On FGS-Modules

Alhousseynou BA1 & Oumar Diankha1

Correspondence: Alhousseynou BA, Department of Mathematics and Computer Science, Faculty of Science and Technic, Cheikh Anta Diop University, BP: 5005, Dakar, Senegal. Tel: 221-77-519-6267. E-mail: odiankha@ucad.sn

Received: November 12, 2012 Accepted: January 15, 2013 Online Published: January 21, 2013 doi:10.5539/jmr.v5n1p61 URL: http://dx.doi.org/10.5539/jmr.v5n1p61

Abstract

We consider R a non-necessarily commutative ring with unity $1 \neq 0$ and M a module over R. By using the category $\sigma[M]$ we introduce the notion of FGS-module. The latter generalizes the notion of FGS-ring. In this paper we fix the ring R and study M for which every hopfian module of $\sigma[M]$ becomes finitely generated. These kinds of modules are said to be FGS-modules. Some properties of FGS-module, a characterization of semisimple FGS-module and of serial FGS-module over a duo ring have been obtained.

Keywords: hopfian, progenerator, finitely generated, category $\sigma[M]$, serial (homo-serial, finite) representation type

1. Introduction

We consider R a non-necessarily commutative ring with unity $1 \neq 0$ and M a module over R. By using the category $\sigma[M]$ we introduce the notion of FGS-module. The latter generalizes the notion of FGS-ring (Barry, Sangharé, & Touré, 2007). The set of all modules subgenerated by M is said category $\sigma[M]$. It is the full subcategory of R-Mod. A module N is hopfian if every R-epimorphism of N is an automorphism. We know every module which is finitely generated is hopfian but the opposite is not true. For instance, we assume \mathbb{Z} be the ring of integers, then the module \mathbb{Q} of rational numbers over \mathbb{Z} is hopfian but \mathbb{Q} is not finitely generated.

The goal of this work is: we fix the ring R and study M for which every hopfian module of $\sigma[M]$ becomes finitely generated. These kinds of modules are said to be FGS-modules. We have obtained, as results, some properties of FGS-module, a characterization of semisimple FGS-module (Theorem 1) and of serial FGS-module (Theorem 2) over a duo ring.

2. Definitions and Some Properties of FGS-Modules

We consider M and N two objects of R-Mod. We say that N is generated by M if there is a surjective homomorphism Ψ and a set Λ such that $\Psi: M^{(\Lambda)} \to N$. A submodule of N is said to be subgenerated by M. The set of all submodule of N constitutes the category $\sigma[M]$. It's the full subcategory of R-Mod. A projective, finitely generated and generator object of $\sigma[M]$ is said to be progenerator. A module which its submodules are linearly ordered by inclusion is uniserial. A module is homo-uniserial if the factor of two finitely generated submodules with their radical are simple and isomorphic. A module which is a direct sum of uniserial (resp. homo-uniserial) modules is serial (resp. homo-serial). In $\sigma[M]$ if every object is serial, then M is of serial representation type. A module is of finite representation type, if it is of finite length and there exists only a finite number of nonisomorphic indecomposable modules. A module M is a S-module if every hopfian object of $\sigma[M]$ is noetherian.

Proposition 1 We consider M a module over R,

- 1) If M is a FGS-module, then every submodule of M is a FGS-module too;
- 2) If a module is a FGS-module, then every homomorphic image of that module is a FGS-module;
- 3) Let consider M a direct product of its submodules.

If the product is finite and for every different submodules N, K of M we have Hom(N, K) = 0, then, the converse of 1) is true.

¹ Department of Mathematics and Computer Science, Cheikh Anta Diop University, Dakar, Senegal

Proof.

- 1) We assume N be a submodule of M. As M belongs to $\sigma[M]$ hence, $N \in \sigma[M]$ too and $\sigma[N]$ becomes a full subcategory of $\sigma[M]$. We consider K an object of $\sigma[N]$. We have also $K \in \sigma[M]$. If K is hopfian then K is finitely generated. Thus N is a FGS-module.
- 2) We consider M' a homomorphic image of M. That implies M' is M-generated. It means that $M' \in \sigma[M]$ by referring to 1) M' is a FGS-module.
- 3) We assume N an hopfian object of $\sigma[M]$. Since the product is finite there exists an isomorphism between the product and the direct sum. That implies $N \in \sigma[\bigoplus_{i \in I} M_i]$. As $Hom(M_i, M_j) = 0$ for every $i \neq j$ then by referring to Vanaja (1996), $N = \bigoplus_{i \in I} N_i$ and $N_i \in \sigma[M_i]$, $i \in I$. Then, for any $i \in I$, N_i is finitely generated since N_i is hopfian. Therefore N is finitely generated. Thus M is a FGS-module.

Proposition 2 We consider M a module. If M is a FGS-module hence, we will have a finite number of module which are non-isomorphic simple objects in $\sigma[M]$.

Proof. We assume $(N_{\lambda})_{{\lambda} \in \Lambda}$ be a complete system of non-isomorphic class of simple object of $\sigma[M]$. We put $N = \bigoplus_{{\lambda} \in \Lambda} N_{\lambda}, \, N \in \sigma[M]$ because the direct sum is stable in $\sigma[M]$. As N is hopfian then N is finitely generated. Thus Λ is finite.

Proposition 3 We consider M a module. If M is FGS-module then every indecomposable projective object of $\sigma[M]$ is finitely generated.

Proof. We assume N a projective object of $\sigma[M]$. We consider also f an endomorphism of N. We assume the following exact sequence:

$$0 \to \ker(f) \to N \to N \to 0$$

We have $N = \ker(f) \bigoplus N$. As N is indecomposable then $\ker(f) = \{0\}$. Therefore N is hopfian. That implies N is finitely generated.

Proposition 4 We consider M a module. If M is a FGS-module then, the projective cover of every simple module of $\sigma[M]$, if it exists, is finitely generated.

Proof. We assume P a simple module of $\sigma[M]$ with projective cover \widehat{P} . To show that the projective cover is finitely generated it suffices to show that \widehat{P} is indecomposable.

Let P_1 and P_2 be two submodules of \widehat{P} . We suppose $\widehat{P} = P_1 \oplus P_2$ and a surjective homomorphism $f: \widehat{P} \to P$ such that $\ker(f)$ is superfluous in \widehat{P} . Let $f_1 \neq 0$ be the restriction of f on P_1 . As P is simple then f_1 is surjective. Then $P_2 \subseteq \ker(f)$. That implies $P_2 = \{0\}$. Therefore \widehat{P} is indecomposable. It results from Proposition 3, \widehat{P} is finitely generated.

A module which is finitely generated and homo-uniserial module is uniserial.

Proposition 5 We consider R be a duo ring and M a FGS-module. If M is of homo-serial representation type such that $\sigma[M]$ has a progenerator then, M is of serial representation type.

Proof. We suppose $N \in \sigma[M]$ and Q the progenerator of $\sigma[M]$. We consider $x \in Q$. We have $\sigma[Rx] = R/I$ -Mod where I = Ann(x). As the Rx is a FGS-module then the factor ring R/I is a FGS-ring. By referring to (Barry, Sangharé, & Touré, 2007, Theorem 3.4) R/I is an artinian principal ideal ring. As $\sigma[Q] = \sigma[M]$ then, from Corollary 3.5 every module of $\sigma[M]$ is a direct sum of cyclic modules. We assume N be an homo-serial object of $\sigma[M]$. Hence $N = \bigoplus_{i=1}^n N_i$ where N_i is homo-uniserial. Therefore, for every $1 \le i \le n$, N_i is cyclic. Then N_i is finitely generated for every $1 \le i \le n$. N_i is uniserial, for every $1 \le i \le n$. Hence N is serial. Thus M is of serial representation type.

Remark 1 The converse of the Proposition 5 has been done in Wisbauer (1991).

Proposition 6 We consider R a duo ring and M a serial module. We assume that $\sigma[M]$ has a progenerator and Hom(N,K) = 0 for any submodules N et K of M. We have the equivalence between the next assertions:

- 1) R is a FGS-ring;
- 2) M is a FGS-Module.

Proof.

1) \Rightarrow 2) We assume N an hopfian object of $\sigma[M]$. As N is also an object of R-Mod and R is FGS ring hence, N is

finitely generated. Thus *M* is a *FGS* -module.

2) \Rightarrow 1) We assume $N \in \sigma[M]$. By referring to Vanaja (1996), $N = \bigoplus_{i \in I} N_i$ and $N_i \in \sigma[M_i]$, for any $i \in I$. Therefore N_i is M_i -subgenerated for every $i \in I$. Then there exists an epimorphism $\Phi_i : M_i^{(\Lambda)} \to K_i$ where N_i a submodule of K_i for every $i \in I$. By the first theorem of isomorphism $M_i^{(\Lambda)}/Ker(\Phi_i) \simeq K_i$ for every $i \in I$. As, for every $i \in I$, $M_i^{(\Lambda)}$ is uniserial then $M_i^{(\Lambda)}/Ker(\Phi_i)$ is also uniserial. That implies K_i is uniserial for every $i \in I$. We know that every submodule of an uniserial module is uniserial. Then, for every $i \in I$, N_i is uniserial. Thus N is serial. It means that M is of serial representation type.

We assume Q the progenerator of $\sigma[M]$. Let $x \in Q$. We have $\sigma[Rx] = R/I$ -Mod where I = Ann(x). As the Rx is a FGS-module then the factor ring R/I is a FGS-ring. By referring to (Barry, Sangharé, & Touré, 2007, Theorem 3.4), R/I is an artinian principal ideal ring. As Q is finitely generated then, it is of finite length. By referring to (Diankha, Sanghare, & Sokhna, 1999), $\sigma[M] = \sigma[Q]$ and M is of finite representation type. Hence M is of finite length. By referring to (Wisbauer, 1991, p. 557) $\sigma[M] = R$ -Mod. That's why $P(Q) \Rightarrow P(Q)$

3. The Main Results

Theorem 1 We consider R a duo ring and M a semisimple module. We have the equivalence between the next assertions:

- 1) M is a FGS-module;
- 2) *M* is of serial representation type and of finite length;
- 3) M is of homo-serial representation type and of finite length;
- 4) M is of finite representation type.

Proof.

1) \Rightarrow 2) We assume N an object of $\sigma[M]$. Since M is semisimple then N is also semisimple. That implies $N = \bigoplus_{i \in I} N_i$ such that, for any $i \in I$, N_i is simple. Hence N_i is uniserial for every $i \in I$. Then N is serial. Thus M is of serial representation type.

We know $M = \bigoplus_{i \in I} M_i$ where M_i is simple. As M_i is hopfian hence, $M = \bigoplus_{i \in I} M_i$ is hopfian. It follows M is finitely generated. Thus from (Anderson & Fuller, 1974, 10.16) M is of finite length.

- $2) \Rightarrow 3)$ Remark 1.
- 3) \Rightarrow 4) By referring to (Wisbauer, 1985), there exists a progenerator in $\sigma[M]$. We assume Q a progenerator of $\sigma[M]$. In (Wisbauer, 1985), as M is of finite length hence, Q is of finite length. It follows from Diankha, Sanghare and Sokhna (1999) that $\sigma[M] = \sigma[Q]$ and M is of finite representation type.
- 4) \Rightarrow 1) We consider N an hopfian object of $\sigma[M]$. As M is of finite representation type then, M is a S-module. Hence N is noetherian. As N is semisimple therefore N is finitely generated. Thus M is FGS-module.

If every finitely generated object of $\sigma[M]$ is of finite length then, M is locally of finite length.

If every object of $\sigma[M]$ is a direct sum of uniserial modules of finite length hence, M is module of serial type.

Corollary 1 We assume R a ring and M a semisimple module. If M is a FGS-module then, the next assertions hold:

- 1) M is locally of finite length;
- 2) M is a module of finite length and every object of $\sigma[M]$ is of finite length;
- 3) M is of serial type.

Proof.

- 1) We assume N is finitely generated object. By referring to (Anderson & Fuller, 1974, 10.16), N is of finite length. Thus M is locally of finite length.
- 2). We know $M = \bigoplus_{i \in I} M_i$ where M_i is simple. As M_i is hopfian hence, $M = \bigoplus_{i \in I} M_i$ is hopfian. Since M is a FGS-module it follows M is finitely generated. Thus from (Anderson & Fuller, 1974, 10.16), M is of finite length. We will have the same demonstration for any object of $\sigma[M]$.
- 3) We assume N an object of $\sigma[M]$. Since M is semisimple therefore N is also semisimple as direct sum of simple

modules. Hence every simple module is uniserial and of finite length. Thus M is a serial type.

Theorem 2 We assume R a duo ring and M a serial module. We suppose that $\sigma[M]$ has a progenerator and Hom(N, K) = 0 for any different submodules N, K of M. We have the equivalence between the next assertions:

- 1) M is a FGS-module;
- 2) M is of serial representation type;
- 3) M is of homo-serial representation type;
- *4) M* is of finite representation type.

Proof.

- 1) \Rightarrow 2) Result from Proposition 6.
- 2) \Rightarrow 3) Result from Remark 1.
- 3) \Rightarrow 4) From Wisbauer (1991), it results that the progenerator is of finite length. It follows from (Diankha, Sanghare, & Sokhna, 1999) that $\sigma[Q] = \sigma[M]$ and M is of finite representation type.
- 4) \Rightarrow 1) We suppose N an hopfian object of $\sigma[M]$. As M is of finite representation type then, M is S-module. Therefore N is noetherian. We assume $x \in Q$ our progenerator such that Q = Ax. We have $\sigma[Rx] = R/Ann(x)$ -Mod. Hence R/Ann(x)-Mod is S-duo-ring since M is S-module. Hence R/Ann(x)-Mod is an artinian principal ideal ring. From (Anderson & Fuller, 1974), N is finitely generated. Thus M is a FGS-module.

References

- Anderson, F. W., & Fuller, K. (1974). Rings and categories of modules. Springer-Verlag. http://dx.doi.org/10.1007/978-1-4684-9913-1
- Barry, M., Sangharé, M., & Touré, S. D. (2007). On FGS-duo-Rings. Global Journal of Pure and Applied Mathematics, 3(2), 125-137.
- Diankha, O., Sanghare, M., & Sokhna, M. (1999). Sur les *I*₁-modules. *Annales de l'université de Ouagadougou series B*, 2, 25-30.
- Fall, A. L., & Sanghare, M. (2002). On I-duo-ring. Pub. Math. UFR. Sci. Tech. Besancon.
- Kaidi, A., & Sanghare, M. (1988). Une caractérisation des anneaux artniens á ideaux principaux. *Lect. Note in Math.*, 328, 245-254. Springer-Verlag.
- Vanaja, N. (1996). All finitely generated *M*-subgenerated modules are extending. *Comm. Algebra*, 24(2), 543-572. http://dx.doi.org/10.1080/00927879608825585
- Wisbauer, R. (1985). Decomposition properties in modules categories. *Acta. Univ. Corilia Math. Physica*, 126(26), 57-68.
- Wisbauer, R. (1991). Foundation of Module and Ring Theory. Gordon and Breach Science Publishers.