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Abstract

In this paper, a deterministic mathematical model to investigate the transmission dynamics of malaria in Ghana is

formulated taking into account human and mosquito populations. The model consists of seven non-linear differen-

tial equations which describe the dynamics of malaria with 4 variables for humans and 3 variables for mosquitoes.

The state vector for the model is (S h, Eh, Ih,R, S m, Em, Im, ) where S h, Eh, Ih, R, S m, Em and Im respectively rep-

resent populations of susceptible humans, exposed humans, infectious humans, recovered humans, susceptible

mosquitoes, exposed mosquitoes and infectious mosquitoes. Stability analysis of the model is performed and we

make use of the next generation method to derive the basic reproduction number R0. A mathematical analysis

of the dynamic behaviour indicates that the estimated model has a unique endemic equilibrium point and malaria

will persist in Ghana. The basic reproduction number for Ghana is found to be R0 = 0.8939. Further, both the

disease-free and endemic equilibria are locally asymptotically stable. Numerical simulations indicate that reducing

current biting rate of female Anopheles mosquitoes by 1/16 could assist Ghana to achieve malaria free status by

the year 2037. If, in addition, the number of days it takes to recover from malaria infection were reduced to three

3 days malaria free status could be achieved by the year 2029.

Keywords: deterministic mathematical model, basic reproduction number, stability analysis and female Anopheles

mosquitoes

1. Introduction

Malaria is a life-threatening disease caused by a protozoan parasite called Plasmodium, which lives part of its life

in humans and part in Anopheles mosquitoes. The disease is endemic in tropical and subtropical regions, including

Africa, Asia, Latin America, the Middle East and some parts of Europe. According to the Anti-Malaria Drug Policy

for Ghana document in 2009, Malaria remains hyper endemic in Ghana and is the single most important cause of

mortality and morbidity especially among children under five years, pregnant women and the poor (UNICEF - At

a glance: Ghana, www.unicef.org).

Chitnis (2005) proposed a model similar to the malaria model in this paper. The main differences of our model,

from that of Chitnis (2005) is that we have excluded the infection of female Anopheles mosquito by recovered

humans, because we assume that these humans do not have sufficient plasmodium parasites in their bodies to

transmit the infection to mosquitoes. Also, in our model, the infectious humans recover with clinical treatment and

the death of the female Anopheles mosquito is caused by natural death rate and insecticides. Further this paper fills

in an information gap pertaining to the dynamics of transmission of malaria in Ghana. To the best of our knowledge

enough work has not been done in this area to assist health workers and policy makers to make informed decisions.

In this paper we use clinical malaria data from Ghana Health Service at WHO Website to develop a mathematical

model to investigate and understand the disease transmission dynamics in Ghana taking both host and vector

populations into account. Our model will be non-linear ordinary differential equations. Stability analysis and

numerical simulations are performed. The simulations are conducted using MATLAB’s ode45. Some of the

assumptions in this paper on mathematical modeling of malaria are based on studies by Chitnis (2005), Chitnis et

al. (2006), Danso-Addo (2009) and Mwamtobe (2010).

2. Method

The model is based on important intervention strategies currently relevant in Ghana such as clinical treatment
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and the mortality of the female Anopheles mosquito which is caused not only by natural death rate, but by indoor

residual spraying (IRS) and insecticide treated bed nets (ITNs). We divide the human population into 4 classes: the

Susceptible, denoted, S h , representing the fraction of host population that is susceptible to infection; the Exposed,

denoted Eh, being the fraction of population who are infected but not infectious in that they cannot transmit the

infection. There is also the Infectious class, denoted Ih, corresponding to persons who have the malaria infection

and can transmit it to persons in a susceptible class. Finally, the recovered, denoted by R, being people who recover

from the infection through clinical treatment and are endowed with temporary immunity. These latter humans can

not transmit the infection to mosquitoes because we assume that they have no plasmodium parasites in their bodies.

People enter the susceptible class, either through birth or through immigration (assume to be at a constant rate).

There is a finite probability of movement to the exposed class when a susceptible person is bitten by an infectious

anopheles mosquito. The parasite is then passed on to humans in the form of sporozoites. The clinical onset of

the disease is characterized by the parasite entering the blood stream as merozoites. Later there is a movement of

infectious humans to recovery class where they acquire some immunity to malaria. After some further time, this

immunity is lost and they revert to the susceptible class. Humans leave the population through natural death and

those in the infectious class have additional disease-induced death rate.

We do not include the immigration of infectious humans because we assume that most people who are sick will

not travel. The movement of Exposed humans are excluded because, given the short time of the exposed stage,

the number of exposed people is small. We do make a simplifying assumption that there is no immigration of

recovered humans.

The female Anopheles mosquito population is divided into 3 classes: Susceptible S m, Exposed Em and Infectious

Im. Anopheles male mosquitoes are not included in the model because only female mosquitoes bite humans for

blood meals. Female mosquitoes enter the susceptible class through birth. The parasite (in the form of gameto-

cytes) enters the mosquito, with some probability, when the mosquito bites an infectious human and the mosquito

moves from the Susceptible to the Exposed class. After some period of time, dependent on the ambient temperature

and humidity, the parasite develops into sporozoites and enters the mosquito’s salivary glands; and the mosquito

moves from the exposed class to the infectious class. The mosquito remains infectious for life. Mosquitoes leave

the population through natural death rate and death caused by insecticides. We assume that longevity of the female

Anopheles mosquitoes is unaffected by the parasite infection and they do not die from the infection. There is no

super infection of the disease. Mosquitoes cannot survive without human host as they need human blood to feed

their developing eggs.

The parameters in Table 1 and the state variables in Table 2 are used in Figure 1 to formulate the malaria model.

Table 1. Mode parameters and their interpretations for the malaria model (1)

Parameter Description

Ψ Recruitment rate of humans

ρ Recruitment rate of mosquitoes

αh Force of infection of humans from susceptible state to exposed state

αm Force of infection of mosquitoes from susceptible state to exposed state

βh Rate of progression of humans from the exposed state to the infectious state

βm Rate of progression of mosquitoes from the exposed state to the infectious state

τ Clinical treatment-recovery rate of humans from the infectious state to the recovered state

μ Natural death rate for humans

ω Death of mosquitoes caused by natural death rate and insecticides

π Disease-induced death rate for humans

ϕ Rate of loss immunity for humans

θmh Probability of transmission of infection from an infectious mosquito to a susceptible human

provided there is a bite

θhm Probability of transmission of infection from an infectious human to a susceptible mosquito

provided there is a bite

φ Biting rate of mosquitoes
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Table 2. The state variables for the malaria model (1)

Parameter Description

S h(t) Number of susceptible humans at time t
Eh(t) Number of exposed humans at time t
Ih(t) Number of infectious humans at time t
R(t) Number of recovered (immune) humans at time t
S m(t) Number of susceptible mosquitoes at time t
Em(t) Number of exposed mosquitoes at time t
Im(t) Number of infectious mosquitoes at time t
Nh(t) Total human population at time t
Nm(t) Total mosquito population at time t

Figure 1. Flowchart of malaria incidence in human and mosquito populations

2.1 Equations of the Malaria Model

Applying the assumptions, definitions of state variables and parameters above, the system of non-linear differential

equations which describe the dynamics of malaria are formulated below:

dS h
dt = ψ + ϕR − αhS h − μS h

dEh
dt = αhS h − βhEh − μEh

dIh
dt = βhEh − τIh − ( μ + π) Ih

dR
dt = τIh − ϕR − μR
dS m
dt = ρ − αmS m − ωS m

dEm
dt = αmS m − βmEm − ωEm

dIm
dt = βmEm − ωIm

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)
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with initial conditions

S h (0) = S h0, Eh (0) = Eh0, Ih (0) = Ih0, R (0) = R0, S m (0) = S m0, Em (0) = E m0, Im (0) = Im0,

where αh =
θmhφIm

Nh
and αm =

θhmφIh
Nh

. For the purpose of this paper, we refer to Equation (1) as malaria model. The

total population sizes are Nh = S h + Eh + Ih + R and Nm = S m + Em + Im with their differential equations

dNh

dt
= ψ − μNh − πIh (2)

and
dNm

dt
= ρ − ωNm

3. Analysis of the Model

3.1 Invariant Region

The invariant region can be obtained by the following theorem.

Theorem 1 The solutions set to the malaria model are feasible for all t > 0 if they enter the invariant region
Ω = Ωh ×Ωm.

Proof. Let Ω = (S h, Eh, Ih,R, S m, Em, Im) ∈ R7
+ be any solution of the malaria model with non-negative initial

conditions. In absence of the malaria,that is Ih = 0, Equation (2) becomes

dNh

dt
+ μNh ≤ ψ

and solving for Nh we have, Nh ≤ ψμ +Ce−μt. Using the intial condtions at t = 0, Nh(0) = Nh0, we have

Nh ≤ ψ
μ
+

(
Nh0 − ψ

μ

)
e−μt.

Applying the theorem of differential inequality (Birkhof & Rota, 1982), we obtain,

0 ≤ Nh ≤ ψ
μ

as t → ∞.

Therefore, as t → ∞, the human population Nh approaches K = ψ
mu , the parameter K is usually called the carrying

capacity (Namawejje, 2011). Hence all feasible solution set of the human population of the mmalaria model enters

the region Ωh =
{
(S h, Eh, Ih,R) ∈ R4

+ : S h > 0, Eh ≥, Ih ≥,R ≥,Nh ≤ ψμ
}
.

Similarly, the feasible solutions set of the mosquito population enters the regionΩm = {(S m, Em, Im) ∈ R3
+ : S m > 0,

Em ≥, Im ≥,Nm ≤ ρ
ω
}. Therefore, the feasible solutions set for malaria model given by Ω = Ωh × Ωm is positive-

invariant and hence it is biologically meaningful and mathematically well-posed in the domain Ω.

3.2 Positivity of Solutions

Lemma 1 Let the initial data be {(S h(0), S m(0)) > 0, (Eh(0), Ih(0),R(0), Em(0), Im(0)) ≥ 0} ∈ Ω. Then the solution
set (S h(t), Eh(t), Ih(t),R(t), S m(t), Em(t), Im(t)) of the system malaria model is positive ∀t > 0.

Proof. From the first equation in the model (1), we have

dS h

dt
= ψ + ϕR − αhS h − μS h ≥ −αhS h − μS h

therefore,

S h(t) ≥ S h(0)e−(αh+μ)t ≥ 0

From the second equation of model malaria model,

dEh

dt
= αhS h − βhEh − μEh ≥ −(βh + μ)Eh

hence,

Eh(t) ≥ Eh(0)e−(βh+μ)t ≥ 0.
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Similary, it can be shown that the remaining equations in system malaria model are also positive ∀t > 0, because

eη > 0 η ∈ R.

3.3 Disease-Free Equilibrium

Disease-free equilibrium points (DFE) are steady state solutions where there is no malaria in the human population

or Plasmodium parasite in the mosquito population. Let define the “diseased” classes as the human or mosquito

populations that are either exposed or infectious; that is, Eh, Ih, Em and Im. In absence of the disease, this implies

that ( Eh = Ih = Em = Im = 0) and when the right-hand side of a nonlinear system (1) is set to zero, we have,

S e0

h =
ψ
μ

S e0
m =

ρ
ω

⎫⎪⎪⎬⎪⎪⎭
Therefore, the disease-free equilibrium point of the malaria model (6) is given by

E0 = (S e0

h , E
e0

h , I
e0

h ,R
e0 , S e0

m , E
e0
m , I

e0
m ) =

(
ψ

μ
, 0, 0, 0,

ρ

ω
, 0, 0

)

which represents the state in which there is no infection(in the absence of malaria) in the society.

3.4 Basic Reproduction Number

We use the next generation operator approach as described by Diekmann et al. (1990) to define the basic repro-

duction number, R0, as the number of secondary infections that one infectious individual would create over the

duration of the infectious period, provided that everyone else is susceptible. When R0 < 1, each infected individ-

ual produces on average less than one new infected individual, so we would expect the disease to die out. On the

other hand, if R0 > 1, each individual produces more than one new infected individual, so we would expect the

disease to spread in the population. This means that the threshold quantity for eradicating the disease is to reduce

the value of R0 to be less than one. We determine R0 using the next generation operator approach. The associated

next generation matrices are

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 θmhφ
0 0 0 0

0
θhmφμρ
ψω

0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(βh + μ) 0 0 0

−βh (τ + μ + π) 0 0

0 0 (βh + ω) 0

0 0 −βh ω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
and

FV−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
βmθmhφ
ω(βm+ω)

θmhφ
ω

−βh (τ + μ + π) 0 0

βhθhmφμρ
ψω(βh+ μ)(τ+μ+π)

θhmφμρ
ψω(τ+μ+π)

0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Let p = βmθmhφ
ω(βm+ω)

, q = θmhφ
ω

k = βhθhmφμρ
ψω( βh+ μ)(τ+μ+π)

and l = θhmφμρ
ψω(τ+ μ+ π)

. We can now calculate the eigenvalues λ
to determine the basic reproduction number R0 by taking the spectral radius (dominant eigenvalue) of the matrix

FV−1. We have λ2(λ2 − kp) = 0 ⇒ λ = 0 or λ = ±√kp. From the four eigenvalues, the dominant eigenvalue of

the matrix FV−1 is λ =
√

kp. Therefore the basic reproduction number R0 =
√

kp. Hence

R0 =

√
φ2ρβhβmθhmθmhμ

ψω (βh + μ) (τ + μ + π) (βm + ω)ω
(3)

The threshold parameter R0 can be defined as square roots of the product of number of humans one mosquito

infects during its infectious lifetime R0h and number of mosquitoes one human infects during the duration of the

infectious period R0m, provided all humans and mosquitoes are susceptible. Therefore,

R0 =
√

R0h × R0m =

√
βhθmhφμ

ψ (βh + μ) (τ + μ + π)
× βmθhmφρ

(βm + ω)ω2
(4)
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hence

R0h =
βhθmhφμ

ψ (βh + μ) (τ + μ + π)

and

R0m =
βmθhmφρ

(βm + ω)ω2

The basic reproduction number can be used to determine the local stability of the disease free equilibrium point.

3.5 Local Stability of Disease-Free Equilibrium

The local stability of the disease-free equilibrium can be analyzed using the Jacobian matrix of the malaria model

at the disease free equilibrium point. Referring to the results of Van den Driessche and Watmough (2002), the

following theorem holds.

Theorem 2 The disease free equilibrium point for the malaria model is locally asymptotically stable if R0 < 1 and
unstable if R0 > 1.

Proof. The Jacobian matrix J of the malaria model (1) with S h = Nh − (Eh + Ih + R) and S m = Nm − (Em + Im) at

the disease-free equilibrium point is given by

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− (βh + μ) 0 0 0 θmhφ
βh − (τ + μ + π) 0 0 0

0 τ − (ϕ + μ) 0 0

0
θhmφμρ
ψω

0 − (βm + ω) 0

0 0 0 βm −ω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5)

The eigenvalues of the Jacobian matrix are the solutions of the characteristic equation |J − λI| = 0. Set A1 = ω,

A2 = (βm + ω), A3 = (τ + μ + π), A4 = (βh + μ) and K∗ = φ
2ρθhmθmhβhβmμ

ψω
. Then

λ4 + B1λ
3 + B2λ

2 + B3λ + B4 = 0, (6)

where
B1 = A4 + A3 + A2 + A1

B2 = A4 (A3 + A2 + A1) + A3 (A2 + A1) + A2A1

B3 = A4A3A2 + A4A3A1 + A4A2A1 + A3A2A1

B4 = A4A3A2A1 − K

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Using the Routh-Hurwitz Criteria on (6), we can prove that all roots of the polynomial (6) have negative real parts.

For the characteristic polynomial in (6), when n = 4, the Routh-Hurwitz criteria are B1 > 0, B2 > 0, B3 > 0, B4 > 0

the determinants of Hurwitz matrices are positive. Hence all the eigenvalues of the jacobian (5) have negative real

part and R0 < 1. Therefore disease-free equilibrium point is stable.

Conversrly, if R0 > 1 it implies that B4 < 0 and since the remaining coefficients (B1, B2 and B3) of the polynomial

(6) are positive, then all the roots of this polynomial cannot have negative real parts. Therefore, the disease-free

equilibrium point is unstable.

3.6 The Endemic Equilibrium Point

Endemic equilibrium points are steady state solutions where the disease persists in the population (all state variables

are positive). That is, malaria infection will persists in the population and the endemic equilibrium point (EEP) of

the model is given by EEP = (S e1

h , Ee1

h , Ie1

h , Re1 , S e1
m , Ee1

m , Ie1
m ) > 0. To derive the EEP, we have to solve

ψ + ϕR − θmhφImS h
Nh

− μS h = 0
θmhφImS h

Nh
− (βh + μ) Eh = 0

βhEh − (τ + μ + π) Ih = 0

τIh − (ϕ + μ) R = 0

ρ − θhmφIhS m
Nh

− ωS m = 0
θhmφIhS m

Nh
− (βm + ω) Em = 0

βmEm − ωIm = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.
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After some algebraic manipulation, we get

A
[
Ie1

h

]2
+ BIe1

h +C = 0

A = R2
0Lωϕφτ − φ2μθhm (ϕ + μ) (M + L)

B = R2
0μω

2N2
hϕτ − ωφ (ϕ + μ)

[
L
(
ψR2

0 − ψ − μNh

)
− Mψ

]
C = μω2N2

hψ (ϕ + μ)
[
R2

0 − 1
]
,

where L = μNhθhm and M = ωθmhRom. Therefore,

Ie1

h =
−B +

√
B2 − 4AC
2A

= Φ

S e1

h =
μθhmφ Φ + ωψ

R2
0
ωμ

, Ee1

h =
τ + μ + π

βh
Φ, Re1 =

τ

ϕ + μ
Φ,

S e1
m =

Nhρ

θhmφ Φ + ωNh
, Ee1

m =
R0m ω

2Φ

βm (θhmφ Φ + ωNh)
, Ie1

m =
R0m ωΦ

(θhmφ Φ + ωNh)

We now consider the possibility of multiple endemic equilibria for equation (6). It may also indicate three distinct

situations which we have to consider depending on the signs of B and C since A is always positive. The C is

negative if R0 < 1 and positive if R0 > 1. Hence the three situations will lend to the following theorem.

Theorem 3 The malaria model (1) has,

1) Precisely one unique endemic equilibrium if C < 0 ⇐⇒ R0 < 1 .

2) Precisely one unique endemic equilibrium if B < 0 and C = 0 or B2 − 4AC > 0 .

3) Precisely two endemic equilibria if C > 0 , B < 0 and

4) No endemic otherwise.

3.7 Local Stability of the Endemic Equilibrium

The stability of the endemic equilibrium of the malaria model can be analysed using the Centre Manifold Theory

described by Castillo-Chavez and Song (2004).

To apply this theorem we make the following change of variables in the malaria model.

Let x1 = S h, x2 = Eh, x3 = Ih, x4 = R, x5 = S m, x6 = Em and x7 = Im.

The malaria model is written in the form,
dXi

dt
= H (Xi)

where Xi = (x1, x2, . . . , x7)T and H = (h1, h2, . . . , h7)T are transposed matrices. The malaria model becomes

dx1

dt = ψ + ϕx4 − Ψ∗φμx7 x1

ψ
− μx1 = h1

dx2

dt =
Ψ∗φμx7 x1

ψ
− (βh + μ) x2 = h2

dx3

dt = βhx2 − (τ + μ + π) x3 = h3

dx4

dt = τx3 − (ϕ + μ) x4 = h4

dx5

dt = ρ − θhmφμx3 x5

ψ
− ωx5 = h5

dx6

dt =
θhmφμx3 x5

ψ
− (βm + ω) x6 = h6

dx7

dt = βmx6 − ωx7 = h7

(7)

where Nh = x1 + x2 + x3 + x4 and Nm = x5 + x6 + x7 with Ψ∗ = θmh.
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Let Ψ∗ be the bifurcation parameter, the system (7) is linearized at disease free equilibrium point when Ψ = Ψ∗
with R0 = 1. Thus Ψ∗ can be solved from (3) when R0 = 1 as

Ψ∗ =
ψ
(
βh + μ

)
(τ + μ + π)

(
βm + ω

)
ω2

φ2ρβhβmθhmμ

Then zero is a simple eigenvalue of the following Jacobian matrix, Jbi f with the application of the bifurcation

parameters. ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μ 0 0 ϕ 0 0 −Ψφ
0 Fh 0 0 0 0 Ψφ
0 βh C 0 0 0 0

0 0 τ − (ϕ + μ) 0 0 0

0 0 D 0 −ω 0 0

0 0 E 0 0 Fm 0

0 0 0 0 0 βm −ω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where C = − (τ + μ + π) , D = − θhmφμρ

ψω
, E = θhmφμρ

ψω
, Fh = − ( βh + μ

)
and Fm = − ( βm + ω

)
.

A right eigenvector associated with the eigenvalue zero is w = (w1, w2, . . . , w7). We have the following right

eigenvector

w1 =
ϕw4 − Ψφw7

μ
, w2 =

Ψφw7

βh + μ
, w3 =

βhw2

τ + μ + π
, w4 =

τw3

ϕ + μ
, w5 = − θhmφμρw3

ψω2
,

w6 =
θhmφμρw3

ψω
(
βm + ω

) , w7 = w7 > 0

and the left eigenvector satisfying vw = 1 is v = (v1, v2, . . . , v7). The left eigenvector is given as follows:

v1 = 0 , v2 = v2 > 0, v3 =

(
βh + μ

)
v2

βh
, v4 = 0 , v5 = 0 , v6 =

βmv7

βm + ω
, v7 =

Ψφv2

ω
.

Therefore

a = v2w2w7
∂2h2

∂x2∂x7
+ v2w3w7

∂2h2

∂x3∂x7
+ v6w6w3

∂2h6

∂x6∂x3
+ v6w7w3

∂2h6

∂x7∂x3

= v2w2w7

(
− Ψφμ

ψ

)
+ v2w3w7

(
− Ψφμ

ψ

)
+ v6w6w3

(
− θhmφμ

ψ

)
+ v6w7w3

(
− θhmφμ

ψ

)

= − φμ
ψ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
v2w2

7Ψ
2
7φ
(

τ+ μ+ π+βh

( βh+ μ)(τ+ μ+ π)

)
+ v6w3θhm

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
θhmφ

2μρβhΨ

ψω
(
βm + ω

)
(τ + μ + π)

(
βh + μ

) + 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

Similarly

b = v2w7

∂2h2

∂x7∂Ψ
= v2w7φ > 0.

Hence a < 0 and b > 0. Therefore the following theorem holds.

Theorem 1 The malaria model has a unique endemic equilibrium which is locally asymptotically stable when
R0 < 1 and unstable when R0 > 1.

4. Results and Discussion

The parameters in the malaria model were estimated using clinical malaria data and demographic statistics of

Ghana. Those that were not available were obtained from literature published by researchers in malaria endemic

countries which have similar environmental conditions compared to Ghana. According to the Ghana Living Stan-

dards Survey Report of the Fifth Round (GLSS 5), 2008, the estimated number of households in Ghana is 5.5

million. Conservatively, it is assumed that there are 10 female Anopheles mosquitoes per household in Ghana. The

female Anopheles mosquito population is then approximately given by: 5, 500, 000×10 = 55, 000, 000 mosquitoes.
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The Table 3 below shows the estimated parameters and their sources for the model (1). The rates are given per day.

Table 3. Mode parameters and their interpretations for the malaria model (1)

Parameter Value Source

Ψ 0.00005079 (2010 est.) by 2011 CIA World Factbook

ρ 0.071 Niger, 2008

βh 1/14 Malaria.com, 2011

βm 1/11 Chitnis, 2005

τ 1/7 Tumwiine et al., 2004

μ 1/(64365.25) At a glance: Ghana, UNICEF, 2012

ω 1/25 Estimated

π 0.0000027 World Malaria Report 2010 for Ghana

ϕ 1/91.3125 Estimated

θmh 0.42 Estimated

θhm 0.0655 Estimated

φ 0.4 Chitnis, 2005

After substituting the estimated parameter values in Table 3 into the malaria model, we obtain the basic repro-

duction number from (3) as R0 = 0.8939. Since R0 = 0.8939 < 1, hence malaria disease can be eliminated or

eradicated in the susceptible population in Ghana.

4.1 Local Stability of the Disease-free Equilibrium

Using (6), we have λ4 + 0.3853λ3 + 0.05209λ2 + 0.002868λ + 0.00001075 = 0 Since the coeeficients of the

polynomial are positive, it follows by the Routh-Hurwitz stability criteria that, the disease-free equilibrium point

is asymptotically stable. This means that malaria free society can be achieved.

4.2 The Endemic Equilibrium Point

The quadratic equation for calculating the value of Ie1

h is given below:

0.0072[I2
h ]e1 + 34705Ie1

h − 3.1111 = 0 (8)

Since C = −3.1111 < 0 in (8) and also R0 < 1, the estimated malaria model for Ghana has one unique endemic

equilibrium point.

The bifurcation parameter is given by

Ψ∗ =
0.00005079 (0.07147) (0.1429) (0.13091) (0.04)2

(0.4)2 (0.071) (1/14) (1/11) (0.42) (0.00004278)
= 0.0820

The estimate of a is given by

a = − (0.4) (0.00004278)

(0.00005079)
[0.05644 + 0.07901] = −0.33692 (0.13545) = −0.04564 < 0

Similarly the parameter estimate is given by

b = v2w7

∂2h2

∂x7∂Ψ
= v2w7φ = (1)(1)(0.4) > 0

Since a < 0 and b > 0, by the Centre Manifold Theory described by Castillo-Chavez and Song (2004) the endemic

equilibrium point is locally asymptotically stable. This means malaria will persist in Ghana.

30



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 4, No. 6; 2012

5. Numerical Simulations

A numerical simulation of the estimated malaria model is conducted to explore scenarios of the dynamics of the

disease in the human population. The time-axes in all phase portraits below start from the year 2000. We mainly

consider the effects of varying key parameters responsible for controlling malaria

1) Reducing the biting rate of mosquitoes.

2) The treatment rate of infectious humans.

3) Combining the reduction in the biting rate of mosquitoes and the increase in the treatment rate of infectious

humans.

The biting rate of mosquitoes can be reduced by using the Insecticide-treated bed nets (ITN) and Indoor residual

spraying (IRS). The values of the biting rate of mosquitoes, transmission rate of infection from an infectious

mosquito to a susceptible human, rate of loss of immunity for humans and the mosquito population are reduced by

1/16, while the values of the other parameters are maintained. This is illustrated in the Figure 2(a).

Figure 2. Simulation plots

Increasing the treatment rate will reduce the transmission rate of infection from an infectious human to a susceptible
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mosquito and the rate of loss of immunity for humans. Increasing the treatment rate to 1/3 and reducing the

transmission rate θhmand rate of loss of immunity to 0.18 and 1/39.1339 respectively, give the phase portrait

diagram below. From Figure 2(b), if the treatment rate is increased by 1/3, Ghana will achieve malaria free status

by the year 2285. Comparing the two interventions, we conclude that the most influential parameter in controlling

the disease (malaria) is to reduce the mosquito biting rate.

We consider the effects of combining the two interventions in controlling malaria disease.The effects of combining

the two interventions in controlling malaria disease are shown in Figure 2(c). When the two interventions are

combined, Ghana could have malaria free status by 2029. So the intervention practices that involve both prevention

and treatment controls yield a relatively better result.

6. Conclusion

In this paper a mathematical model is formulated from the host and vector populations in the transmission of

malaria in Ghana. The Malaria model has a unique endemic equilibrium point which is locally asymptotically sta-

ble. Further, the model indicates that malaria disease can be eliminated or eradicated in the susceptible population

and malaria free society can be achieved in Ghana by the year 2037 if the current mosquito biting rate is reduced

by 1/16. In Figure 2(c), when the two interventions are combined, Ghana will have malaria free status by 2029.

Innovative strategies to minimize or reduce the biting rate need to be identified and implemented soon.

The Model assumes a varying host and vector populations. Further research into situations where by a deliber-

ate injection of genetically modified mosquitoes into the mosquitoes to reduce the transmission rate needs to be

investigated.
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