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Abstract

Penney-Ante is a well known two-player (Player I and Player II) game based on an information paradox. We

present a new approach, using difference-equations, to analyzing the outcome for each player. One strategy yields

a winning outcome of 75% for Player II, the player playing second. The approach also permits investigation of

non-optimal strategies, and demonstrates how mixing of such strategies can be used to tune the winning edge of

either player. We generalize the analysis to accommodate the possibility of a biased coin.
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1. Introduction

Paradoxes are statements that lead to counterintuitive situations (Sorensen, 2005). One well known example is

the Monty Hall paradox (Rosenthal, 2008). Another widely studied paradox is that of Penney-Ante, attributed to

Walter Penney (1969) and publicized by Martin Gardner (1974).

Penney-Ante is a game with two players, Player I and Player II, who play with any device that has two equally

probable outcomes, for example an unbiased coin (heads vs tails), dice or die (odd vs even), or cards from a large

well shuffled deck (red vs black) with replacement. Player I chooses a triplet of outcomes, for example HHT;

OEO; RBB and then Player II chooses a different ordered triplet. For Player I, there are of course 23 = 8 possible

series to choose from, namely HHH, HHT, HTH, . . . , TTT while Player II is constrained to choose one of the

seven remaining possibilities. For example, using coins, Player I might choose HHT and Player II THH. The

game device is now played one at a time, generating outcomes (H or T) in a continuing sequence until there is a

match between the last three elements played and either Player I’s or Player II’s selected triplet: that player wins.

Since Player I chooses the first of the eight possible triplets and Player II must choose one of the remaining seven

possibilities, it might be assumed that Player I would have the advantage in the game. Therein lies the paradox.

Player II has information – Player I’s choice of a series – and, with a smart strategy, it turns out that Player II can

achieve a substantial winning edge! If the triplet that Player I has chosen is XYZ where X is the 1st choice, Y the

2nd choice and Z the 3rd choice, it turns out that Player II’s best strategy, which we designate as S1, is to choose Y’

X Y where Y’ represents the opposite of Y. For example, if Player I chooses HHT, then it turns out that Player II

would be well advised to choose THH, or if Player I chooses HTH then Player II should choose HHT, and so on.

The game, together with the unexpected advantage of second player, Player II, can be easily simulated by creating

a computer program, using e.g. EXCEL, to play all possible games. However, the statistics that underlie the game

itself can be investigated analytically. Such analysis reveals that strategy S1 secures for Player II a winning edge

of 3:1, i.e. he/she wins 75% of the time!

It is not surprising, that, over the years, Penney-Ante has attracted much investigation, resulting in volumes of

literature; and even some You-Tube videos (“The Coin Game . . . ”). The approaches to the statistical analysis

are varied; for example, Reed (1996) investigates the game as an intransitive example of a Markov process. Al-

ternatively Shuster (2006) uses a conditional-probability approach to generalizing the game to the case in which
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individual outcomes are biased, i.e. the case p � 1/2, where p represents the probability of a coin toss resulting in

a head H.

In the present communication we present a novel approach, using difference-equations, to predicting the outcomes,

i.e. long-term expectations for the players, of the Penney-Ante game. Having determined the outcomes of individ-

ual games, and thus the outcomes of any particular strategy, such as the S1 above, the approach is used to explore

alternative strategies, S2 . . . S5, and we show how these five strategies can be weighted to enable tuning of the out-

comes. That is, we are suggesting a way in which Penney-Ante could be crafted into an entertaining casino-type

game in which the second player is the casino house and House stands a statistically reasonable chance (e.g. an

edge of 5% instead of 50%) of winning over the course of multiple plays of the game. For completeness sake, we

also indicate how to extend the difference-equation method to the solution of the p � 1/2 case (i.e. a biased coin),

and obtain asymptotic solutions in agreement with those generated by Shuster (2006). Finally, we indicate how the

difference-equation method can be extended to higher order Penney-Ante games involving quartics (e.g. HHTH)

and beyond.

2. Results and Discussion

2.1 Analysis: Difference Equation Approach to Obtaining Outcome Expectations

There are four independent cases to examine in the analysis of the aforementioned strategy S1 (Player I chooses

XYZ, Player II chooses Y’XY), viz:

(Case 1) Player I = HTH; Player II = HHT (equivalent to Player I = THT, Player II = TTH, hence two of the eight

total possibilities.)

(Case 2) Player I = HHT; Player II = THH (equivalent to Player I = TTH, Player II = HTT, hence two of the eight

total possibilities.)

(Case 3) Player I = HHH; Player II = THH (equivalent to Player I = TTT, Player II = HTT, hence two of the eight

total possibilities.)

(Case 4) Player I = HTT; Player II = HHT (equivalent to Player I = THH, Player II = TTH, hence two of the eight

total possibilities.)

2.1.1 Case 1. Solution for the Scenario Player I = HTH and Player II = HHT

The possible outcomes of repeated coin tosses are summarized, for Case 1, in the “evolution tree” shown in Figure

1, in which the presence of a * or ** on a branch indicates that either Player I (*) or Player II (**) has won. Each

column represents a successive time step (or, if you prefer, you can consider t to represent “turn” or “toss” of the

next coin or presentation in the series), and at the head of each column we indicate the number of outcomes that

yielded wins for PI and PII in the previous time step. Whenever there occurs a winning outcome (* or **) in a

branch, the game restarts in that branch (i.e., next outcome H or T, next two outcomes HH or HT or TH or TT,

and so on.) Each column also indicates the number of “open” HH’s, HT’s etc. (i.e. excluding those that resulted

in wins) that have been accumulated, again as specified in the previous two steps. Note that in each successive

column there are the expected twice as many outcomes as in the previous column.
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Figure 1. Case 1 evolution tree

In Figure 1, t represents a discrete step or turn when a new coin toss is added to the series. At the top of each

column is an enumeration of the total wins for PI and PII in the previous time step. Recall: * and ** designate

wins for Player I and Player II respectively.

Conversion of the evolution tree into governing difference-equations proceeds as follows: Denote by n1(t) the

number of “open” HH’s at time t, n2(t) the number of HT’s at time t, etc. To infer from Figure 1 the relationship

between the n’s, note – with reference to HH for example – that n1(6) = 15 is the sum of n1(5) = 7 and n3(5) = 5

AND the 3 in the t = 5 column which, in turn, is the sum of the PI and PII at the head of the t = 4 column which

in turn is the sum of n1(3) = 2 and n2(3) = 1. Applying similar logic to HT, TH, and TT, we infer the following

difference equations:

n1(t + 3) = n1(t + 2) + n3(t + 2) + (n1(t) + n2(t)) (1)

n2(t + 3) = n3(t + 2) + +(n1(t) + n2(t)) (2)

n3(t + 3) = n4(t + 2) + +(n1(t) + n2(t)) (3)

n4(t + 3) = n2(t + 2) + n4(t + 2) + (n1(t) + n2(t)) (4)

Using “initial conditions” ni(0) = ni(1) = 0, ni(2) = 1, the above equations yield the following values for ni:

t 0 1 2 3 4 5 6 7 8
n1 0 0 1 2 3 7 15 28 56

n2 0 0 1 1 1 4 8 13 28

n3 0 0 1 1 2 5 9 17 36

n4 0 0 1 2 3 6 13 25 49

in agreement with Figure 1.
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The exact solution of Equations (1)-(4) can be obtained using a standard eigenvector-eigenvalue approach: Substi-

tute ni ∼ λt into the equation to yield an eigenvalue equation:

Det

∣∣∣∣∣∣∣∣∣∣∣

λ3 − λ2 − 1 −1 −λ2 0

−1 λ3 − 1 −λ2 0

−1 −1 λ3 −λ2

−1 −λ2 − 1 0 λ3 − λ2

∣∣∣∣∣∣∣∣∣∣∣

= 0.

Using the usual methods of matrix manipulation, this determinant reduces to the simple form λ4 − 2λ3 + λ2 −
3λ + 2 = 0. The λ1 = 2 root can be factored out to yield (λ − 2)(λ3 + λ − 1) = 0. The second real eigenvalue

is found numerically to be λ2 = 0.6823279, permitting further reduction of the eigenvalue equation to the form

(λ−2)(λ−0.6823279)(λ2+0.6823279λ+1.4655714) = 0. The remaining - complex conjugate pair of - eigenvalues

follow, viz: λ3,4 = −0.34116395 ± j1.1615414 = (−1.21061)e± jϕ, where ϕ = 73.6316o. (Note: In this paper, we

use j to represent
√ − 1, and i as a suffix.)

It follows that each ni has the form

ni = αi2
t + βi(0.6823279)t + (−1.21061)t[γicos(73.6316ot) + δi sin(73.6316ot)]

in which the 16 coefficients αi, ..., δi remain to be determined using suitable initial conditions on all four n′s.

Alternatively, one can obtain the eigenvectors corresponding to the four eigenvalues and then determine the 4

remaining independent constants, e.g. α1,..., δ1, by using initial conditions on just one of the n′s, e.g. n1. In either

approach, the aforementioned conditions ni(0) = ni(1) = 0, ni(2) = 1 can be used. For our fourth required initial

condition we can use either the values in the t = 3 column (n1(3) = 2, . . . , n4(3) = 2) which can be easily obtained

from the difference equations using the t = 0, 1, 2 values, or we can use n(−1) = 0. Either way, it is now a matter

of straightforward algebra (which may be facilitated using EXCEL) to determine the four coefficients for each of

the four n′s. For n1(t), we obtain

n1(t) = (0.222222)2t−(0.2160571)(0.6823279)t+(−1.21061)t[0.257525sin(73.6316ot)−0.006163cos(73.6316ot)],

and the reader is invited to check that this yields all values in the n1(t) row, and beyond.

While exact solution of the equations, as described above, is straightforward, it is somewhat time consuming.

However, if our primary interest is the long-term expectations that PI and PII will win then we have available a

much quicker and simpler modification of the above approach. All we need to note is that the dominant eigenvalue

is 2 and thus, for large t, every n has the asymptotic form ni = αi2
t. Then the relationship between the four

coefficients α1, ..., α4 can be determined by simply substituting ni = αi2
t into the governing equations and doing

a bit of algebra. Note, this simplified approach will not yield the absolute values of the α’s but, as will be seen

below, these absolute values are not needed; only the relationship – specifically the ratios - between the α’s will be

needed.

But first, we need to determine how to use the ni = αi2
t to deduce the long-term probabilities Prob(PI) and

Prob(PII) of each player winning. To this end, note for the Case 1 under consideration, at time t the accumulated

number of possible wins for PI is
∑i=t−1

i=0 n2(i) and for PII,
∑i=t−1

i=0 n1(i). But we don’t even need to evaluate these

two sums; all we need is the ratio Prob(PI)/Prob(PII) and since the n in each sum is dominated by the αi2
t piece

of the solution and
∑i=t−1

i=0 2i = 2t − 1 ≈ 2t we see that the ratio Prob(PI)/Prob(PII) for large t is given by the

ratio n2(t)/n1(t) = α2/α1, that is, as noted above, we don’t even need to know the exact values of the α’s, just the

relevant ratio.

In conclusion, for Case 1, we have from Figure 1 Prob(PI)/Prob(PII) = n2/n1 = α2/α1, a ratio that can be obtained

simply from the governing equations. We obtain α2/α1 = 1/2, a value also suggested by the above table of n′s.

Thus, we have Prob(PI) = 1/3 and Prob(PII) = 2/3.

We now apply the above approach to determining the long term expectations Prob(PI) and Prob(PII) for the re-

maining three independent cases of strategy S1.

2.1.2 Case 2. For the Scenario Player I = HHT and Player II = THH

The logic applied in Case 1 yields for Case 2 (Player I = HHT, Player II = THH) the following summary version

of the evolution tree (Figure 2):
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Figure 2. Case 2 evolution tree

The corresponding difference equations, with t translated to t+2, are:

n1(t + 3) = n1(t + 2) + +(n1(t) + n3(t)) (1)

n2(t + 3) = n3(t + 2) + +(n1(t) + n3(t)) (2)

n3(t + 3) = n2(t + 2) + n4(t + 2) + (n1(t) + n3(t)) (3)

n4(t + 3) = n2(t + 2) + n4(t + 2) + (n1(t) + n3(t)) (4)

Using n(0) = n(1) = 0, n(2) = 1, the above equations yield the following values for ni:

t 0 1 2 3 4 5 6 7
n1 0 0 1 1 1 3 6 10

n2 0 0 1 1 2 5 10 19

n3 0 0 1 2 3 7 15 29

n4 0 0 1 2 3 7 15 29

which suggests the limit Prob(PII)/Prob(PI) = (n3/n1)→ α3/α1 = 3/1, an expectation confirmed by exact solution

of Equations (1)-(4).

2.1.3 Case 3. For the Scenario Player I = HHH and Player II = THH

For Case 3, (Player I = HHH, Player II = THH) we obtain the evolution tree of Figure 3.
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Figure 3. Case 3 Evolution Tree

For Figure 3, n′ corresponds to t − 2.

The corresponding difference equations follow:

n1(t + 3) = +(n1(t) + n3(t)) (1)

n2(t + 3) = n1(t + 2) + n3(t + 2) + (n1(t) + n3(t)) (2)

n3(t + 3) = n2(t + 2) + n4(t + 2) + (n1(t) + n3(t)) (3)

n4(t + 3) = n2(t + 2) + n4(t + 2) + (n1(t) + n3(t)) (4)

Using n(0) = n(1) = 0, n(2) = 1, the above equations yield the following values for ni:

t 0 1 2 3 4 5 6 7 8
n1 0 0 1 0 0 2 2 4 10

n2 0 0 1 2 2 6 12 22 46

n3 0 0 1 2 4 8 16 32 64

n4 0 0 1 2 4 8 16 32 64

Using the asymptotic form n3(t) = n4(t) ∼ 2t, together with n1(t + 3)− n1(t) = n3(t)∗, it follows that (n3/n1)→ 7/1
i.e. in this case, Prob(PII)= 7/8 meaning Player II tends to win 7 of every 8 games played.

(* Note: In this case, n3(t) = 2t is the exact – rather than merely asymptotic – solution.)

2.1.4 Case 4. For the Scenario Player I = HTT and Player II = HHT

For Case 4, (Player I = HTT, Player II = HHT) we obtain the evolution tree of Figure 4.
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Figure 4. Case 4 evolution tree

The corresponding difference equations are:

n1(t + 3) = n1(t + 2) + n3(t + 2) + (n1(t) + n2(t)) (1)

n2(t + 3) = n3(t + 2) + +(n1(t) + n2(t)) (2)

n3(t + 3) = n2(t + 2) + n4(t + 2) + (n1(t) + n2(t)) (3)

n4(t + 3) = n4(t + 2) + +(n1(t) + n2(t)) (4)

yielding the ni values shown below:
t 0 1 2 3 4 5 6

n1 0 0 1 2 4 8 16

n2 0 0 1 1 2 4 8

n3 0 0 1 2 2 5 10

n4 0 0 1 1 1 3 6

from which it follows that n1 = 2t−2, n2 = 2t−3 (t > 3) and Prob(PII)/Prob(PI) = n1/n2 → 2/1.

2.1.5 Summary for Strategy S1

The summary of the analysis for Strategy 1(XYZ, Y’XY) is shown below where Player II is the second player:

Player I: Player II Player II/total games

Case 1 2 possibilities 1:2 2 /3

Case 2 2 possibilities 1:3 3 /4

Case 3 2 possibilities 1:7 7 /8

Case 4 2 possibilities 1:2 2 /3

It follows that the winning percentage for the Player II playing Strategy 1 is (2/3 + 3/4 + 7/8 + 2/3)/4 = 74.0%.

2.1.6 Summary of Results for Alternative Strategies S2-S5

Here we summarize the results from analysis of four other, non-optimal, strategies, S2 . . . S5.

Strategy 2 (Player I chooses XYZ, Player II chooses X’Y’Z’):

The four independent combinations (HHH, TTT), (HHT, TTH), (HTH, THT) and (HTT, THH) each yield relative

probabilities 1:1, i.e. in all cases Player I and Player II have the same probability (1/2 or 50%) of winning.

Strategy 3 (Player I chooses XYZ, Player II chooses XY’Z):

The selection (HHT, HTT) yields a Player I: Player II winning odds of 2:1, i.e. Player I wins 2/3 of the time. The

selection (HTT, HHT) – the inverse of (HHT, HTT) - yields odds 1:2. Selection (HHH, HTH) yields odds 2:3.

Selection (HTH, HHH) – the inverse of (HHH, HTH) - yields odds 3:2. Thus, the overall probability of the Player

II winning, using S3, is (1/3 + 2/3 + 3/5 + 2/5)/4 = 1/2 = 50%.
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Strategy 4 (Player I chooses XYZ, Player II chooses X’YZ):

The four independent selections yield Player I: Player II odds of: (HHH, THH) = 1:7, (HTT, TTT)=7:1, (HHT,

THT)=5:3, (HTH, TTH)=3:5, yielding an overall probability of the Player II winning of (7/8+1/8+3/8+5/8)/4 =
1/2 = 50%.

Strategy 5 (Player I chooses XYZ, Player II chooses YZQ, where Q can be either H or T):

In this case, if Player I chooses HHH, the Player II is not allowed to choose HHH. This means that of the eight

independent selections available we can only have the 7 choices (HHH, HHT), (HHT, HTH or HTT), (HTH, THH

or THT), (HTT, TTH or TTT) which yield Player I: Player II odds (resp) of 1:1, 2:1, 2:1, 1:1, 1:1, 3:1, and 7:1.

Averaging over outcomes yields a probability of Player I winning of (3(1/2)+ 2(2/3)+ 3/4+ 7/8)/7 = 107/168 =

64%.

The results for all 5 strategies are summarized in Table 1.

Table 1. Summary of outcomes for five possible strategies for playing Penney-Ante

Player I Strategy Player II Player II’s Outcome

X Y Z 1 Y’ X Y wins 74% of the time

X Y Z 2 X’ Y’Z’ wins 50% of the time

X Y Z 3 X Y’Z wins 50% of the time

X Y Z 4 X’ Y Z wins 50% of the time

X Y Z 5 Y Z Q* wins 36% of the time

* Here Q denotes “either A or B”.

2.2 Mixing the Strategies

Clearly, given the choice, together with 20:20 hindsight, Player I would choose strategy S5 while the Player II

would - equally obviously - prefer S1. However, if in a casino game – in which Player II is the House – the

strategies S1 and S5 were chosen by the machine randomly but with equal probability, the long-term probability of

the House winning would be 52%, i.e. it would have an edge of 4% over the player. Furthermore, by admitting the

other three possible strategies, and also by adjusting the probabilities with which the 5 strategies are chosen, the

edge of the House over the player can be accordingly adjusted. For example, if we choose S1 20% of the time, S2

20% of the time, S3 25% of the time, S4 30% of the time, and S5 just 5% of the time the long term probability of

the House winning will be (20×74+20×50+25×50+30×50+5×36)/100 = 54%, i.e. it has an edge of 4% (or

54-46=8% depending on how you choose to define “edge”.) Three other mixes, together with the corresponding

House “edge” are shown in Table 2.

Table 2. Outcomes of a mix of strategies played by the house

Strategy %won by House Mix 1 (weighting) Mix 2 Mix 3 Mix 4

S1 74 15% 15% 40% 20%

S2 50 20% 20% 20% 20%

S3 50 30% 35% 20% 20%

S4 50 20% 20% 20% 20%

S5 36 15% 10% 0% 20%

% won by House 51.5% 52.2% 59.6% 52.0%

% won by player 48.5% 47.8% 40.4% 48.0%

Having applied the difference-equation method to the case of an unbiased coin (p = 1/2), we now show how it can

be adapted to the case of a biased coin, i.e. p = 1/(1 + β), with β � 1.

2.3 Solution of Penney-Ante for the Case p = 1/(1 + β) � 1/2

2.3.1 Case 1 for the Scenario Player I = HTT and Player II = THH

The modification of the aforementioned method for the “biased coin” case p � 1/2, is illustrated for the case Player

I = HTT, Player II = THH in the evolution tree shown in Figure 5, in which we assume the outcome T occurs β
times as often as outcome H. As previously, n’ denotes n(t − 2).
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The corresponding difference equations are (shifting t by 2 steps):

n1(t + 3) = n1(t + 2) + +(βn2(t) + n3(t)) (1)

n2(t + 3) = β(n1(t + 2) + n3(t + 2)) + β(βn2(t) + n3(t)) (2)

n3(t + 3) = n2(t + 2) + n4(t + 2) + β(βn2(t) + n3(t)) (3)

n4(t + 3) = βn4(t + 2) + +β2(βn2(t) + n3(t)) (4)

From Figure 5 we see that the ratio of probabilities, Prob(PII)/Prob(PI) is given by n3/(βn2).

Figure 5. Evolution tree for Case 1 with a biased coin

Exact solution of the governing equations in this and all other cases reveals that, asymptotically (as t ) ni = αi(1+β)
t.

For the present case, eliminating n1 from Equations (1) and (2) yields

n2(t + 3) − n2(t + 2) − β2n2(t) = β(n3(t + 2) − n3(t + 1) + n3(t)). (5)

Substituting into (5) the asymptotic forms n3 ∼ α3(1 + β)t, and n2 ∼ α2(1 + β)t, we obtain

α2[(1 + β)3 − (1 + β)2 − β2] = βα3[(1 + β)2 − (1 + β) + 1)],

which yields PII/PI =α3/(βα2) = 1/β so that PII = 1/(1 + β) = p, in agreement with the result of Shuster (2006).

2.3.2 Case 2. For the Scenario Player I =TTH and Player II =HHT

The scenario Player I =TTH, Player II =HHT for the case p = 1/(1 + β) � 1/2 yields the evolution tree of Figure

6.

The difference equations showing the evolution of ni follow:

n1(t + 3) = n1(t + 2) + n3(t + 2) + (βn1(t) + n4(t)) (1)

n2(t + 3) = βn3(t + 2) + β(βn1(t) + n4(t)) (2)

n3(t + 3) = n2(t + 2) + β(βn1(t) + n4(t)) (3)

n4(t + 3) = β(n2(t + 2) + n4(t + 2)) + β2(βn1(t) + n4(t)) (4)

and the ratio of probabilities Prob(PII)/Prob(PI) is βn1/n4.
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Figure 6. Evolution tree for Case 2 with a biased coin

From Equations (3) and (4), obtain βn3(t + 1) − n4(t + 1) = −βn4(t). Substituting into Equation (1) yields

β[n1(t + 3) − n1(t + 2) − βn1(t)] = n4(t + 2) − βn4(t + 1) + βn4(t) (5)

Asymptotically (t → ∞), ni ∼ (1 + β)t, i.e. n1 ∼ α1(1 + β)t, and n4 ∼ α4(1 + β)t. Substituting into Equation (5), we

obtain

βα1[(1 + β)3 − (1 + β)2 − β)] = α4[(1 + β)2 − β(1 + β) + β],
Thus, PII/PI = βα1/α4 = (1+2β)/β2(2+β), so that PII = (1+2β)/[(1+β)3−(1+β)2+(1+β)] = (2p2−p3)/(1−p+p2),

again in agreement with Shuster (2006).

In the evolution tree, it is understood that β is an integer (1, 2, 3, ...). However the final result in terms of p =
1/(1 + β) is valid for all p satisfying 0 < p < 1, that is β in the above solutions can be analytically continued from

the set of integers to the set of real numbers.

As in the p = 1/2 case, exact solution of the p � 1/2 case can be obtained using an eigenvalue/eigenvector

approach via substituting into the governing difference-equations the general form ni = αiλ
t and generating a

“frequency” or “eigenvalue” equation from which we obtain the eigenvalues λ. For the system Player I = HTT,

Player II = THH, we obtain [λ − (β + 1)][λ4 − β2] = 0, yielding eigenvalues λ = 1 + β,
√
β, j
√
β and a solution for

ni(t) of the form

ni(t) = ai(1 + β)
t + bi(β)

t/2 + ci(−β)t/2 + di(β)
t/2cos(πt/2) + ei(β)

t/2sin(πt/2),

with the coefficients ai, . . . , ei being determined using appropriate “initial” conditions to obtain the relevant eigen-

vectors.

For some cases, the eigenvalues might even be independent of β. For example, for the case Player I = THT, Player

II = HHH, we obtain an eigenvalue equation [λ− (1+β)][λ2 +β][λ2 +λ+1] = 0. In yet other cases, the eigenvalue

equation may even be difficult to solve analytically. For example, the case Player I = THH, Player II = HHT yields

[λ − (β + 1)][λ4 − β(λ + 1)] = 0. However, the one thing that we can guarantee about all these systems is the

presence of the dominant eigenvalue, λ = 1 + β, which is all that is necessary to determine the long-term expected

outcomes of the game (the case considered by Shuster (2006)).

2.4 Further Generalization: The Case Player I = HTHT, Player II = HHTT, p = 1/2

The approach described herein and used for the “triplet” cases is easily extended to cope with “quads” (and be-

yond). For the above case, extracting the pertinent parts of the evolution-tree and introducing n1, n2, . . . , n8 to

represent the accumulation of outcomes HHH, HHT, . . . , TTT, yields governing difference equations:

n1(t + 4) = (n1 + n5)(t + 3) + (n2 + n3)(t)

n2(t + 4) = (n1 + n5)(t + 3) + (n2 + n3)(t) = n1(t + 4)

10
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n3(t + 4) = (n2 + n6)(t + 3) + (n2 + n3)(t)

n4(t + 4) = n6(t + 3) + (n2 + n3)(t)

n5(t + 4) = (n3 + n7)(t + 3) + (n2 + n3)(t)

n6(t + 4) = n7(t + 3) + (n2 + n3)(t)

n7(t + 4) = (n4 + n8)(t + 3) + (n2 + n3)(t)

n8(t + 4) = (n4 + n8)(t + 3) + (n2 + n3)(t) = n7(t + 4)

and the relevant probability ratio Prob(PI)/Prob(PII) is n3(t)/n2(t). The eigenvalue equation corresponding to the

above system of difference equations, yields just four distinct eigenvalues λ = 0, 2,± j, and these can be used to

obtain exact solutions of the equations satisfying appropriate “initial” conditions. One finds that n2(t) = 2t, and

n3(t) = (4/5)2t + (1/5)cosπt/2 + (2/5)sinπt/2, yielding Prob(PI)/Prob(PII)→ 4/5, i.e. Prob(PI) = 4/9, Prob(PII)

= 5/9.

Generalization of the quad case for p � 1/2 parallels the generalization of the triplet case but is not pursued here.

3. Conclusions

The game of Penney-Ante is based on a mathematical paradox in which the second player has information about

the choices made by the first player giving the second player an unexpected advantage. Although it may appear at

first that Player II would never want to play any strategy but Strategy 1, Player I would soon catch on that Player II

“knows something”. If the game were to be played in a gambling environment, it would be smart for Player II, the

“House”, to play a mix of strategies so that Player I would continue to participate while at the same time ensuring

an overall House winning advantage with a mix of strategies to achieve an edge of say 4-5%. By mixing the

strategies, Player I is unlikely to realize that he/she is at an overall disadvantage. Knowing the statistical outcomes

for all possible strategies, it is possible to devise a mix of strategies played at random, for example play S1 20% of

the time, S2 20% of the time, S3 25% of the time and S4 30% of the time and S5 5% of the time, such that Player

II (the House) would have an adjustable but unexpected winning edge.

In the present communication we have described a) how one can use a difference – equation approach to determine

the outcomes of various scenarios used to devise the various long term outcome expectations and have indicated

how this can be generalized to the case of a biased coin, and b) we have also indicated how, by appropriate

mixing, the Penney-Ante games can be combined to generate outcome probabilities that are marginally, rather than

substantially, different for the two players involved. We have also indicated how the approach may be extended to

the analysis of higher-order Penney-Ante games.
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