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Abstract

It is proved that the arbitrary nondegenerate system in a linear complete topological space has a correspondence

complete topological space of coefficients with canonical basis. Basicity criterion for systems in such spaces is

given in terms of coefficient operator.
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1. Introduction

The concept of the space of coefficients belongs to the theory of bases. As is known, every basis in a Banach space

has a Banach space of coefficients which is isomorphic to an initial one (see, e.g., Dremin, Ivanov, & Nechitailo,

2001; Singer, 1970; Singer, 1981). Every nondegenerate system (to be defined later) in a Banach space generates

the corresponding Banach space of coefficients with canonical basis (see, e.g., Bilalov & Najafov, 2011; Dremin,

Ivanov, & Nechitailo, 2001). Similar results are obtained in fuzzy structures (Bilalov, Farahani, & Guliyeva, 2012)

which have recently gained a great scientific interest. Therefore, space of coefficients plays an important role in

the study of approximative properties of systems. It has very important applications in various fields of science,

such as solid body physics, molecular physics, multiple production of particles, aviation, medicine, biology, data

compression, etc (see, e.g., Chui, 1992; Edwards, 1969 and references within). All these applications are closely

related to wavelet analysis, and there arose a great interest in them lately (see, e.g., Chui, 1992; Christensen, 2003

& 2004; Dremin, Ivanov, & Nechitailo, 2001). It is well known that many topological spaces are nonnormable.

Therefore, the study of various properties of the space of coefficients in topological and, in particular, in metric

spaces is of special scientific interest.

Our work is dedicated to the study of topological properties of the space of coefficients generated by nondegenerate

system in a Hausdorff linear topological spaces. It is structured as follows. In Section 2 we state basic concepts and

facts to be used later. In Section 3 we state and prove our main results. We prove that the arbitrary nondegenerate

system in a linear complete topological space generates complete linear topological space of coefficients with

canonical basis. Basicity criterion for systems in such spaces is given in terms of coefficient operator.

2. Needful Concepts and Facts

We will use the usual notations: N will be the set of all positive integers, R will denote the set of all real numbers, C

will stand for the set of all complex numbers, L (X; Y) will be the linear space of continuous linear operators from X
to Y , and F will denote the field of scalars. By the linear topological space (X; τ) (LTS in short) we mean the linear

space X over field F (F ≡ R or F ≡ C) with a topology τ, where linear operations are continuous and every point

is a closed set. Set M ⊂ X is said to be bounded if for an arbitrary neighborhood of zero Oε, ∃δ > 0 : λM ⊂ Oε,
∀λ : |λ| < δ. By the neighborhood Oε (x0) of point x0 ∈ X we mean an open set x0+Oε, where Oε is a neighborhood

of zero. Local base in X is a family of the neighborhoods of zero B such that the every neighborhood of zero

contains some neighborhood belonging to B. (X; τ) is called a metrizable space if its topology τ is generated

some metric. Metrizable and complete space is called Frechet space or F -space. By L [M] we denote the linear

span of the set M ⊂ X. The closure of this set in topology τ is denoted by M̄. We also state some facts from the

theory of LTS which will be used later in this work.

Let M be some set and “ ≤ ” an order relation (partial) in it. (M;≤) is called directed set if ∀α, β ∈ M, ∃γ ∈ M :

α ≤ γ∧ β ≤ γ. {xλ}λ∈M ⊂ X is called net in X if M is a directed set. Let (X; τ) be some LTS. Net {xλ}λ∈M converges
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to k0 ∈ X over M, if for any neighborhood Ox0
of the point x0, ∃λ0 ∈ M : xλ ∈ Ox0

,∀λ ≥ λ0. This fact we will

denote by lim
λ∈M

xλ = x0 or xλ → x0, λ ∈ M. The net {xλ}λ∈M is called Cauchy net, if for arbitrary neighborhood of

zero Oε in X, ∃λ0 ∈ M : (xλ − xμ) ∈ Oε, ∀λ.μ ≥ λ0. If any Cauchy net converges in (X; τ), then this space is called

complete.

Definition 1 System {xn}n∈N ⊂ X is called complete in X if L
[{xn}n∈N] ≡ X.

Definition 2 System {xn}n∈N ⊂ X is called minimal in X if xk � L
[{xn}n�k

]
, ∀k ∈ N.

Definition 3 System {xn}n∈N ⊂ X is called ω-linearly independent in X if
∑∞

n=1 λnxn = 0 in X implies that λn =

0, ∀n ∈ N.

Definition 4 System {xn}n∈N ⊂ X is called a basis for X if ∀x ∈ X, ∃! {λn}n∈N ⊂ F:x =
∑∞

n=1 λnxn.

We will use the following concept.

Definition 5 System {xn}n∈N ⊂ X is called nondegenerate if xn � 0, ∀n ∈ N.

Also recall some facts which will be needed to obtain our main results.

Theorem 1 (Chui, 1992) If B is a local base in LTS (X; τ), then every neighborhood of zero belonging to it
contains the closure of some other neighborhood of zero in B.

Theorem 2 (Rudin, 1975) Every LTS (X; τ) has a balanced local base.

Just recall that the set M ⊂ X is called balanced if αM ⊂ M for ∀α ∈ F : |α| ≤ 1. Set M ⊂ X is compact if every

open covering of it has a finite sub-covering. Set M ⊂ X is pre-compact if its closure is compact. The arbitrary

family of sets {Mα}α∈A : M ⊂ ⋃α∈A Mα is called the covering of the set M, where A is an index set. More details

of these and other facts and concepts can be found in the monographs (Bourbaki, 1959 & 1968; Edwards, 1969;

Heil, 2011; Rudin, 1975).

3. Space of Coefficients

Let (X; τ) be a complete linear topological space and let {xn}n∈N ⊂ X be some nondegenerate system. Assume

Kx̄ ≡
⎧⎪⎪⎨⎪⎪⎩{λn}n∈N ⊂ F : the series

∞∑

n=1

λnxn is convergent in X

⎫⎪⎪⎬⎪⎪⎭ .

Obviously, Kx̄ is a linear space with regard to usual operations of component-specific addition and multiplication

by a scalar. Every neighborhood of zero Oε in X generates corresponding neighborhood of zero OK
ε in Kx̄:

OK
ε ≡

⎧⎪⎪⎨⎪⎪⎩λ̄ ≡ {λn}n∈N ∈ Kx̄ :

m∑

n=1

λnxn ∈ Oε , ∀m ∈ N
⎫⎪⎪⎬⎪⎪⎭ .

The set of neighborhoods of zero OK
ε in Kx̄ generates corresponding topology τK in Kx̄. Every linear topological

space is a Hausdorff space. Consequently, every compact in such spaces is bounded. Therefore, every Cauchy

sequence is pre-compact and, consequently, is bounded in such spaces. More details about these facts can be found

in Bourbaki (1959) and Heil (2011).

Let us show that (Kx̄; τK ) is complete. We will need the following:

Lemma 1 Let (X; τ) be an LTS, x ∈ X, x � 0,{ fλ}λ∈M ⊂ F− be some net and fλx→ 0 as λ ∈ M. Then fλ → 0 as
λ ∈ M.

Proof. Suppose that the net { fλ}λ∈M does not converge to zero. Also suppose that { fλ}λ∈M has a bounded subse-

quence
{
λnk

}
k∈N. Then it is possible to derive a convergent subsequence from it, and, without loss of generality,

we will assume that λnk → λ0, k → ∞. We have λnk x → λ0 x as k → ∞. Hence, λ0 = 0, because (X; τ)
is a Hausdorff space (see, e.g., Bourbaki, 1968). Thus, every bounded subsequence {λn}n∈N converges to zero.

It follows from the assumption made above that {λn}n∈N contains unbounded subsequence. Let λnk → ∞ as

k → ∞. Then μk =
1
λnk
→ 0, k → ∞. As a result, lim

k→∞
μk
(
λnk x
)
= lim

k→∞
μk lim

k→∞
(
λnk x
)
= 0. On the other hand,

μk
(
λnk x
)
= 1
λnk
λnk x = x � 0. So we came upon a contradiction which proves the lemma.

Take an arbitrary Cauchy net
{
f̄λ
}
λ∈M
⊂Kx̄ with f̄λ ≡

{
f (λ)
k

}
k∈N. Take a neighborhood of zero OK

ε in Kx̄ generated

by an arbitrary neighborhood of zero Oε in X. Definitionally this means that ∃λ0 ∈ M : f̄λ − f̄μ ∈OK
ε , ∀λ, μ ≥ λ0.
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Consequently
r∑

k=1

(
f (λ)
k − f (μ)

k

)
xk ∈ Oε, ∀r ∈ N, ∀λ, μ ≥ λ0.

And this, in turn, means that the net
{∑r

k=1 f (λ)
k xk

}
λ∈M

is convergent for ∀r ∈ N. In particular,
{
f (λ)
1

x1

}
λ∈M

is

convergent. From Lemma 1 we obtain that
{
f (λ)
1

}
λ∈M

is convergent. As
{∑2

k=1 f (λ)
k xk

}
λ∈M

is convergent, we obtain

from f (λ)
2

x2 =
∑2

k=1 f (λ)
k xk− f (λ)

1
x1 that the net

{
f (λ)
2

x2

}
λ∈M

is convergent in X, and, as a result,
{
f (λ)
2

}
λ∈M

is convergent.

Continuing this process, we obtain that
{
f (λ)
k

}
λ∈M

is convergent for ∀k ∈ N. Let f (λ)
k → λk , λ ∈ M. Assume

f̄ ≡ { fλ}λ∈M . Let us show that f̄ ∈Kx̄ and f̄n → f̄ as λ ∈ M. Let B be some local base of the neighborhoods

of zero in X. By virtue of Theorem 2, such base always exists in LTS. Take ∀Oε1
∈ B. Due to Theorem 1,

∃Oε2
∈ B : Oε2

⊂ Oε1
. Let OK

ε2
be the neighborhood of zero in Kx̄ corresponding to Oε2

. Obviously, ∃λ0 ∈ M :(
f̄λ − f̄μ

)
∈OK
ε2

, ∀λ, μ ≥ λ0. According to the definition, this implies

r∑

k=1

(
f (λ)
k − f (μ)

k

)
xk ∈ Oε2

⊂ Oε1
, ∀r ∈ N, ∀λ, μ ≥ λ0. (1)

It follows from the arbitrariness of Oε1
that the net

{∑r
k=1 f (λ)

k xk

}
λ∈M

is Cauchy net in X for ∀r ∈ N. Passing to the

limit in (1) as μ ∈ M yields
r∑

k=1

(
f (n)
k − fk

)
xk ∈ Oε2

⊂ Oε1
, ∀r ∈ N, ∀λ ≥ λ0. (2)

In what follows, we will use the following assertion:

Assertion 1 (Rudin, 1975) For every neighborhood of zero W in X there exists a symmetric neighborhood of zero
U(in the sense that U = −U) which satisfies the relation U + U + U ⊂ W.

By virtue of Theorem 1, we have directly from this assertion the following.

Corollary 1 For every neighborhood of zero W in X there exists a neighborhood of zero Usuch that Ū+Ū+Ū ⊂ W.

Taking neighborhood W as Oε1
and assuming Oε2

= U, we have

Oε2
+ Oε2

+ Oε2
⊂ Oε1

. (3)

As f̄λ ∈Kx̄ , it is clear that ∃r0 ∈ N :

r+p∑

k=r

f (λ)
k xk ∈ Oε2

, ∀r ≥ r0, ∀p ∈ N. (4)

We have

r+p∑

k=r

fk xk =

r+p∑

k=r

f (λ)
k xk +

r+p∑

k=r

(
fk − f (λ)

k

)
xk =

r+p∑

k=r

f (λ)
k xk +

r+p∑

k=1

(
fk − f (λ)

k

)
xk +

r−1∑

k=1

(
f (λ)
k − fk

)
xk.

Taking n ≥ m0, by virtue of inclusions (2)-(4) we get

r+p∑

k=r

fk xk ∈ Oε2
+ Oε2

+ Oε2
⊂ Oε1

.

Consequently, the series
∑∞

k=1 fk xk is convergent in X. Hence, f̄ ∈Kx̄. It follows directly from (2) that f̄λ → f̄ as

λ ∈ M in Kx̄.

Let us show that the linear operations are continuous in Kx̄. Take ∀ f̄ ∈Kx̄ and assume a → a0 in F. Let us show

that (a − a0) f̄ → 0 as a → a0. Let S m =
∑m

n=1 fnxn, with f̄ ≡ { fn}n∈N. As the sequence {S m}m∈N is convergent in

X, it is evidently bounded there. Take an arbitrary neighborhood of zero Oε in X. Then ∃δ > 0 : tS m ∈ Oε, ∀m ∈
N, ∀t : |t| < δ. Consequently, (a − a0) S m ∈ Oε, ∀m ∈ N, ∀a : |a − a0| < δ, i.e.

m∑

n=1

(a − a0) λnxn ∈ Oε,∀m ∈ N,∀a : |a − a0| < δ.
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Definitionally this means that a f̄ → a0 f̄ as a → a0 in Kx̄. Now let f̄ (λ) → f̄ , ḡ(λ) → ḡ, λ ∈ M in Kx̄, where

f̄ (λ) ≡
{
f (λ)
k

}
k∈N , f̄ ≡ { fn}n∈N , ḡ(λ) ≡

{
g(λ)

k

}
k∈N, ḡ ≡ {gn}n∈N . Let S (λ)

m ( f ) =
∑m

k=1 f (λ)
k xk, S m ( f ) =

∑m
k=1 fk xk,

S (λ)
m (g) =

∑m
k=1 g(λ)

k xk, S m (g) =
∑m

k=1 gk xk, ∀m ∈ N. Take an arbitrary neighborhood of zero Oε1
in X and consider

another neighborhood of zero Oε2
such that Oε2

+ Oε2
⊂ Oε1

. It is clear that ∃λ0 : (S (λ)
m ( f ) − S m ( f )) ∈ Oε2

,

S (λ)
m (g) − S m (g) ∈ Oε2

, ∀λ ≥ λ0, ∀m ∈ N. Consequently, (S (λ)
m ( f ) + S (λ)

m (g) − (S m ( f ) + S m (g)
)
) ∈ Oε2

+ Oε2
⊂

Oε1
,∀λ ≥ λ0, ∀m ∈ N. And this, in turn, means that f̄ (λ) + ḡ(λ) → f̄ + ḡ, λ ∈ M in Kx̄. Thus, linear operations

are continuous in Kx̄. Let f̄ � 0, f̄ ≡ { fn}n∈N ∈ Kx̄. Obviously, ∃r ∈ N : fr � 0. Set n0 = min {r : fr � 0}.
As fn0

xn0
� 0, there exists a neighborhood of zero Oε in X such that fn0

xn0
�Oε. Let this neighborhood be

corresponded by a neighborhood of zero OK
ε inKx̄:

OK
ε ≡

⎧⎪⎪⎨⎪⎪⎩ḡ ∈ Kx̄ :

m∑

n=1

gnxn ∈ Oε , ∀m ∈ N, ḡ ≡ {gn}n∈N
⎫⎪⎪⎬⎪⎪⎭ .

It is absolutely obvious that
∑n0

n=1
fnxn = fn0

xn � Oε. As a result, f̄ � OK
ε . It follows directly that the space Kx̄ is

a Hausdorff space. So we obtain that every one-point set in Kx̄ is closed. Thus, we have proved the following:

Theorem 3 Space Kx̄ with a topology τK has the following properties: 1) it is complete; 2) every one-point set in
it is closed; 3) linear operations are continuous in it.

Let’s consider the operator T :Kx̄ → X defined by

T f̄ =
∞∑

n=1

fnxn, f̄ ≡ { fn}n∈N ∈ Kx̄.

Let f̄ (λ) → f̄ , λ ∈ M in Kx̄, where f̄ (λ) ≡
{
f (λ)
k

}
k∈N ∈Kx̄. We have

T f̄ (λ) − T f̄ =
∞∑

k=1

(
λ(λ)

k − fk
)

xk,∀λ ∈ M.

Take an arbitrary neighborhood of zero Oε1
in X and consider another neighborhood of zero Oε2

such that Oε2
⊂ Oε1

.

Let OK
ε2

be a neighborhood of zero in Kx̄ generated by Oε2
. Obviously, ∃λ0 ∈ M:

(
f̄ (λ) − f̄

)
∈OK
ε2

, ∀λ ≥ λ0, i.e.

m∑

k=1

(
f (λ)
k − fk

)
xk ∈ Oε2

,∀λ ≥ λ0,∀m ∈ N.

Passing to the limit in this relation as m→ ∞ yields

∞∑

k=1

(
f (λ)
k − fk

)
xk ∈ Oε2

⊂ Oε1
,∀λ ≥ λ0.

Thus, T f̄ (λ) → T f̄ , λ ∈ M in X. It follows directly that T is a continuous operator. Let f̄ ∈ KerT , i.e. T f̄ =
0 ⇒∑∞n=1 fnxn = 0 ,where f̄ ≡ { fn}n∈N ∈Kx̄. It is clear that if the system {xn}n∈N is ω-linearly independent, then

fn = 0, ∀n ∈ N, and, as a result, KerT = {0}. In this case there exists an inverse operator T−1 : ImT →Kx̄.

Denote by {en}n∈N ⊂Kx̄ a canonical system with en = {δnk}k∈N, where δnk is the Kronecker symbol. Let us show

that {en}n∈N forms a basis for Kx̄. Take ∀ f̄ ≡ { fn}n∈N ∈Kx̄ and prove that the series
∑∞

n=1 fnen is convergent in Kx̄.

Take an arbitrary neighborhood of zero OK
ε in Kx̄, generated by a neighborhood of zero Oε in X. As the series∑∞

n=1 fnxn is convergent in X, we have ∃m0 ∈ N:

m+p∑

n=m

fnxn ∈ Oε, ∀m ≥ m0, ∀p ∈ N.

Consequently
m+p∑

n=m

fnen ∈ OK
ε , ∀m ≥ m0, ∀p ∈ N.
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For partial sums S r corresponding to the element
∑m+p

n=m fnen we have

S r =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 1 ≤ r ≤ m − 1,

∑r
n=m fnxn , m ≤ r ≤ m + p,

∑m+p
n=m fnxn , ∀r ≥ m + p.

Therefore it is evident that S r ∈ Oε, ∀r ∈ N. As a result, the series
∑∞

n=1 fnen is fundamental in Kx̄ and, conse-

quently, is convergent in it. Assume f̄m = f̄ −∑m
n=1 λnen = {...; 0; fm+1; ...}. Let OK

ε be an arbitrary neighborhood

of zero Kx̄, generated by the neighborhood of zero Oε in X. The convergence of the series
∑∞

n=1 fnxn implies that

∃m0 ∈ N:
∑m+p

n=m fnxn ∈ Oε, ∀m ≥ m0, ∀p ∈ N. For partial sums S r corresponding to the element f̄m we have

S r =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 , 1 ≤ r ≤ m,

∑r
n=m+1 fnxn , ∀r ≥ m + 1.

As a result, we get f̄m ∈ OK
ε , ∀m ≥ m0. Consequently, lim

m→∞
∑m

n=1 fnen = f̄ in Kx̄. Consider linear functionals

e∗n
(

f̄
)
= fn, ∀n ∈ N. Let us show that they are continuous. Let f̄ (λ) → f̄ , λ ∈ M in Kx̄, where f̄ (λ) ≡{

f (λ)
k

}
k∈N ⊂Kx̄. As already established above, f (λ)

k → fk, λ ∈ M. Consequently, e∗k
(

f̄ (λ)
)
= f (λ)

k → fk = e∗k
(

f̄
)

as

λ ∈ M, and therefore, e∗k is continuous ∀k ∈ N. It is easy to see that e∗n (ek) = δnk, ∀n, k ∈ N. As a result, we

obtain that
{
e∗n
}
n∈N is a system biorthogonal to {en}n∈N. This proves the basicity of system {en}n∈N in Kx̄ . So the

following theorem is true.

Theorem 4 Let (X; τ) be complete LTS and let {xn}n∈N ⊂ X be some nondegenerate system. Then the corresponding
space of coefficients

(
Kx̄; τKx̄

)
is also a complete LTS with canonical basis.

Now suppose that the system {xn}n∈N is ω-linearly independent and the value area of operator T is closed, i.e.

ImT = ImT . It is easily seen that Ten = xn, ∀n ∈ N. Then it is clear that the system {xn}n∈N forms a basis for ImT .

Indeed, it directly follows from the definition of the basis and from the expresiion of the operator T . If this system

is complete in X, then it forms a basis also for X. We will call T a coefficient operator. Converse is also true, i.e.

if the system {xn}n∈N forms a basis for X, then it is clear that it is complete in it and w−linearly independent. It is

evident that in this case ImT = ImT . Hence, it is easy to see that ImT = X. Thus, the following theorem is true.

Theorem 5 Let (X; τ) be complete LTS, {xn}n∈N ⊂ X be a nondegenerate system,
(
Kx̄; τKx̄

)
be the corresponding

space of coefficients, and T :Kx̄ → X be the corresponding coefficient operator. System {xn}n∈N forms a basis for
X if and only if the following conditions are satisfied:

1) it is complete in X; 2) it is ω-linearly independent; 3) ImT = ImT.

4. Conclusion

Summing up, we arrive at the following conclusions:

1) In a complete topological vector space every non-degenerate system generates a similar space of coefficients;

2) The space of coefficients has a canonical basis, regardless of whether the system is complete, minimal or

forms a basis;

3) A basicity criterion, different from the one for classical case, is obtained in terms of coefficient operator.
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