.

Definition 2.3(Liu Ying-Ming, 1997) : Let (X, δ ) be a fuzzy topological space and Y ⊆ X. Then the collection

δ/Y = {σ/Y : σ ∈ δ} is a fuzzy topology on Y. Then (Y, δ/Y ) is called fuzzy subspace of (X, δ).

Result 2.4 : Let (X, δ) and (Y, μ) be two fuzzy topological spaces. If f : X → Y is fuzzy continuous, then for

any subset A ⊆ X, f /A is fuzzy continuous. In particular an inclusion map is fuzzy continuous.

Result 2.5 (Liu Ying-Ming, 1997) Let (X, δ), (Y, τ) and (Z, κ) be fuzzy topological spaces and f : X→Y and g

: Y→ Z be any mappings. Then f, g are fuzzy continuous ⇒gof is fuzzy continuous.

Definition 2.6 If σ is a fuzzy subset of X and η is a fuzzy subset of Y, then the fuzzy subset σ × η on X × Y is

defined as (σ × η)(x, y) = min{σ(x), η(y)}.
Definition 2.7 (Liu Ying-Ming, 1997) Let (X, δ) and (Y, τ) be two fuzzy topological spaces. Then f : X → Y is

fuzzy open (closed) if the image of every fuzzy open(closed) subset of X is fuzzy open(closed) in Y.

Definition 2.8 (R. Lowen, 1976) Let X be a fuzzy topological space and λ a fuzzy subset of X. An open fuzzy

cover of λ is a collection {λα} of open fuzzy subsets of X such that λ ⊆ ∨λα. If every open cover of λ and ε > 0

there exists a finite sub-collection {λi : i = 1, 2 · · · n} such that ∨{λi : i = 1, 2 · · · n} ≥ λ − ε then λ said to be

fuzzy compact.

Result 2.9 (R. Lowen, 1976) (X, δ) and (Y, τ) be two fuzzy topological spaces and f : X → Y be a fuzzy

continuous function. If λ is fuzzy compact subset of X, then f (λ) is fuzzy compact in Y.
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Result 2.10 (R. Lowen, 1977). Let (X, δ) and (Y, τ) be two fuzzy topological spaces and λ, μ are fuzzy compact

subsets of X and Y respectively, then λ × μ is fuzzy compact in X × Y .

Definition 2.11 (Rajesh Kumar, 1993). Let (G, +) be a group. Then a fuzzy subset λ is said to be a fuzzy

subgroup of G if λ(x + y) ≥ min{λ(x), λ(y)) and λ(−x) = λ(x)

Remark : If λ is a fuzzy subgroup of G then supp is a crisp subgroup of G.

Definition 2.12 (N. Palaniappan, 2005) A fuzzy topological space (X, τ) is said to be product related to another

fuzzy topological space (Y, δ) if for any fuzzy set υ of X and ζ of Y whenever λc � υ and μc � ζ implies

(λc × 1)∨ (1 × μc) ≥ υ × ζ, where λ ∈ τ and μ ∈ δ, then there exist λ1 ∈ τ and μ1 ∈ δ such that λc
1
≥ υ or μc

1
≥ ζ

and (λc × 1) ∨ (1 × μc) = (λc
1
× 1) ∨ (1 × μc

1
).

Result 2.13. (N. Palaniappan, 2005) Let (X, τ) be product related to (Y, δ). Then for any fuzzy subset λ of X

and a fuzzy subset μ of Y, cl(λ × μ) = clλ × clμ.

3. Fuzzy topological transformation groups

In this section we will introduce the concept of fuzzy topological transformation group and prove some prop-

erties.

Definition 3.1 Let X be fuzzy topological space, G be a fuzzy topological group. If π : G × X → X satisfies

(FTG1) π(0, x) = x

(FTG2) π(s, π(t, x)) = π(s + t, x)

(FTG3) π is fuzzy continuous

then (π, G, X, ) is called a fuzzy topological transformation group.

Definition 3.2 Let t ∈ G, then the t-transition of (π, G, X, ) denoted by πt is the mapping : πt : X → X such that

πt(x) = π(t, x).

Result 3.3 (i) π0 is the identity mapping of X.

(ii) πsπt = πs+t for s, t. ∈ G.

(iii) πt is one-to-one mapping of X onto X and −(πt) = π−t.

(iv) For t ∈ G, πt is a fuzzy homomorphism of X onto X.

Proof. Straightforward.

Definition 3.4 The transition group of (π , G, X,) is the set G = {πt : t ∈ G}. The transition projection of (G, X,

π) is the mapping θ : G → G defined as θ(t) = πt.

Definition 3.5 (G, X, π) is said to be effective if t ∈ G with t � 0 ⇒ πt(x) � x for some x.

Result 3.6 (i) G is a group of fuzzy homeomorphisms of X onto X

(ii) θ is a group homomorphism of G onto G.

(iii) θ is one-one iff (π , G, X) is effective.

Proof. Straightforward.

Definition 3.7 Let x ∈ X, then the x-motion of (π , G, X) is the mapping πx : G → X such that πx(t) = π(t, x).

Result 3.8 πx is a fuzzy continuous mapping of G into X.

Proof. Straightforward.

Result 3.9 Let X, Y, Z be fuzzy topological spaces and f : X × Y → Z be a fuzzy continuous map. If aα, bβ
be fuzzy points of X and Y respectively and γ be a fuzzy neighbourhood of f (aα, bβ) then there exists fuzzy

neighbourhoods η and ρ of aα and bβ respectively such that f (η × ρ) ⊆ γ.
Proof. Without loss of generality we can assume that γ is fuzzy open. As f is continuous f −1(γ) is a fuzzy open

set containing aα × bβ. So there exists basic fuzzy open sets say, η of aα and ρ of bβ such that aα × bβ ∈ η× ρ ⊆
f −1(γ). Which gives f (aα × bβ) ∈ f (η × ρ) ⊆ γ.
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Result 3.10 Let X, Y, Z be fuzzy topological spaces and f : X × Y → Z be a fuzzy continuous map. If λ and

μ are fuzzy compact subsets of X and Y respectively and γ is a fuzzy neighbourhood of f (λ × μ), then for any

ε > 0, there exists fuzzy open sets λ′ and μ′ such that λ′ ≥ λ − ε and μ′ ≥ μ − ε and f (λ′ × μ′) ⊆ γ.
Proof. Let ε > 0 be arbitrary. Let x ∈ X be arbitrarily fixed and suppose λ(x) = α. Then for any y ∈ Y with

μ(y) = β, by previous result there exist fuzzy open sets λy " xα and μy " yβ such that f (xα×yβ) ∈ f (λy×μy) ⊆ γ.
This is true for each y ∈ Y . Thus the collection Cμ = {μy : y ∈ Y} is an open cover of μ. As μ is compact there

is a finite sub-collection say S μ of Cμ satisfying ∨{μy : μy ∈ S } ≥ μ− ε. Let μx denote the union of all members

of S μ and λx denote the intersection of the corresponding λ′ys. Then λx is a fuzzy open set containing xα and μx

is a fuzzy open set satisfying μx ≥ μ − ε.
But this is true for each x ∈ X. Thus we get a collection {μx : x ∈ X} of fuzzy open sets each satisfying μx ≥ μ−ε
and another collection {λx : x ∈ X} of fuzzy open sets such that xα ∈ λx(α = λ(x)). Then Cλ = {λx : x ∈ X} is

a cover of λ. As λ is compact there exists a finite collection S λ of Cλ satisfying ∨{λx : λx ∈ S λ} ≥ λ − ε. Let

λ′ denote the union of the members of S λ and μ′ denote the intersection of the corresponding μx. Then λ′ is a

fuzzy open set satisfying λ′ ≥ λ− ε and μ′ is a fuzzy open set satisfying μ′ ≥ μ− ε. Further then f (λ′ × μ′) ⊆ γ.
Result 3.11

(i) For t ∈ G and a fuzzy subset μ of X, clπ(t × μ) = π(t × clμ)

(ii) Let G and X be product related, then for a fuzzy subset λ of G and a fuzzy subset μ of X, π(clλ × clμ) ⊆
clπ(λ × μ) and clπ(clλ × μ) = clπ(λ × clμ) = clπ(λ × μ).
(iii) If λ is a compact fuzzy subset of G and μ is a compact fuzzy subset of X, then π(λ × μ) is a compact fuzzy

subset of X.

(iv) If λ is a compact fuzzy subset of G and μ is a compact fuzzy subset of X, and γ is a fuzzy neighbourhood

of π(λ × μ), then for any ε > 0, there exists fuzzy open sets λ′ and μ′ such that λ′ ≥ λ − ε and μ′ ≥ μ − ε such

that f (λ′ × μ′) ⊆ γ.
(v) πtμ = μπ−t for any t ∈ G.

(vi) πtμc = 1 − πtμ

Proof. (i) Since πt is a homeomorphism clπt(μ) = πt(clμ), i.e., clπ(t × μ) = π(t × clμ)

(ii) Since G and X are product related, (clλ × clμ) = cl(λ × μ) which implies

π(clλ × clμ) = π{cl(λ × μ)}

⇒ π(clλ × clμ) = π{cl(λ × μ)} ⊆ clπ(λ × μ), since π is continuous.

Again π(λ × μ) ⊆ π(clλ × μ) ⊆ π(clλ × clμ) ⊆ clπ(λ × μ)
and π(λ×μ) ⊆ π(λ× clμ) ⊆ π(clλ× clμ) ⊆ clπ(λ×μ) and consequently clπ(clλ×μ) = clπ(λ× clμ) = clπ(λ×μ).
(iii) λ and μ are fuzzy compact, so λ×μ is fuzzy compact. As continuous image of a fuzzy compact set is fuzzy

compact π(λ × μ) is fuzzy compact.

(iv) Follows from Result 3.10.

(v) We have for any u ∈ X, πt(μ)(u) = π(t × μ)(u) = sup{(t × μ)(s, x) : π(s, x) = u}
= sup{(t(s) ∧ μ(x) : π(s, x) = u}
= sup{(t(t) ∧ μ(x) : π(t, x) = u}, since t(s) � 0 only when t = s.

= μ(x) where π(s, x) = u

= μ(π−t)(u).

(vi) From (v) we have πt(μ) = μ(π−t) for any μ ∈ IX and t ∈ G.

Now for any x ∈ X, we have (πtμc)(x) = (μcπ−t)(x) = μc((π−t)(x)) = 1 − (μπ−t)(x)

= (1 − μπ−t)(x). Therefore πtμc = 1 − μπ−t.
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Result 3.12. Let α be a constant fuzzy subset of G and μ ∈ IX be fuzzy open. Then π(α × μ) is fuzzy open.

Proof. We have for any u ∈ X, π(α × μ)(u) = sup{(α × μ)(t, x) : π(t, x) = u}
= sup{(α(t) ∧ μ(x) : π(t, x) = u} = sup{(α ∧ μ(x) : π(t, x) = u}
= α ∧ sup{μ(x) : πt(x) = u} = α ∧ sup{μ(π−t(u)) : π−t(u) = x}
= α ∧ sup{πtμ(u) : π−t(u) = x}, since μπ−t = πtμ.

= α ∧ {∨{πtμ(u)} where π−t(u) = x

= {α ∧ {∨(πtμ)}}(u), where π−t(u) = x

Thus π(α × μ) = α ∧ {∨(πtμ)}. Now each πt is open and μ is open so πtμ is open. Also by definition of fuzzy

topology is open. Consequently α ∧ {∨(πtμ)} is open. Hence π(α × μ) is open.

Corollary 3.13. Let μ be a fuzzy open subset of X. then for any fuzzy point tα of G, π(tα × μ) is fuzzy open.

Proof. We have for any u ∈ X, π(tα × μ)(u) = sup{(tα × μ)(s, x) : π(s, x) = u}
= sup{tα(s) ∧ μ(x) : π(s, x) = u} = α ∧ μ(x) : π(t, x) = u

= α ∧ μ(x) : πt(x) = u

= α ∧ μ(π−t(u))

= α ∧ πtμ(u), since μπ−t = πtμ.

= (α ∧ πtμ)(u), considering α as a constant fuzzy subset on X.

Thus π(α × μ) = α ∧ πtμ. Now πt is open and μ is open so πtμ is open. Also by definition of fuzzy topology α

is open. Consequently α ∧ πt is fuzzy open. Hence π(tα × μ) is open.

Corollary 3.14. Let λ be any fuzzy subset of G and μ ∈ IX be fuzzy open, then π(λ × μ) is fuzzy open.

Proof. We have λ = ∨tα, where α = λ(x). So π(λ × μ) = π(∨tα × μ) = ∨π(tα × μ). As already proved each

π(tα,×μ) is open and hence π(λ × μ) is open.

Result 3.15 Let μ be a fuzzy closed subset of X. then for any fuzzy point tα of G, π(tα × μ) is fuzzy closed.

Proof. We have for any u ∈ X, π(tα × μ)(u) = sup{(tαμ)(s, x) : π(s, x) = u}
= sup{tα(s) ∧ μ(x) : π(s, x) = u}
= α ∧ μ(x) : π(t, x) = u, since tα(s) � 0 only when s = t.

= α ∧ μ(x) : πt(x) = u

= α ∧ μ(π−t(u))

= α ∧ πtμ(u), since μπ−t = πtμ.

= (α ∧ πtμ)(u), considering α as a constant fuzzy subset on X.

Thus π(α×μ) = α∧πtμ. Now πt is closed and μ is closed so πtμ is closed. Also by definition of fuzzy topology

is closed. Consequently α ∧ πtμ is fuzzy closed. Hence π(tα × μ) is closed.

Corollary 3.16. Let λ be any fuzzy subset of G and μ ∈ IX be fuzzy closed. If suppλ is finite, then π(λ × μ) is

fuzzy closed.

Proof. We have λ = ∨tα, where α = λ(x). So π(λ × μ) = π(∨tα × μ) = ∨π(tα × μ). As already proved each

π(tα,×μ) is closed. Also since suppλ is finite, the union is over finite number of closed fuzzy subsets. Hence

π(λ × μ) is closed.

4. Invariant fuzzy subsets

In this section we will introduce the notion of invariance of a fuzzy subset of X under the action of a fuzzy

subset of G.

Definition 4.1 Let λ a fuzzy subset of G and μ a fuzzy subset of X. Then μ is said to be invariant under λ or

λ-invariant provided that π(λ×μ) ⊆ μ. If λ = χG then μ is simply said to be invariant. If λ = χG and μ is a crisp
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subset, then fuzzy invariance reduces to crisp invariance.

Result 4.2 (i) If μ is a fuzzy subset of X, and λ is a fuzzy subgroup of X satisfying λ(0) = 1, then the following

statements are pairwise equivalent : π(λ × μ) ⊆ μ. ; π(λ × μ) = μ; π(λ(t) × μ) ⊆ μ ∀t ∈ G.

(ii) 0 and 1 are invariant.

(iii) If π(t × μ) ⊆ μ, then π(−t × μc) ⊆ μc and conversely

(iv) If μ is λ-invariant then intμ is λ-invariant and clμ is λ-invariant provided G and X are product related.

(v) If {μi} is a collection of λ-invariant fuzzy subset, then ∨μi and ∧μi are λ-invariant.

(vi) Let A be a crisp subset of G and μ a fuzzy subset of X., then μ is χA-invariant iff μc is χ−A- invariant.

Proof (i) First we show π(λ × μ) ⊆ μ⇔ π(λ × μ) = μ.
Suppose π(λ × μ) ⊆ μ. We have for any u in X, π(λ × μ)(u) = sup{(λ × μ)(t, x) : π(t, x) = u}
= sup{(λ(t) ∧ μ(x) : π(t, x) = u}
≥ λ(0) ∧ μ(u), since π(0, u) = u

= μ(u) since λ(0) = 1.

Thus π(λ × μ) = μ. Consequently π(λ × μ) ⊆ μ.⇔ π(λ × μ) = μ.
Next we show π(λ(t) × μ) ⊆ μ⇔ ∀t ∈ G.π(λ × μ) ⊆ μ
Given π(tα × μ) ⊆ μ for all tα : α = λ(t).

Now π(λ × μ) = π(∨tα × μ) = ∨π(tα × μ) ⊆ μ
(ii) Trivial

(iii) We have π(t × μ) ⊆ μ⇒ πt(μ) ⊆ μ
And π(−t × μc) = π−t(μc)

Now 1 − μ ⊆ 1 − πt(μ) = μcπ−t ⇒ μc ⊆ πtμc ⇒ π−tμc ⊆ μc ⇒ π(−t × μc) ⊆ μc

(iv) We have π(λ × μ) ⊆ μ. Now π(λ × μo) ⊆ π(λ × μ) ⊆ μ. Now μo is open so π(λ × μo) is open and contained

in μ. But μo is the largest open fuzzy set contained in μ.

Hence π(λ × μo) ⊆ μo.

Since G and X are product related λ × clμ ⊆ clλ × clμ = cl(λ × μ)
⇒ π(λ × clμ) ⊆ π{cl(λ × μ)} ⊆ clπ(λ × μ), since π is continuous

⊆ clμ.

(v) We have π(λ × ∨μi) = π{∨(λ × μi)} = ∨π(λ × μi) ⊆ μ.
Similarly π(λ × ∧μi) = π{∧(λ × μi)} ⊆ ∧π(λ × μi) ⊆ μ.
(vi) It is sufficient to show that π(t × μ) ⊆ μ, then π(−t × μc) ⊆ μc and conversely for t ∈ A. Hence it follows

from (iii)

5. Fuzzy Orbits

In this section we will introduce the notion of orbits in fuzzy setting and extend some classical results.

Definition 5.1 Let x ∈ X and λ a fuzzy subgroup of G. Then the fuzzy orbit of x under λ or the λ- orbit of x is

defined to be fuzzy subset π(λ × x). The fuzzy orbit closure of x under λ or the λ- orbit closure of x is defined

to be the fuzzy subset clπ(λ × x).

When λ = χG, then the fuzzy orbit coincides with the crisp orbit. We will denote the orbit of x under λ by λx.

We assume that G and X are product related and that λ(0) = 1.

Remark : λx(u) = sup{λ(t) : π(t, x) = u}.
We have λx(u) = π(λ, x)(u) = sup{(λ, x)(t, y) : (t, y) = u}
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= sup{(λ(t) ∧ x(y) : π(t, y) = u}
= sup{(λ(t) : π(t, x) = u}, since x(y) � 0 iff x = y.

Result 5.2 Let x, y ∈ X, then

(i) λx(y) = λy(x)

Proof. We have λx(y) = sup{λ(t) : π(t, x) = y} = sup{λ(t) : π(−t, y) = x}
= sup{λ(−t) : π(−t, y) = x} = λy(x).

(ii) λ-orbit of x is λ-invariant.

Proof. We have for any u ∈ X,

π(λ × λx)(u) = sup{(λ × λx)(t, y) : π(t, y) = u} = sup{λ(t) ∧ λx(y) : π(t, y) = u}.
= sup[λ(t) ∧ sup{λ(s) : π(s, x) = y} : π(t, y) = u}]
= supt sups{λ(t) ∧ λ(s) : π(t + s, x) = u}}
≤ supt sups{λ(t + s) : π(t + s, x) = u}, since λ is a fuzzy subgroup of G

= sup{λ(r) : π(r, x) = u} = λx(u). Hence π(λ × λx) ⊆ λx.

(iii) Let η ∈ IG be λ-invariant and η(x) = 1, then λx ⊆ η. In other words fuzzy orbit of x is the least λ-invariant

fuzzy subset containing the fuzzy point x.

Proof. We have for any u ∈ X,

λx(u) = sup{λ(t) : π(t, x) = u} = sup{λ(t) ∧ η(x) : π(t, x) = u}, since η(x) = 1.

= π(λ × η)(u) ⊆ η(u).

(iv) The closure of λ-orbit of x is λ-invariant.

Proof. Since G and X are product related, we have π(λ × clλx) ⊆ π(cl(λ × λx))

⊆ clπ(λ × λx), since π is continuous

⊆ clλx, since π(λ × λx) ⊆ λx.

(v) Let η ∈ IG be closed, λ-invariant and η(x) = 1, then clλx ⊆ η. In other words fuzzy orbit of x is the least

λ-invariant fuzzy closed subset containing the fuzzy point x.

Proof. Since λx is λ-invariant, π(λ × λx) = λx by Result 2(i). So λx = π(λ × x) ⊆ π(λ × η), since η(x) = 1,

⊆ η⇒ λx ⊆ η⇒ clλx ⊆ clη⇒ clλx ⊆ η , since η is closed.

(vi) If clλx(y) = 1, then clλy ⊆ clλx.

Proof. Since clλy is the least closed λ-invariant fuzzy subset containing y, the result follows.

(vii) The collection {λx : x ∈ X} is a cover of 1.

Proof. This is because for each x ∈ X, λx(x) = 1.

(viii) Let x, y ∈ X such that λx(y) > 0. Then, λx(u) > 0 ⇔ λy(u) > 0 for any u in X.

Proof. Given λx(y) > 0. So ∃t ∈ G with λ(t) > 0 : π(t, x) = y. This implies π(−t, y) = x. Let λx(u) > 0, then

there exist s ∈ G with λ(s) > 0 : π(s, x) = u.

So π(s − t, y) = u and λ(s − t) ≥ λ(s) ∧ λ(−t) = λ(s) ∧ λ(t) > 0, since λ is a fuzzy subgroup ⇒ λy(u) > 0.

Similarly λy(u) > 0 ⇒ λx(u).

(ix) If λx(y) = 0, then λx(u) = 0, for all u in X such that λy(u) > 0

Proof. We have λx(y) = 0, so there exists no t ∈ G with λ(t) > 0 : π(t, x) = y − −(i) Let u ∈ X such that

λy(u) > 0 ⇒ ∃r ∈ G with λ(r) > 0 : π(r, y) = u. − −(ii)

Suppose λx(u) > 0, then ∃s ∈ G with λ(s) > 0 : π(s, x) = u ⇒ π(−r, (s, x)) = π(−r, u) = y using (ii)

⇒ π(−r + s, x)) = y, where λ(−r + s) ≥ λ(−r) ∧ λ(s) = λ(r) ∧ λ(s) > 0, since λ is a fuzzy subgroup But this
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contradicts (i). Hence the result.

We consider the collection of all λ-orbits and define a relation on it as λx ∼ λy if λx(y) > 0. Then it can be easily

verified that this relation is an equivalence relation, where the equivalence class of λx is [λx] = {λy : λx(y) > 0}.
So [λx] is a fuzzy subset of X defined as [λx](y) = λx(y).

The collection {supp[λx] : x ∈ X} is a crisp partition of X.

Let us denote the set of all equivalence classes by X/λ, i.e., X/λ = {[λx] : x ∈ X}. Define a map f : X → X/λ
given by f (x) = [λx]. We equip X/λ with the corresponding quotient topology.

Result 5.3 The map f : X → X/λ given by f (x) = [λx] is an open map.

Proof. Let μ be an open fuzzy subset of X. To show f (μ) is fuzzy open in X/λ. Since X/λ has quotient topology

with respect to f, it is sufficient to show f −1{ f (μ)} is open in X.

We have f −1{ f (μ)}(x) = f (μ)( f (x)) = f (μ)[λx] = sup{μ(y) : f (y) = [λx]}
= sup{μ(y) : [λy] = [λx]} = sup{μ(y) : λy ∈ [λx]}
= sup{μ(y) : λx(y) > 0} = sup{μ(y) : π(t, x) = y for some t ∈ G with λ(t) > 0}
= sup{μ(π−t(x)) : π(t, x) = y for some t ∈ G with λ(t) > 0}
= sup{πtμ(x) : π(t, x) = y for some t ∈ G with λ(t) > 0}
= ∨πtμ(x), where t ∈ G with λ(t) > 0

Hence f −1{ f (μ)} = ∨πtμ.

Now each πt is a homeomorphism and μ is open and so πtμ is open. Consequently ∨πtμ. is open. Hence

f −1{ f (μ)} is open.

Consequently f is a fuzzy open map.

Corollary 5.4 : If λ has finite support, then the map f : X → X/λ given by f (x) = λx is a closed map.

Proof. Let μ be a closed fuzzy subset of X. To show f (μ) is fuzzy closed in X/λ. Since X/λ has quotient

topology with respect to f, it is sufficient to show f −1{ f (μ)} is closed in X.

We have f −1{ f (μ)}(x) = f (μ)( f (x)) = f (μ)[λx] = sup{μ(y) : f (y) = [λx]}
= sup{μ(y) : [λy] = [λx]} = sup{μ(y) : λy ∈ [λx]}
= sup{μ(y) : λx(y) > 0} = sup{μ(y) : π(t, x) = y for some t ∈ G with λ(t) > 0}
= sup{μ(π−t(x)) : π(t, x) = y for some t ∈ G with λ(t) > 0}
= sup{πtμ(x) : π(t, x) = y for some t ∈ G with λ(t) > 0}
= ∨πtμ(x), where t ∈ G and λ(t) > 0

Hence f −1{ f (μ) = ∨πtμ. Now each πt is a homeomorphism and μ is closed and so each πtμ is closed. As suppλ

is finite supremum is over finite number of t′s.

Consequently ∨πtμ being union of finite number of closed fuzzy sets is closed.

Hence f −1{ f (μ)} is closed.

Consequently f is a fuzzy closed map.

6. Construction of new fuzzy topological transformation groups from given ones

In this section we will construct new fuzzy topological transformation groups from given ones.

Result 5.1 Let (π, G, X) and (ϕ , G, Y) be two fuzzy topological transformation groups. DefineΨ: G×(X×Y) →
X × Y as Ψ(t, (x, y)) = (π(t, x), (t, y)). Then (Ψ, G, (X × Y)) is a fuzzy topological transformation group.

Proof. As π is fuzzy continuous Ψ is fuzzy continuous.

Also Ψ(0, (x, y)) = (π (0, x), π(0, y)) = (x, y) and

Ψ (s + t, (x, y)) = ( π(s + t, x), π(s + t, y))
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= (π (s, π(t, x), π(s, π(t, y)) = Ψ (s, ( π(t, x), π(t, y) )) = Ψ(s, Ψ(t, (x, y) ).

Thus (FGT1), (FGT2) and FGT3) are satisfied and hence (Ψ, G, (X×Y) ) is a fuzzy topological transformation

group.

Result 5.2 Let λ be a fuzzy subgroup of G and μ ∈ IX such that π(λ×μ) ⊆ μ. Then ( suppλ, suppμ, π/suppλ×suppμ)

is fuzzy topological transformation group.

Proof. Since λ is fuzzy subgroup, suppλ is an ordinary group Since subgroup of a fuzzy topological group is

a fuzzy topological group, suppλ is a fuzzy topological group. Since π(λ × μ) ⊆ μ, range of π/suppλ×suppμ) is

contained in suppμ. Also restriction of fuzzy continuous function if fuzzy continuous. Hence the result.

Corollary 5.3 Let λ be a fuzzy subgroup of G then ( suppλ, X, π/suppλ×X is fuzzy topological transformation

group.

Result 5.4 Consider the map f : X → X/λ given by f (x) = [λx]. Define a map φ : G × X → X/λ as

φ(t, [λx]) = f (π(t, x)). Then (φ, G, X/λ) is a fuzzy topological transformation group.

Proof. f and π being continuous, we have φ is continuous. Now φ(0, [λx]) = f (π(0, x)) = f (x) = [λx]. Also

φ(s, φ(t, [λx])) = φ{s, f (π(t, x))} = φ{s, [λπ(t, x)]} = f {π(s, π(t, x)} = f {π(s + t, x)} = φ(s + t, [λx]). Thus

(FGT1), (FGT2) and FGT3) are satisfied and hence (φ, G, X/λ) is a fuzzy topological transformation group.

In X define a relation x ∼ y if [λx] = [λy]. Then this relation is an equivalence. Denote the equivalence class of

x by [x]. Let g be the canonical mapping from X to {[x] : x ∈ X}, i.e, g(x) = [x]. Equip {[x] : x ∈ X} with the

corresponding quotient topology. Then clearly this space is fuzzy homemorphic with the already introduced

space X/λ, where the corresponding homeomorphism is x → [λx]. We can denote both the spaces by the same

notation X/λ. Consequently (φ, G, X/λ), where φ: G × X → X/λ defined as φ(x) = g(π(t, x)) is a fuzzy

topological transformation group. Here X/λ stands for the quotient space {[x] : x ∈ X}.
Conclusion :. In this paper we have developed the notion of topological transformation group in fuzzy setting.

We have attempted to extend most of the results of classical topological transformation group to this fuzzy

setting. A topological transformation group is the basic structure in the study of topological dynamics. As the

concept of orbit and orbit closure are fuzzified, it is expected that the other concepts of topological dynamics

can be worked on in this setting.
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