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Abstract

Let M, N ∈ Rm×n,m ≥ n, be vertical block matrices and q ∈ Rm. We consider the generalized horizontal linear

complementarity problem (GHLCP) associated with the pair {M,N}. Existence and uniqueness of solutions are

characterized when the pair {M,N} satisfies new generalized column W- and column W0-properties.

Keywords: linear complementarity problem, generalized horizontal linear complementarity problem, column W0-

property, column W-property, extended horizontal linear complementarity problem

1. Introduction

Given the vertical block matrices M and N of type (m1,m2, ...,mn), the Generalized Horizontal Linear Comple-

mentarity Problem (GHLCP) is defined as follows: Find vectors w, z ∈ Rn such that

Mw − Nz = q
w ≥ 0, z ≥ 0

wT z = 0

where M,N ∈ Rm×n, m ≥ n, m =
∑n

i=1 mi, and q ∈ Rm. We will denote this problem by GHLCP(M,N, q).

Problem GHLCP(M,N,q) is related to the extended linear complementarity problem (LCP) studied by Mangasar-

ian and Pang (1995); the extended horizontal linear complementarity problem (HLCP) studied by Sznajder and

Gowda (1995), Schutter and Moor (1997); the generalized LCP studied by Ye (1993); and the generalized hori-

zontal LCP of Xiu and Zhang (2001).

Sznajder and Gowda (1995) extended the concept of W0-pair of Wilson (1971). They defined the column W0- and

column W-properties for the set of (k + 1), k ≥ 1, square matrices, and gave some equivalent conditions for the

column W0- and column W-properties. They also showed that the column W-properties are characterized by the

unique solvability of the extended HLCP.

In Tütüncü and Todd (1995), properties of a square matrix pair are studied, when the associated matrices have

the P- and P0-properties. They showed that a large class of matrix pairs including P0-pairs have the property of

reducibility, and developed an algorithm that can be used to reduce an HLCP to a standard LCP.

Schutter and Moor (1997) considered matrices A, B ∈ Rm×n. They provided an algorithm that can be used to solve

the problem and demonstrated that the extended HLCP can be used to solve max-algebraic problems. In their

work, Xiu and Zhang (2001) showed that the GHLCP(A, B,q), where A, B ∈ Rm×n,m ≥ n, has a solution when the

pair {A, B} satisfies the Po- and R0-properties.

In this paper, we generalize the concepts of column W0-property and column W-Property to the matrix pair {M,N},
where M,N ∈ Rm×n are vertical block matrices of type {m1, . . . ,mn} with m ≥ n. Using the column W0- and column

W-Properties, existence and uniqueness of solutions are characterized for the GLCP(M,N,q). It has been pointed

out in Xiu and Zhang (2001) that when m = n, the GHLCP(M,N, q) reduces to the classical horizontal linear

complementarity problem HLCP(M,N,q); and when M = Im×m, the GHLCP(M,N,q) reduces to the vertical

linear complementarity problem studied by Ebiefung (1999).

The HLCP and the extended HLCP have important applications. Eaves and Lemke (1981) showed that any piece-

wise linear system can be formulated as an HLCP. The extended HLCP has applications in structural mechanics,
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inventory theory, optimization, and statistics as reported in Kaneko (1978) and in Kaneko and Pang (1978). The

extended LCP formulated by Schutter and Moor (1997) arose from their work in discrete event systems such

as flexible manufacturing, subway traffic network, parallel processing systems, telecommunication systems, and

logistic systems.

The rest of the paper is organized as follows: In Section 2, we provide preliminary definitions required for the

development of the results. Existence and uniqueness of solutions are provided in Section 3, while concluding

remarks are given in Section 4.

2. Preliminaries

The following definitions are needed for the rest of this paper.

Definition 1 (See Ebiefung, 1999) Let M be a vertical block matrix of type (m1,m2, . . . ,mn). An n × n submatrix

of M is called a representative submatrix if its j-th row is drawn from the j-th block M j of M. A vertical block

matrix M of type (m1,m2, . . . ,mn) is a P0(P) − matrix if each representative submatrix is a P0(P) − matrix. A

vertical block matrix M of type (m1,m2, . . . ,mn) has
∏n

j=1 mj representative submatrices.

Definition 2 (See Sznajder & Gowda, 1995) LetM = {M1,M2} be a pair of matrices in Rn×n. A matrix R ∈ Rn×n

is called a column representative ofM if R. j ∈ {(M1). j, (M2). j}, j = 1, 2, . . . , n.

Definition 3 (See Sznajder & Gowda, 1995)M has the column W0-property if one of the following holds:

(i) The determinants of all column representative matrices ofM are nonnegative and there is at least one such

determinant which is positive.

(ii) The determinants of all column representative matrices ofM are nonpositive and there is at least one such

determinant which is negative.

Definition 4 (See Sznajder & Gowda, 1995)M has the column W-property if one of the following holds:

(i) The determinants of all column representative matrices ofM are positive.

(ii) The determinants of all column representative matrices ofM are negative.

Definition 5 (See Ebiefung & Kostreva, 1993) Let U be a matrix of dimension n × m defined by:

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1 0 . . . 0
0 u2 . . . 0
. . . . . . . . . . . .
0 0 . . . un

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where for each j ( j = 1, 2, . . . , n) uj is a positive row vector of dimension 1 × mj.

In the next set of definitions, we consider the GHLCP(M,N,q) with M and N as vertical block matrices of di-

mension m × n and of type (m1,m2, . . . ,mn), where (m ≥ n). That is, M and N are partitioned row-wise into n
blocks:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M1

M2

.

.

.
Mn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N1

N2

.

.

.
Nn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the j-th blocks M j and N j are of dimension mj × n and m =
∑n

j=1 mj.

Definition 6 Column matrix: Let C = {M,N}, where M and N are vertical block matrices of order Rm×n. The

matrix R ∈ Rm×n defined by

R. j ∈ {M. j,N. j}, j = 1, 2, . . . , n (1)

is called a column representative matrix. The matrix R is also partitioned to conform with those of M and N.

Definition 7 Column W0-property: The pair C = {M,N} has the column W0-property if each column representative

matrix is a vertical block P0-matrix.

Definition 8 Column W-property: The pair C = {M,N} has the column W-property if all column representative

matrices are vertical block P-matrices.
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Definition 9 Q-property: The pair C = {M,N} has the Q-property if the GHLCP(M,N, q) has a solution for each

q ∈ Rm.

Definition 10 Proper matrix: A matrix B defined by B = {B. j, j = 1, 2, . . . , n}, where B. j ∈ {M. j,−N. j}, is called a

proper matrix of C = {M,N} if whenever (−N. j) is a column of B, M. j is not a column of B.

Definition 11 Let B be a proper matrix of {M,N}. A vector x = (wK , zK) ≥ 0 is a solution of the GHLCP(M,N,q)

if Bx = q, where K ⊂ {1, 2, . . . , n} and K its complement such that zK ≥ 0, wK ≥ 0, zK = 0 and wK = 0.

Definition 12 A solution x = (wK , zK) of the GHLCP(M,N, q) is said to be nondegenerate if it has no zero

components. We call the GHLCP(M,N,q) nondegenerate if each solution is nondegenerate.

Definition 13 For each j ( j = 1, 2, . . . , n), let ej be an mj × 1 column vector with each component equal to 1. The

matrix D defined by

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1 0 . . . 0

0 e2 . . . 0

. . . . . . . . . . . .
0 0 . . . en

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is a nonnegative vertical block matrix of type (m1, ...,mn). We assume that D is partitioned to conform to those of

M and N.

If M is a vertical block matrix, we assume that M + αD has the same partition as M for any α > 0. We now

formulate the perturbed GHLCP(M(α),N(α),q):

M(α)w(α) − N(α)z(α) = q
w(α) ≥ 0, z(α) ≥ 0
w(α)T z(α) = 0 (2)

where M(α) = M + αD and N(α) = N + αD. Assume that a solution to Equation (2) exists for sufficiently small

α > 0. Also assume that x(α) = (w(α)K , z(α)K) is a solution of Equation (2) and that B(α) is the proper matrix

corresponding to x(α).

The following sequence of solutions of the perturbed problem, Equation(2), will be frequently used in the next sec-

tion. For each r ∈ {1, 2, ...}, let {x(αr)} = {(w(αr)K , z(αr)K)} be the sequence of solutions of GHLCP(M(αr),N(αr),
q), where {αr} → 0 as r → ∞. Moreover, let {B(αr)} = {B+αrD} be the sequence of proper matrices corresponding

to {x(αr)} for each r ∈ {1, 2, . . .}.
3. Existence and Uniqueness of Solutions

The theory of existence and uniqueness of solutions for the GHLCP is presented in this section. Throughout the

rest of this paper, the matrix U shall refer to the vertical block matrix defined in Definition 5, B the matrix defined

in Definition 10, and D the matrix defined in Definition 13.

Theorem 1 If C = {M,N} has the column W0-property, then UC = {UM,UN} has the column W0-property.

Proof. Assume that C = {M,N} has the column W0-property. By definition, each column representative matrix is

a vertical block P0 -matrix. Let R∗ be a column representative matrix of UC. Then R∗. j ∈ {UM. j,UN. j}, j = 1, ..., n.
Hence,

R∗ = UR (3)

where R is a column representative matrix of {M,N}.
Since R is a vertical block P0-matrix, R∗ is P0-matrix of order n, as proved by Ebiefung and Kostreva (1993). This

is true for each column representative matrix of UC. Therefore, UC = {UM,UN} has the column W0-property.

This completes the proof.

Theorem 2 If C = {M,N} has the column W-property, then UC = {UM,UN} has the column W-property.

Proof. The proof is similar to the proof of Theorem 1 and so it is omitted.

Theorem 3 Suppose that C = {M,N} has the column W-property. If the GHLCP(M,N,q) has a solution, then the
solution is unique.

Proof. Suppose that {M,N} has the column W-property and that the GLCP(M,N,q) has a solution. Assume that

(w, z) is a solution to the GHLCP(M,N,q).
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Then

Mw − Nz = q (4)

w ≥ 0, z ≥ 0 (5)

wT z = 0 (6)

Multiplying Equation (4) on the left by U, we obtain

(UM)w − (UN)z = Uq (7)

(UM,−UN) (w, z)T = Uq (8)

By Equations (5), (6), and (8), (w, z)T solves the HLCP(UM,UN,Uq).

Now suppose that the GLCP(M,N,q) has two distinct solutions. By the above reasoning, these two solutions are

also solutions to the HLCP(UM,UN,Uq). However, since C = {M,N} has the W-property, UC = {UM,UN},
where UM and UN are square matrices, has the W-property by Theorem 2. By Sznajder and Gowda (1995), the

HLCP(UM,UN,Uq) has a unique solution. This contradicts the assumption that the GLCP(M,N,q) could have

two or more distinct solutions. This completes the proof.

Theorem 4 If C = {M,N} has the column W0-property, then C + αD = {M + αD,N + αD} has the column
W-property for each sufficiently small α > 0.

Proof. Assume that C = {M,N} has the column W0-property. Let R be a column representative matrix of C.

The matrix {R + αD} is a vertical block P-matrix by Ebiefung and Kostreva (1993). This is true for each column

representative matrix of C. Hence,

C + αD = {M + αD,N + αD}
has the column W-property for each sufficiently small α > 0. This completes the proof.

Theorem 5 Suppose that C = {M,N} has the column W0-property and that the GHLCP(M,N,q) has a solution
with a proper matrix B, which is a vertical block P -matrix. Then there exists a sequence {x(αr)} of solutions of the
perturbed GLCP(M(α),N(α),q) which converges to a solution of the GHLCP(M,N,q).

Proof. Suppose that the GHLCP(M,N,q) has a solution (w, z). Then

Mw − Nz = q
w ≥ 0, z ≥ 0
wT z = 0,

implies that there exists a vector x ∈ Rn such that Bx = q, where x = (wK , zK), q ∈ Rm, B ∈ Rm×n a proper

matrix of the pair {M,N}. Hence,

B∗x = q′

x = (wK , zK)

wK ≥ 0, zK ≥ 0

wK = 0, zK = 0

where B� = UB, q′ = Uq. Since B is a vertical block P-matrix, B� is a P-matrix by Ebiefung and Kostreva (1993).

Thus

x = (B�)−1q′. (9)

Since the GLCP(M,N,q) has a solution, GLCP(M(α),N(α),q) has a solution. Let x(αr) be a sequence of solutions

of GLCP(M(αr),N(αr), q) and B(αr) a sequence of the corresponding proper matrices such that

(B + αrD)x(αr) = q

for each r ∈ {1, 2, . . .}. Then,

U(B + αrD)x(αr) = (B� + αrD�)x(αr) = q′,

where D� = UD, B� = UB, q′ = Uq. Thus,

x(αr) = (B� + αrD�)−1q′.
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Now taking limits as r → ∞ and αr → 0, we obtain

x′ = lim
x→∞
αr→0

{x(αr)} = lim
x→∞
αr→0

(B� + αrD�)−1q′ = (B�)−1q′. (10)

Therefore, x′ = x by (9) and (10). This completes the proof.

Theorem 6 Suppose that C = {M,N} has the column W0-property and that every proper matrix of C is a vertical
block P0-matrix. If the GHLCP(M,N,q) has a nondegenerate solution with a proper matrix B, which is also a
vertical block P-matrix, then the solution is unique.

Proof. Since the GHLCP(M,N,q) has a solution, there exists a proper matrix B and a vector x = (wK , zK) such

that Bx = q. As a result,

B�x = q′

where B� = UB, q′ = Uq. Since the GHLCP(M,N,q) has a nondegenerate solution and B is a vertical block

P-matrix, B� is a P-matrix, and

x = (B�)−1q′ > 0 (11)

For α > 0, let x(α) be a solution of the perturbed problem GLCP(M(α),N(α),q) and B(α) the corresponding proper

matrix. Then

B(α)x(α) = q

B�(α)x(α) = q′

where B�(α) = UB + α(UD) = (B� + αD�), and q′ = Uq. Since B� is a P-matrix, B� + αD� is a P-matrix and

(B� + αD�)x(α) = q
′
.

for each α > 0.

Therefore,

x(α) = (B� + αD�)−1q′ > 0

is a nondegenerate solution of the GHLCP(M(α),N(α),q).

Now suppose that the GHLCP(M,N,q) has another solution x � x such that βx = q, where β is a proper matrix of

{M,N}. Since β is a vertical block P0-matrix, β� + αD� is a P-matrix for sufficiently small α > 0. Therefore,

x(α) = (β� + αD�)−1q′

is another solution of the GHLCP(M(α),N(α),q). Thus for a sufficiently small α > 0, x(α) and x(α) are two

distinct solutions of the GHLCP(M(α),N(α),q). This contradicts the fact that the GHLCP(M(α, N(α),q) should

have a unique solution by Theorem 3.

Theorem 7 Suppose that C = {M,N} has the column W0-property. If the sequence {x(αr)} of solutions of the
GLCP(M(αr),N(αr),q) is bounded as αr −→ 0, then the GHLCP(M,N,q) has a solution.

Proof. Since C = {M,N} has the column W0-property, (C + αD) has the column W-property. Assume that

{x(αr)} = {(w(αr)K , z(αr)K)}
is a bounded sequence of solutions of the GHLCP(M(αr),N(αr),q) and that {B(αr)} is the corresponding proper

matrix solving the perturbed problem for each r ∈ {1, 2, . . .}. Then there exists a subsequence, say, {x(αr)} of {x(αr)}
that is convergent. Assume that {x(αr)} converges to x. Let {B(αr)} be a subsequence of {B(αr)} corresponding to

{x(αr)} and assume that {B(αr)} converges to B. It is easy to see that B is a proper matrix of {M,N }.
Since

B(αr)x(αr) = q

for r = 1, 2, . . . , we have that

B(αr)x(αr) = q

This implies that

lim
r→∞
αr→0

(B + αrD)x(αr) = Bx = q
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Hence, x is a solution of the GHLCP(M,N,q). This completes the proof.

4. Conclusions

The horizontal linear complementarity problem is extended to the generalized horizontal linear complementarity

problem, GHLCP, when associated matrices are vertical block matrices. Existence and uniqueness of solutions of

the GHLCP are characterized under generalized column Wo- and W-properties. Under the column W0-property, a

solution of the GHLCP is obtained by a perturbation technique, which results in a column W-property. We showed

that if the pair {M,N} has the column W-property, and the GHLCP(M,N,q) has a solution, then the solution is

unique. As pointed out in the introduction and references, the HLCP has useful applications. It is our hope that the

GHLCP will extend and enrich these application areas.
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