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Abstract

The problem of finding square roots of p-adic integers in Zp, p � 2, has been a classic application of Hensel’s

lemma. A recent development on this problem is the application and analysis of convergence of numerical methods

in approximating p-adic numbers. For a p-adic number a, Zerzaihi, Kecies, and Knapp (2010) introduced a fixed-

point method to find the square root of a in Qp. Zerzaihi and Kecies (2011) later extended this problem to finding

the cube root of a using the secant method. In this paper, we compute for the square roots and cube roots of

p-adic numbers in Qp, using the Newton-Raphson method. We present findings that confirm recent results on

the square roots of p-adic numbers, and highlight the advantages of this method over the fixed point and secant

methods. We also establish sufficient conditions for the convergence of this method, and determine the speed of its

convergence. Finally, we detemine how many iterations are needed to obtain a specified number of correct digits

in the approximate.
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1. Introduction

Let p be a prime, Qp and Zp be the fields of p-adic numbers and p-adic integers respectively. The introduction of

the p-adic norm in the field Q paves the way to the construction of Qp as the completion of Q so radically different

from R. Hensel’s lemma has had a significant impact in the study of these fields by providing sufficient conditions

for the existence of roots in Zp of polynomials in Zp[x]. A survey of some characterizations of mth roots of unity

in Qp for any positive integer m appears in Koblitz (1984). A classic application of Hensel’s lemma deals with

the problem of finding the square roots of a p-adic number a in Qp, where p � 2. A recent development on this

problem is the application and analysis of convergence of numerical methods in approximating p-adic numbers. In

fact, this recent development led to several related problems. Knapp and Xenophontos (2010) applied several root-

finding methods for computing the multiplicative inverses of integers modulo pn, n ∈ N. A similar problem was

addressed by Dumas (2012) by using the Newton-Raphson iteration over Qp to compute for multiplicative inverses

of p-adic numbers modulo pn. Zerzaihi, Kecies, and Knapp (2010) used a fixed point iteration to approximate the

solutions of x2 = a, a ∈ Qp in Qp. Zerzaihi and Kecies (2011) then extended the root finding problem to the cube

roots in Qp of p-adic numbers by approximating the zeroes of g(x) = x3 − a, a ∈ Qp, using the secant method.

In this paper, we compute for the square root and cube root of a p-adic number a in Qp, where p > 2 and

p > 3 respectively, using the Newton-Raphson method. Given a root of order r, we determine the order of the

approximate root after n iterations. The paper confirms earlier results on the square roots of p-adic numbers, and

highlights the advantages of the Newton-Raphson method over the fixed point and the secant methods. We give

conditions on r to ensure convergence and we determine the speed of convergence. Finally, we detemine how

many iterations are needed to obtain a specified number of correct digits in the approximate.

2. Preliminaries

We shall begin our discussion by introducing the basic properties of Qp. For a much detailed presentation of this

field, see Katok (2001).
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2.1 The Field Qp of p-Adic Numbers

We begin by introducing a valuation on Q.

Definition 1 Let p ∈ N be a prime number, 0 � x ∈ Q. The p-adic valuation vp(x) of x is defined as

vp(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r, if x ∈ Z and r is the largest power of p such that pr |x;

vp(a) − vp(b), if x =
a
b

, a, b ∈ Z, (a, b) = 1 and b � 0.
(1)

With this valuation, we can define a map | · |p : Q→ R+ as follows:

Definition 2 Let p be a prime number, and x ∈ Q. We define the p-adic norm | · |p of x as

|x|p =
⎧⎪⎪⎨⎪⎪⎩

p−vp(x), if x � 0;

0, if x = 0.
(2)

With this definition of | · |p on Q, the p-adic norm takes only integral powers of p and zero, that is the range of this

mapping is the set {pn|n ∈ Z} ∪ {0}. It may be verified that the p-adic norm | · |p satisfies the following properties

1) |xy|p = |x|p|y|p;

2) |x + y|p ≤ max{|x|p, |y|p} where equality holds if |x|p � |y|p;

3)

∣∣∣∣∣ xy
∣∣∣∣∣
p
=
|x|p
|y|p .

An interesting consequence of the application of the p-adic norm to Q is the new formulation of distance in the

metric space (Q, | · |p). Note that for a, b ∈ Q, a and b are “close” if |a − b|p is close to zero. Hence, in the metric

space (Q, | · |3), 12 is actually closer to three than two is!

We are now in the position to define formally the field Qp of p-adic numbers.

Definition 3 The field of p-adic numbers Qp is the completion of Q with respect to the p-adic norm | · |p. The

elements of Qp are equivalence classes of Cauchy sequences in Q with respect to the extension of the p-adic norm

defined as

|a|p = lim
n→∞ |an|p (3)

where {an} is a Cauchy sequence of rational numbers representing a ∈ Qp.

The following theorem provides a way to write any element of Qp in a unique representation.

Theorem 4 Let a ∈ Qp. Then a has unique p-adic expansion

a = an pn + an+1 pn+1 + ... + a−1 p−1 + a0 + a1 p + a2 p2 + ... =

∞∑
i=n

ai pi (4)

where ai ∈ Z and 0 ≤ ai ≤ p − 1 for i ≥ n.

Note that this representation of p-adic numbers is exactly the base p expansion of integers. A short notation for a

p-adic number a = an pn + an+1 pn+1 + ... + a−1 p−1 + a0 + a1 p + a2 p2 + ... is anan+1...a−1 · a0a1a2... where we only

write the coefficients in the expansion.

Definition 5 The set Z×p of p-adic units is given by

Z×p =

⎧⎪⎪⎨⎪⎪⎩a ∈ Zp : a =
∞∑

i=0

ai pi, a0 � 0

⎫⎪⎪⎬⎪⎪⎭ =
{
a ∈ Qp : |a|p = 1

}
(5)

Since every p-adic number has its unique representation described by Theorem 4, the p-adic units offer an alterna-

tive way of writing them in terms of their p-adic valuation.

Theorem 6 Let a ∈ Qp, then
a = pvp(a)u (6)

for some u ∈ Z×p .
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Definition 7 Let a, b ∈ Qp. Then b is an nth root of a of order k ∈ N if and only if bn ≡ a(mod pk).

The following result will be central to our discussion.

Lemma 8 Let a, b ∈ Qp. Then
a ≡ b( mod pk)⇔ |a − b|p ≤ p−k. (7)

2.2 Functions over Qp

In this section, we introduce fundamental concepts on the analysis of functions defined over Qp. We start by

defining continuous functions.

Definition 9 Let X ⊂ Qp. A function f : X → Qp is said to be continuous at a ∈ X if for each ε > 0 there exists

a δ > 0 such that if |x − a|p < δ, then | f (x) − f (a)|p < ε. A function f is said to be continuous on E ⊆ X if f is

continuous for every a ∈ E.

We shall show in the next example that, as in the real case, polynomial functions with coefficients in Qp are

continuous in any subset of Qp.

Example 10 Let a ∈ Qp, and P(x) = a0 + a1x + x2x2 + ...+ anxn ∈ Qp[x]. Then for ε > 0, we seek a suitable δ > 0

such that if |x− a|p < δ, then |P(x)− P(a)|p < ε for all x ∈ Qp. Without loss of generality, assume |x|p < |a|p. Then,

|P(x) − P(a)|p ≤ |x − a|p max
{
|aiai−1|p

}n

i=1
. (8)

Let max
{
|aiai−1|p

}n

i=1
= M, and choose δ =

ε

M
so that if

|x − a|p < εM (9)

⇒ |x − a|pM < ε (10)

⇒ |P(x) − P(a)|p < ε (11)

Therefore, P(x) is continuous at a.

We define next the derivative of p-adic functions.

Definition 11 Let X ⊆ Qp, a ∈ X be an accumulation point of X. A function f : X → Qp is differentiable at a if

the derivative of f at a, defined by

f ′(a) = lim
x→a

f (x) − f (a)

x − a
(12)

exists. A function f : X → Qp is differentiable on X if f ′(a) exists at all a ∈ X.

With this definition of derivative, if P(x) =

n∑
i=0

aixi where ai ∈ Qp, then P′(x) =

n∑
i=1

iaixi−1. It may also be verified

that polynomials in Qp have continuous derivatives.

2.3 p-Adic Roots

We shall now narrow our discussion of p-adic functions on p-adic polynomials. In particular, we are concerned

with finding the solutions of these polynomials in Qp. The next lemma has been the basis for many existing results

on p-adic roots.

Theorem 12 (Hensel’s Lemma) Let F(x) = c0 + c1x + ... + cnxn ∈ Zp[x] and F′(x) = c1 + 2c2x + ... + ncnxn−1 be
its derivative. If for some a0 ∈ Zp we have F(a0) ≡ 0(mod p) and F(a0) � 0(mod p). Then, there exists a unique
a ∈ Zp such that F(a) = 0 and a ≡ a0(mod p).

Hensel’s lemma paves the way for the study of roots of p-adic numbers. The following result provides the condition

for the existence of roots in Zp.

Theorem 13 (Katok, 2007) A polynomial with integer coefficients has a root in Zp if and only if it has an integer
root modulo pk for any k ≥ 1.

A natural consequence of the previous result are the following propositions with their corresponding corollaries.

Proposition 14 A rational integer a not divisible by p has a square root in Zp, (p � 2) if and only if a is a quadratic
residue modulo p.
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Corollary 15 Let p � 2 be a prime. An element x ∈ Qp is a square if and only if it can be written x = p2my2 with
m ∈ Z and y ∈ Z×p a p-adic unit.

Proposition 16 (Zerzaihi and Kecies, 2011) A rational integer a not divisible by p has a cubical root in Zp (p � 3)
if and only if a is a cubic residue modulo p.

Corollary 17 (Zerzaihi and Kecies, 2011) Let p be a prime, then

1) If p � 3, then a has a cube root in Qp if and only if vp(a) = 3m, m ∈ Z and u = vq for some v ∈ Z×p .

2) If p = 3, then a has a cube root in Q3 if and only if vp(a) = 3m, m ∈ Z and u ≡ 1(mod 9) or u ≡ 2(mod 3).

Note that Corollary 15 and Corollary 17 provide the condition for the existence of square roots and cube roots in

Qp.

2.4 The Newton-Raphson Method

One common method of approximating roots of functions is the Newton-Raphson method. This method requires

that functions, whose roots are to be approximated, be differentiable. For a function, say f (x) and its derivative

f ′(x), the method makes use of the iterative function

g(x) = x − f (x)

f ′(x)
(13)

from which the recurrence relation will be obtained. The method is employed by first having an initial guess x0

and then, using the formula xn+1 = g(xn), obtain a recurrence relation which will be used for approximation. If

the initial guess x0 and the iterative function are suitably chosen, the sequence {xn} should converge to a root of f .

The rate of convergence of the method gives the rate at which the number of correct digits in the approximation

increases. For instance, if the rate of convergence is of order two (quadratic convergence), then the number of

correct digits in the approximate doubles after each iteration. In Knapp and Xenophontos (2010), the authors used

this method to find multiplicative inverses of p-adic units modulo pn.

Example 18 We have seen that p-adic polynomials have continuous derivatives. Hence, for a ∈ Qp, the function

f (x) = x2 − a satisfies the conditions of the Newton-Raphson method with recurrence relation

xn+1 = xn − f (xn)

f ′(xn)

= xn − x2
n − a
2xn

=
x2

n + a
2xn

(14)

3. Results

The existence of the square and cube roots of p-adic numbers justifies our effort to approximate them.

3.1 The Square Roots of p-Adic Numbers

By Corollary 15, we limit our discussion to a ∈ Qp such that

|a|p = p−2m,m ∈ Z (15)

Proposition 19 Let {xn} be the sequence of p-adic numbers obtained from the Newton-Raphson iteration. If x0 is a
square root of a of order r, |x0|p = p−m, r > 2m, and p > 2, then

(i) |xn|p = p−m for n = 1, 2, 3, ...;

(ii) x2
n ≡ a(mod p2nr−2m(2n−1));

(iii) {xn} converges to the square root of a.

Proof. We first prove (i) and (ii) by induction. Let n = 1, then by our assumption, we have

x2
0 = a + bpr, (16)

where 0 < b < p. Using Equation (14), we have

|x1|p =
|x2

0 + a|p
|2x0|p =

|2a + bpr |p
|2x0|p =

max{|2a|p, |bpr |p}
|2x0|p =

p−2m

p−m = p−m. (17)
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Also by Equation (14), we have

x2
1 − a =

⎛⎜⎜⎜⎜⎝ x2
0 + a
2x0

⎞⎟⎟⎟⎟⎠
2

− a =
(x2

0 − a)2

4x2
0

. (18)

Let φ(x0) =
1

4x2
0

. So that

x2
1 − a = (x2

0 − a)2φ(x0). (19)

Note also that

|φ(x0)|p ≤ p2m. (20)

Since x0 is a square root of a of order r, we have

|(x2
0 − a)2|p ≤ p−2r (21)

and therefore

|x2
1 − a|p ≤ p2m p−2r = p2m−2r (22)

By Lemma (8),

x2
1 − a ≡ 0( mod p2r−2m). (23)

Now, assume that our conclusions hold for n − 1. That is,

|xn−1|p = p−m (24)

x2
n−1 ≡ a( mod p2n−1r−2m(2n−1−1)) (25)

Note that the equivalence in (25) implies that

x2
n−1 = a + bp2n−1r−2m(2n−1−1), (26)

where 0 < b < p. Using Equation (14), we have

|xn|p =
|x2

n−1 + a|p
|2xn−1|p =

|2a + bp2n−1r−2m(2n−1−1)|p
|2xn−1|p =

max{|2a|p, |bp2n−1r−2m(2n−1−1)|p}
|2xn−1|p =

p−2m

p−m = p−m. (27)

Also, we have that

x2
n − a =

⎛⎜⎜⎜⎜⎝ x2
n−1 + a
2xn−1

⎞⎟⎟⎟⎟⎠
2

− a =
(x2

n−1 − a)2

4x2
n−1

. (28)

Let φ(xn−1) =
1

4x2
n−1

. So that

x2
n − a = (x2

n−1 − a)2φ(xn−1). (29)

Note now that by Equation (24)

|φ(xn−1)|p ≤ p2m. (30)

Since xn−1 is a square root of a of order 2n−1r − 2m(2n−1 − 1), we have

|(x2
n−1 − a)2|p ≤ p−2(2n−1r−2m(2n−1−1)). (31)

Hence we have

|x2
n − a|p ≤ p2m p−2(2n−1r−2m(2n−1−1)) = p2m2n−4m+2m−2nr = p2m(2n−1)−2nr. (32)
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By Lemma (8), we have

x2
n − a ≡ 0( mod p2nr−2m(2n−1)). (33)

Finally, (iii) follows clearly from (32) as we take n→ ∞.

We now turn to the convergence of the method.

Proposition 20 Let {xn} be the sequence of approximates converging to the square root of a obtained from the
Newton-Raphson method. If p > 2

(a) The speed of convergence of the sequence {xn} is of order λn − m = 2nr − m(2n+1 − 1);

(b) The number of iterations to obtain at least M correct digits is

n =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
ln

(
M−m
r−2m

)
ln 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥ . (34)

Proof. For the speed of convergence, we investigate two consecutive approximates xn+1 and xn. Note that

xn+1 − xn =
x2

n + a
2xn

− xn =
−1

2xn
(x2

n − a). (35)

Then,

|xn+1 − xn|p =
∣∣∣∣∣ −1

2xn

∣∣∣∣∣
p
|(x2

n − a)|p. ≤ pm−λn (36)

Hence,

xn+1 − xn ≡ 0( mod pλn−m). (37)

Note that if the order of the root xi is K (that is, x2
i −a ≡ 0(mod pK)), the number of correct digits in the approximate

is K − m since | √a|p = p−m. Hence, to find the number of iterations n such that we have M correct digits in the

approximate, we must set the order to M + m. That is,

2nr − 2m(2n − 1) = M + m

2n(r − 2m) = M − m

2n =
M − m
r − 2m

(38)

Since {xn} converges to the square root of a, by Proposition 21, r − 2m > 0. Hence we take

n =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
ln

(
M−m
r−2m

)
ln 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥ (39)

This n is a sufficient number of iterations to provide at least M correct digits in the approximate. �
These results confirm the results of Zerzaihi, Kecies, and Knapp (2010) for the case when the square root of a is

of multiplicity two.

3.2 The Cube Roots of p-Adic Numbers

We follow the method we used for the approximation of the square roots of p-adic numbers. We shall limit our

discussion to a ∈ Qp such that

|a|p = p−3m,m ∈ Z. (40)

Now, let f (x) = x3 − a. Employing the Newton-Raphson method, we obtain the new recurrence relation

xn+1 =
2x3

n + a
3x2

n
. (41)

Proposition 21 Let {xn} be the sequence of p-adic numbers obtained from the Newton-Raphson iteration. If x0 is a
cube root of a of order r, |x0|p = p−m, r > 3m, and p > 3, then
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(i) |xn|p = p−m for n = 1, 2, 3, ...;

(ii) x3
n ≡ a(mod p2nr−3m(2n−1));

(iii) {xn} converges to the cube root of a.

Proposition 22 Let {xn} be the sequence of approximates converging to the cube root of a obtained from the
Newton-Raphson method. If p > 3, then

a) The speed of convergence of the sequence {xn} is of order λn − 2m = 2nr − 3m2n + m;

b) The number of iterations to obtain at least M correct digits is

n =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
ln

(
M−2m
r−3m

)
ln 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥ . (42)

Example 23 Let p = 3, m = 2 and y = 1 + 2 · 3 ∈ Z×
3
. Then the p-adic number

a = 32my2

= 32(2)(1 + 1 · 3 + 2 · 32 + 1 · 33)

= 1 · 34 + 1 · 35 + 2 · 36 + 1 · 37 (43)

has a square root in Q3 by Corollary 15. Now, note that

a = 1 · 34 + 1 · 35 + 2 · 36 + 1 · 37

≡ 1 · 34 + 1 · 35( mod 36)

= 182( mod 36) (44)

Hence, xn0
= 18 is a square root of a = 3969 of order r = 6. Suppose we want at least M = 10 correct digit in our

approximate. By Equation (39), we must have

n =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
ln

(
10−2

6−2(2)

)
ln 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥ = 2 (45)

number of iterations. With this n and Proposition 19, we must obtain a square root of a of order

2nr − 2m(2n − 1) = 22(6) − 2(2)(22 − 1) = 12 (46)

From Equation (14), we get the second iterate

(xn0+2)2 =

(
23, 573, 673

309096

)2

(47)

Using GAP version 4.5.7 (with Pure Padic Number Family, precision 20), we obtain (in our short notation)

x2
n0+2 = (.0020222222001212200001)2

= .000011210000112212112112 (48)

which verifies our result since

3969 = .00001121 (49)

4. Conclusion

In this paper, we set out to approximate the square and cube roots of p-adic numbers using the Newton-Raphson

method for p > 2 and p > 3 respectively. Our results for the square root show that this method converges to the

root in the same rate as the fixed point method introduced in Zerzaihi, Kecies, and Knapp (2010) for the case where√
a is a root of g(x) of multiplicity two. Hence, for this case, the Newton-Raphson method provides an alternative
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way of computing for the square roots of p-adic numbers without having to construct the function g(x) described

in Zerzaihi, Kecies, and Knapp (2010). Moreover, the Newton-Raphson method, which only requires one initial

guess, may have an advantage over the secant method due to simplified calculations.
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