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Abstract

Over the years, one of the methods of choice to estimate probability density functions for a given random variable

(defined on binary input space) has been the expansion of the estimation function in Rademacher-Walsh Polynomial

basis functions. For a set of L features (often considered as an “L-dimensional binary vector”), the Rademacher-

Walsh Polynomial approach requires 2L basis functions. This can quickly become computationally complicated

and notationally clumsy to handle whenever the value of L is large. In current pattern recognition applications it is

often the case that the value of L can be 100 or more.

In this paper we show that the expansion of the probability density function estimation in Rademacher-Walsh Poly-

nomial basis functions is equivalent to the expansion of the estimation function in a set of Dirac kernel functions.

The latter approach is not only able to eloquently allay the computational bottle–neck and notational awkwardness

mentioned above, but may also be naturally neater and more “elegant” than the Rademacher-Walsh Polynomial

basis function approach even when this latter approach is computationally feasible.
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1. Introduction

When x is an “L-dimensional binary vector” whose components can take binary values (0 or 1), the probability

density function, p(x), for x can be approximated by using a set of basis functions. It is often the case that p(x)

is estimated through 2L Rademacher-Walsh Polynomial basis functions ϕi (Note 1) (Duda & Hart, 1973; Hand,

1981) as

p(x) =

2L−1∑
i=0

αiϕi(x) (1)

where

αi =
1

2L

N∑
x∈B

p(x)ϕi(x) (2)

and N refers to the number of available samples, {x j}Nj=1
, drawn from the underlying probability distribution being

estimated. The coefficients αi can be viewed as moments (Duda & Hart, 1973), which can be estimated as

α̂i =
1

N

N∑
j=1

1

2L ϕi(x j) (3)

Throughout the paper it is assumed that the L-dimensional random variables reside in a binary input space B with

B = {0, 1}L and the descriptions and notations given in (Duda & Hart, 1973) are adopted.

If the available N samples are distinct instances and N = 2L, the estimated coefficients α̂i are exact (Tou &

Gonzalez, 1974). However, exact or not, the expansion in Equation 1 requires 2L Rademacher-Walsh Polynomial

basis functions, which can make the estimation notationally clumsy and computationally complicated whenever

the value of L is large (Duda & Hart, 1973).
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In passing we point out that one can employ a subset of the 2L Rademacher-Walsh Polynomials in the expansion,

but this may result in an estimate of p(x)-i.e., p̂(x)-that can have negative values (Hand, 1981, pp. 106).

Putting Equation 3 into Equation 1 yields (Meisel, 1972)

p̂(x) =

2L−1∑
i=0

1

N

N∑
j=1

1

2L ϕi(x j)ϕi(x)

=
1

N

N∑
j=1

2L−1∑
i=0

ϕi(x j)√
2L

ϕi(x)√
2L

=
1

N

N∑
j=1

K(x j, x) (4)

where

K(x j, x) =

2L−1∑
i=0

ϕi(x j)√
2L

ϕi(x)√
2L

(5)

Clearly, for all practical purposes, L << ∞; besides ϕi(x j) and ϕi(x) can only take values 1, or -1 as illustrated by

Note 1. Hence

2L−1∑
i=0

|| ϕi(x) ||2< ∞, ∀x ∈ B

which means that K(x j, x) is a valid positive definite kernel function (Aronszajn, 1950; Shawe-Taylor & Cristianini,

2004) in B × B.

In Equation 4, the estimation of p(x) at x can be instructively viewed as an average of how similar x is to the given

N samples x j, where K(x j, x) is the similarity function (cf. the popular Parzen Window approach (Parzen, 1962)).

For the expression in Equation 4 to have any practical use, knowledge of the closed form of the kernel function

K(x j, x) is essential. In the following section we formulate a theorem stating that K(x j, x) in Equation 5 is a Dirac

kernel function (Jacob & Vert, 2008). In this section we also develop the tools necessary for proving this theorem.

The full proof of the theorem is presented in Section 3 followed by our concluding remarks in the final section.

For notational simplicity, in this work x denotes both the random vector and the values it may assume.

2. Method

This section introduces a theorem which constitutes the core of this paper-that is, K(x j, x) is a Dirac kernel function.

Also in this section tools (e.g., definitions, lemmas, propositions and remarks) that are essential for proving the

theorem are presented.

Theorem 1 If x and x j ∈ B with B = {0, 1}L, and ϕi(·) are Rademacher-Walsh Polynomial basis functions defined
on B, then

K(x j, x) =

2L−1∑
i=0

ϕi(x j)√
2L

ϕi(x)√
2L
=

{
1 x j = x
0 x j � x (6)

i.e., K(x j, x) is a Dirac kernel function.

Where x j = x means that x j1 = x1, x j2 = x2, ..., x jL = xL, with x jl and xl referring to the binary-valued lth

elements of x j and x, respectively. (Equation 6 can be viewed as showing that the basis functions
ϕi√
2L

satisfy the

“orthonormality” relation in the arguments xi and x.)

As described in the Introduction, the set {ϕi(x)}2L−1
i=0 is obtained by systematically forming products of (2xl − 1)

none at a time, one at a time, two at a time, three at a time, etc., where l = 1, 2, ..., L. By the same token the set

{ϕi(x j)ϕi(x)}2L−1
i=0 is obtained by forming products of the distinct terms (2x jl − 1)(2xl − 1) none at a time, one at a
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time, two at a time, three at a time, and so on:

ϕ0(x j)ϕ0(x) = 1

ϕ1(x j)ϕ1(x) = (2x j1 − 1)(2x1 − 1)

ϕ2(x j)ϕ2(x) = (2x j2 − 1)(2x2 − 1)

ϕ3(x j)ϕ3(x) = (2x j3 − 1)(2x3 − 1)

.

.

. (7)

ϕL(x j)ϕL(x) = (2x jL − 1)(2xL − 1)

ϕL+1(x j)ϕL+1(x) = [ϕ1(x j)ϕ1(x)][ϕ2(x j)ϕ2(x)]

ϕL+2(x j)ϕL+2(x) = [ϕ1(x j)ϕ1(x)][ϕ3(x j)ϕ3(x)]

ϕL+3(x j)ϕL+3(x) = [(ϕ1(x j)ϕ1(x)][ϕ4(x j)ϕ4(x)]

.

.

.

ϕ2L−1(x j)ϕ2L−1(x) = [ϕ1(x j)ϕ1(x)][ϕ2(x j)ϕ2(x)]...[ϕL(x j)ϕL(x)]

Remark 1 By definition ϕ0(x j)ϕ0(x) = 1; and self-evidently ϕi(x j)ϕi(x) (where 1 ≤ i ≤ L) can only take the values

of 1 or -1. This also means that ϕi(x j)ϕi(x) can only take the values of 1 or -1, where L + 1 ≤ i ≤ 2L − 1.

Before we embark on proving Theorem 1, we show that the following lemma (Lemma 1) holds.

Lemma 1 Let a1, a2, ..., aL be L distinguishable real variables which can take the values of 1 and -1, and assume
that combinatorial compositions can be considered as products, i.e., aka j means ak × a j, where k, j = 1, 2, ..., L.
The sum of their possible combinatorial compositions zi, with i = 0, 1, ..., 2L − 1, then gives:

2L−1∑
i=0

zi =

{
2L i f a1, a2, ..., aL = 1 (8)

0 i f not

Proof. The possible combinations are the L variables chosen: none at a time; 1 variable, ai, at a time; 2 variables,

aia j, at a time; three variables,aia jak, at a time;,...,; or L variables, a1a2...aL, at a time.

There are three possible scenarios:

Scenario (1): All the L variables are positive, i.e., ak = +1, where k = 1, 2, .., L.

Let z0 = +1 (when none is chosen); z1 = a1 = +1, z2 = a2 = +1, ..., zL = aL = +1; zL+1 = a1a2 = +1, zL+2 = a1a3 =

+1, ..., zL+ L(L−1)
2
= aL−1aL = +1; ...; and z2L−1 = a1a2...aL = 1.

Clearly, the number of times that none of the variable is chosen is
(

L
0

)
, which can also written as LC0. The number

of combinatorial terms containing one variable is LC1 =
(

L
1

)
. Similarly the number combinatorial terms consisting

of two, three, four, ..., and L variables are LC2 =
(

L
2

)
, LC3 =

(
L
3

)
, LC4 =

(
L
4

)
, ..., and LCL =

(
L
L

)
, respectively.

In other words
2L−1∑
i=0

zi =

L∑
�=0

LC� =
L∑
�=0

(
L
�

)
(9)

But from the binomial expansion theorem,

L∑
�=0

(
L
�

)
= 2L, which means

2L−1∑
i=0

zi = 2L (10)
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The use of both LC� and
(

L
�

)
may seem somewhat superfluous, but the reason for this will become clear in the

following discussions.

Scenario (2): All the L variables take the value of -1, i.e., ak = -1, where k is as defined before.

Let z0 = +1; z1 = a1 = (−1)1, z2 = a2 = (−1)1, . . . , zL = aL = (−1)1; zL+1 = a1a2 = (−1)2, zL+2 = a1a3 =

(−1)2, . . . , zL+ L(L−1)
2
= aL−1aL = (−1)2; . . . ; and z2L−1 = a1a2...aL = (−1)L. By the same token (as we reasoned

above): LC0 = 1 = (−1)0
(

L
0

)
; LC1 = (−1)1

(
L
1

)
; LC2 = (−1)2

(
L
2

)
; . . . , i.e., LC� = (−1)�

(
L
�

)
with � = 0, 1, 2, . . . , L. This

means
2L−1∑
i=0

zi =

L∑
�=0

LC� =
L∑
�=0

(−1)�
(
L
�

)
. (11)

L∑
�=0

(−1)�
(
L
�

)
can be expressed as

L∑
�=0

(
L
�

)
1L−�(−1)�, where 1 = (1)L−�. But

L∑
�=0

(
L
�

)
1L−�(−1)� is basically the bino-

mial expansion of (1 − 1)L. Thus,

2L−1∑
i=0

zi =

L∑
�=0

LC� =
L∑
�=0

(
L
�

)
1L−�(−1)� = (1 − 1)L = 0 (12)

Scenario (3): Some of the L variables assume the values of -1 while the remaining variables take the value of 1.

For no specific reason and loss of generality, let us consider that m and k denote the number of variables that take

the values -1 and 1, respectively, where L = m + k.

In this scenario one is required to demonstrate that

2L−1∑
i=0

zi =

m+k∑
�=0

m+kC� = 0 (13)

Fortunately, Equation 13 can be readily proved by use of induction providing m+kC� is expressed in terms of mC�’s.

In this case it is germane to recall the following important identities where where r, j, n are non-negative integers

and r≤n (Riley et al., 2007):

I: nCr =
n−1Cr +

n−1Cr−1,

II: n+rCn+r =
n+r−1Cn+r−1, and

III: n+ jC0 =
n+ j−1C0,

with k = 1, i.e.,
m+k∑
�=0

m+kC� becomes

m+1∑
�=0

m+1C�, which can be expressed as

m+1∑
�=0

m+1C� = m+1C0 +

m∑
�=1

m+1C� + m+1Cm+1

Making use of Identity I, the m+1C� on the RHS of the equation above becomes mC� + mC�−1, i.e., the equation can

be rewritten as

m+1∑
�=0

m+1C� = m+1C0 +

m∑
�=1

mC� + mC�−1 +
m+1Cm+1

= m+1C0 +

m∑
�=1

mC� +
m∑
�=1

mC�−1 +
m+1Cm+1

This equation can be modified further by applying Identities III and II to the first and last terms on the RHS of the

last equation, respectively, resulting in

m+1∑
�=0

m+1C� = mC0 +

m∑
�=1

mC� +
m∑
�=1

mC�−1 +
mCm
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By expressing

m∑
�=1

mC�−1 as mC0 +
mC1 + ... +

mCm−1, evidently the equation above can be written as

m+1∑
�=0

m+1C� = mC0 +

m∑
�=1

mC� + mC0 +
mC1 + ... +

mCm−1 +
mCm

=

m∑
�=0

mC� + mC0 +
mC1 + ... +

mCm−1 +
mCm

=

m∑
�=0

mC� +
m∑
�=0

mC�

In Scenario (2) we have demonstrated that in the case that all the variables (denoted here by m) take the value of

-1, mC� = (−1)�
(

m
�

)
. This means

m+1∑
�=0

m+1C� =
m∑
�=0

mC� +
m∑
�=0

mC�

=

m∑
�=0

(−1)�
(
m
�

)
+

m∑
�=0

(−1)�
(
m
�

)

= 2

m∑
�=0

(−1)�
(
m
�

)
(14)

In the case of k =2,

m+k∑
�=0

m+kC� becomes

m+2∑
�=0

m+2C�, which can be expressed as

m+2∑
�=0

m+2C� = m+2C0 +

m+1∑
�=1

m+2C� + m+2Cm+2

Applying Identity I to m+2C� in the middle term on the RHS of the equation above, we obtain

m+2∑
�=0

m+2C� = m+2C0 +

m+1∑
�=1

m+1C� + m+1C�−1 +
m+2Cm+2

= m+2C0 +

m+1∑
�=1

m+1C� +
m+1∑
�=1

m+1C�−1 +
m+2Cm+2

By following the same line of reasoning as employed in the case of k=1, we can modify the equation above further.

Applying Identities III and II to the first and last terms on the RHS of the equation above, respectively, gives

m+2∑
�=0

m+2C� = m+1C0 +

m+1∑
�=1

m+1C� +
m+1∑
�=1

m+1C�−1 +
m+1Cm+1

=

m+1∑
�=0

m+1C� +
m+1∑
�=1

m+1C�−1 +
m+1Cm+1

=

m+1∑
�=0

m+1C� + m+1C0 +
m+1C1 + ... +

m+1Cm +
m+1Cm+1

=

m+1∑
�=0

m+1C� +
m+1∑
�=0

m+1C�

= 2

m+1∑
�=0

m+1C� (15)
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By the virtue of Equation 14, 2

m+1∑
�=0

m+1C� can be written as

2

m+1∑
�=0

m+1C� = 2
[
2

m∑
�=0

(−1)�
(
m
�

)]
= 22

m∑
�=0

(−1)�
(
m
�

)
(16)

For k = k, one just needs to repeat the process above k times, which gives

m+k∑
�=0

m+kC� = 2k
m∑
�=0

(−1)�
(
m
�

)

In Scenario (2) it was shown that

m∑
�=0

(−1)�
(
m
�

)
= 0 when all m variables take the value -1. (Note that in Scenario

(2) L = m).

Hence

m+k∑
�=0

m+kC� = 2k
[ m∑
�=0

(−1)�
(
m
�

)
= 0
]
= 0

which is basically the RHS of Equation 13.

2L−1∑
i=0

zi =

m+k∑
�=0

m+kC� = 2k
m∑
�=0

(−1)�
(
m
�

)
= 0 (17)

This finalizes the proof of Lemma 1.

3. Results

In the preceding section, we have attempted to develop the essential tools for proving the proposed theorem,

Theorem 1. In this section the full proof of the theorem is given.

Proof of Theorem 1.

Recall that (by the virtue of Remark 1) ϕ0(x j)ϕ0(x) = 1 and the terms ϕi(x j)ϕi(x) take the values +1 or -1, where

i = 1, 2, ..., L.

Now, if we consider ϕ1(x j)ϕ1(x), ϕ2(x j)ϕ2(x), ..., and ϕL(x j)ϕL(x) as the real L variables in Lemma 1, then (see

Equation 7)

z0 = ϕ0(x j)ϕ0(x),

z1 = ϕ1(x j)ϕ1(x),

.

.

.

z2L−1 = ϕ2L−1(x j)ϕ2L−1(x) = [ϕ1(x j)ϕ1(x)][ϕ2(x j)ϕ2(x)]...[ϕL(x j)ϕL(x)].

Then by the virtue of Lemma 1,

2L−1∑
i=0

zi =

2L−1∑
i=0

ϕi(x j)ϕi(x) =

{
2L if ϕ1(x j)ϕ1(x), ϕ2(x j)ϕ2(x), ..., ϕL(x j)ϕL(x) = 1 (18)

0 i f not

(Recall that only if x = x j, the elements of the set {ϕi(x j)ϕi(x)}Li=1 take the value of +1.)
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Multiplying on both sides of Equation 18 by 1√
2L

1√
2L

yields

2L−1∑
i=0

ϕi(x j)√
2L

ϕi(x)√
2L
=

{
1 i f x j = x (19)

0 i f x j � x

which is Equation 6 and this completes the proof of Theorem 1.

4. Summary

For a long time, expansion in Rademacher-Walsh Polynomial basis functions has been the method of choice to

estimate the probability density function for given random variables/features defined on binary input space. For

a set of L features, the Rademacher-Walsh Polynomial approach requires 2L basis functions, which can quickly

become notationally clumsy and computationally difficult to handle whenever the value of L is large. In realistic

pattern recognition applications, the value of L can be 100 or more.

In this paper we have demonstrated that, on binary descriptor space, the expansion of the probability density esti-

mation function in Rademacher-Walsh Polynomial basis functions is equivalent to the expansion of the estimation

function in a set of Dirac kernel functions. The probability density estimation based on the Dirac kernel func-

tion scheme certainly alleviates both the computational bottle-necks and notational complexity associated with the

Rademacher-Walsh Polynomial basis function approach as discussed in the preceding sections.

Therefore it is hoped that the statistical and machine learning communities find the proposed theorem and its proof

highly useful when it comes to estimating probability density functions on binary input spaces.

Acknowledgements

The authors would like to thank Unilever for financial support.

References

Aronszajn, N. (1950). Theory of reproducing kernels. Trans. Amer. Math. Soc., 68, 337-404. Retrieved from

http://www.ams.org/journals/tran/1950-068-03/S0002-9947-1950-0051437-7/

Duda, R, O., & Hart, P. E. J. (1973). Pattern and Scene Analysis (1st ed., Chapter 4). New York, US: John Wiley

& Sons.

Hand, D. J. (1981). Discrimination and Classification (1st ed., pp. 106). Chichester, UK: John Wiley & Sons.

Jacob, L., & Vert, J. (2008). Protein-ligand interaction prediction: an improved chemogenomics approach. Bioin-
formatics, 24, 2149-2156. http://dx.doi.org/10.1093/bioinformatics/btn409

Meisel, W. S. (1972). Computer-Oriented Approaches to Pattern Recognition (1st ed., pp. 106). London, UK:

Academic Press.

Parzen, E. (1962). On estimation of a probability density function and mode. Annals of Mathematical Statistics,
33, 1065-1076. http://dx.doi.org/10.1214/aoms/1177704472

Shawe-Taylor, J., & Cristianini, N. (2004). Kernel Methods for Pattern Analysis (1st ed., pp. 60-66). Cambridge,

UK: Cambridge University Press.

Tou, J. R., & Gonzalez, R. C. (1974). Pattern Recognition Principles (1st ed., pp. 152-153). New York, US:

Addison-Wesley.

Riley, K. F., Hobson, M. P., & Bence, S. J. (2007). Mathematical Methods for Physics and Engineering (3rd ed.,

p. 26). Cambridge, UK: Cambridge University Press.

Notes

Note 1. According to Duda and Hart (1973) this basis function set consists of a set of polynomials that can be

generated by systematically forming the products of the distinct terms 2xi − 1 taken none at a time, one at a time,

two at a time, three at a time, and so on, as follows:
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ϕi(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 i = 0

2x1 − 1 i = 1

. .

. .

. .

2xL − 1 i = L

(2x1 − 1)(2x2 − 1) i = L + 1

. .

. .

. .

(2xL−1 − 1)(2xL − 1) i = L + 1 + L(L−1)
2

(2x1 − 1)(2x2 − 1)(2x3 − 1) i = L + 2 + L(L−1)
2

. .

. .

. .

(2x1 − 1)(2x2 − 1)...(2xL − 1) i = 2L − 1.

where x = (x1, x2, ..., xL). The set forms a complete basis set satisfying an orthogonality relation in their order –

i.e., ϕi(x) and ϕk(x) – with respect to the weighting function w(x) = 1,

∑
x
ϕi(x)ϕk(x) =

{
2L i = k

0 i � k

where the summation is taken over all 2L values of the binary vectors.
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