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Abstract

From the study of purine synthesis, urate crystal deposition in joints and puricase interaction with plasma protein,

a system of first order differential equations is obtained. The existence and uniqueness of the solutions of the

system of equations is established. Some controllability and stabilizability results are obtained via the Pontryagins

Maximum Principles.
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1. Introduction

All mammals except humans and higher apes (primates) produce the enzyme uricase (urease) which further de-

grades (breakdown) uric acid, leaving very low levels in the blood. All urate is digestible by uricase which converts

uric acid into a more serum soluble form that can be readily excreted.

The new drug puricase contains the enzyme uricase (or urease) which rapidly eliminates stores of serum uric acid

in much the same way as the hormone insulin depletes stores of glycogen in diabetes mellitus patients.

Enzymes are highly effective catalysts hence the degradation of substrates by enzymes is expected to be a fast

process compared to the formation of the enzyme-substrate complex. In the steady state, the rate of formation is

approximately the same as the rate of depletion of substrates (Roussel, 2005). Moreover the disappearance of urate

in the blood is dependent on the quantity of urate and also on the level of puricase in the blood.

Gout is a form of arthritis (jount inflammation), that is, a disease characterized by the presence of excess (above 7

mg/dl) uric acid in the blood (serum). About 90% of those afflicted with gout are men over 40 years of age, while

the rest are post menopausal women (Flieger, 1995). Also, of the number afflicted, at least 90% are hyperuricemic

(that is, they have a serum uric acid level of above 7 mg/dl) and (70 - 75)% of these cases are due to underexcretion

rather than due to oversecretion (Koopman, 1993).

Uric acid, a normal by-product of purine metabolism is filtered normally by the kidneys and excreted in urine.

When more uric acid is secreted than the kidneys can excrete the serum uric acid level rises. Above a concen-

tration of 7 mg/dl, the blood becomes supersaturated with needlelike crystals of a salt called monosodium urate

monohydrate. These salt deposits which are the waste products from usage of protein by the body often increase

in size and burst through the skin to form sinuses, discharging a chalky white material (Adelowo, 1995).

High serum uric acid concentration of more than 7 mg/dl is defined as a serum uric level of more than 2 standard

deviations from the mean. This is approximately the central 95% of the standard normal distribution which lies

between the limits ±1.96 standard deviation of its mean.

Increased synthesis of uric acid can lead to accumulation, an important cause of gout (Curto, 1998). Mbah (2001)

studied glucose synthesis and insulin interaction with plasma protein in the case of diabetes mellitus. We shall

carry out a similer study in the case of gouty arthritis.
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2. Model Formulation

Let

x(t) denote the amount of uric acid in serum at time t;

p(t), the amount of puricase in serum at the same time time t;

x0, the equilibrium level of uric acid in a healthy state;

p0, the equilibrium level of uricase in a healthy state;

g1, the rate of exogeneous supply of uric acid through food intake;

g2, the rate of exogeneous supply of uricase, through injection;

a1, the rate at which serum uric acid crystallizes into urate;

a2, the rate at which the concentration of urate is decreased by uricase;

a3, the rate at which the dosage of uricase is increased when serum uric acid level rises;

a4, the rate at which uricase depletes stores of serum urate crystals;

u f , uric acid from food;

up, uricase from puricase.

We have the following representation

Following the information in the diagram above, the state (governing) equations have the form⎧⎪⎪⎨⎪⎪⎩
dx
dt = −a1x − a2 p + g1u f ; x(0) = x0
dp
dt = a3x − a4 p + g2up; p(0) = p0.

(2.1)

Hocking (1991) had earlier used the following model to describe the progression and control of diabetes mellitus:⎧⎪⎪⎨⎪⎪⎩
dg
dt = −c1g − c2h + p; g(0) = g0; g(T ) = 0
dh
dt = c3g − c4h + u; h(0) = h0; h(T ) = 0,
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where

g(t) denotes the amount of glucose present at time t;

h(t), the hormone present at the same time t;

p(t), the rate of increase of glucose in the blood;

u(t), the rate of increase of insulin in the blood.

System (2.1) above exhibits two mechanisms for the control of uric acid namely diet which changes the value of

g1 and medication (drug) which changes the value of g2.

Notice that we have made use of the following facts in determining the signs of a1, a2, a3, a4:

(i) When serum uric acid begins to crystallize into urate crystals which are deposited in joints and tissues, the

concentration of serum uric acid decreases accordingly, hence a1 > 0.

(ii) Uricase causes a decrease in the concentration of serum uric acid, hence a2 > 0.

(iii) When uric acid level rises, more uricase will be injected into the blood, to increase the rate of chemical

reaction, hence a3 < 0.

(iv) When the enzyme/catalyst uricase increases the rate at which serum urate molecules binds with plasma

protein to form serum soluble metabolites which can be promptly excreted, the concentration of uricase in the

blood remains constant hence a4 > 0.

3. Model Solution

We shall first establish the existence of bounded solutions of our system of equations by the following theorem.

Theorem 3.1 There exists bounded solutions for the system of Equation (2.1), for

(a1 + a4)2 < 4 (a4a1 + a3a2) .

Proof. From the first equation in system (2.1) above, we have

dx
dt
= −a1x − a2 p + g1u f

⇒ p =
1

a2

(
−a1x + g1u f − dx

dt

)
. (3.1)

The substitution of the value of p from Equation (3.1) into the second equation in system (2.1) yields

1

a2

(
−a1

dx
dt
+ g1

du f

dt
− d2x

dt2

)
= a3x − a4

a2

(
−a1x + g1u f − dx

dt

)
+ g2up,

hence

a1

dx
dt
+ g1

du f

dt
− d2x

dt2
= a2a3x + a4a1x − a4g1u f + a4

dx
dt
+ a2g2up.

That is
d2x
dt2
+ (a1 + a4)

dx
dt
+ (a4a1 + a3a2) x = g1

du f

dt
+ a4g1u f + a2g2up. (3.2)

Let t1 > 0 be the time when the exogeneous supply of serum uric acid reduces to zero. In which case u f = up = 0.

Then Equation (3.2) becomes
d2x
dt2
+ (a1 + a4)

dx
dt
+ (a4a1 + a3a2)x = 0 (3.3)

The auxiliary equation for Equation (3.3) is

m2 + (a1 + a4)m + (a4a1 + a3a2) = 0

For (a1 + a4)2 < 4 (a4a1 + a3a2), the solution of Equation (3.3) is given by

x(t1) = e−(a1+a4)t {A cos w0t1 + B sin w0t1} ,
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where w0 = {2(a4a1 + a3a2)
1
2 − (a1 + a4)}. Thus the complete solution becomes

x(t1) = e−(a1+a4)t {A cos w0t1 + B sin w0t1} + x0.

4. Some Controllability and Stabilizability Results

In considering the controllability and stabilizability problem of a particle whose trajectory is determined by the

system ⎧⎪⎪⎨⎪⎪⎩
dx
dt = −a1x − a2 p + g1u f
dp
dt = a3x − a4 p + g2up,

(4.1)

we shall adopt the following conditions:

(a) At time t < t0, (where t0 is the time when drug is first applied), we have x < 7 which implies that no drug is

applied when serum uric acid level is less than 7mg/dl.

(b) At t = t0, x(t0) = x0.

(c) At final time t1, we have x(t1) = 0 which means that drugs reduce excess serum uric acid level to zero at time

t1 implying that the patient is cured at time t1.

We shall identify the following classes of patients:

(i) Class of patients on improper diet but with no kidney malfunction (asymptomatic stage).

(ii) Class of patients on improper diet but with kidney malfunction (critical stage).

(iii) Class of patients on proper diet and with no kidney malfunction (rest period).

(iv) Class of patients on proper diet and with kidney malfunction (hazard stage).

Definition of terms

(a) By a proper diet, we mean a combination of purine free food and drugs.

(b) By an improper diet, we mean a combination of purine rich food and drugs.

(c) By kidney malfunction, we mean the inability of the kidney to promptly excrete uric acid.

Assumptions

A1: Hyperuricemia is more a result of underexcretion of uric acid, than that of oversecretion of uric acid.

A2: All forms of underexcretion of uric acid is due to kidney malfunction.

A3: Drug is administered immediately after a meal, starting at t = 0, with p0 and x0 as initial values of p and x
respectively such that p(0) = p0 and x(0) = x0.

Hypotheses

H1: Patient has kidney malfunction ⇒ up � 0.

H2: Patient is on proper diet ⇒ u f = 0.

H3: Patient has no kidney malfunction ⇒ up = 0.

H4: Patient is not on proper diet ⇒ u f � 0.

Analysis

Under assumption A1, we shall consider the following cases:

Case 1 (Class of Patients on Improper Diet and with Kidney Malfunction)

In this case, u f � 0, up � 0 and our system of equations are

⎧⎪⎪⎨⎪⎪⎩
dx
dt = −a1x − a2 p + g1u f
dp
dt = a3x − a4 p + g2up,

(4.2)

If u is the optimal combination of food and drug that can bring about a cure without fear of malnutrition or
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overdose, then we can write system (4.2) in matrix form as follows:

d
dt

(
x
p

)
=

(−a1 −a2

a3 −a4

) (
x
p

)
+

(
g1u f

g2up

)
.

If the rate of supply g1 of dietary purine and the rate of supply g2 of puricase are equal to g say, then our system of

equations can be written as:
d
dt

(
x
p

)
=

(−a1 −a2

a3 −a4

) (
x
p

)
+

(
u f

up

)
g.

Case 2 (Class of Patients on Proper Diet but with no Kidney Malfunction)

In this case, u f = 0 and up = 0, and our system of equations become

⎧⎪⎪⎨⎪⎪⎩
dx
dt = −a1x − a2 p
dp
dt = a3x − a4 p.

(4.3)

Theorem 4.1 The zero solution of system (4.3) is a stable node if (a1a4)2 ≥ 4a2a3 and a stable focus if (a1a4)2 <
4a2a3.

Proof. For the system above, ∣∣∣∣∣∣−a1 − λ a2

a3 −a4 − λ
∣∣∣∣∣∣ = 0.

On expansion, we obtain the quadratic equation

(a1 + λ) (a4 + λ) + a2a3 = 0

or

λ2 + (a1 + a4) λ + a1a4 + a2a3 = 0.

Hence,

λ =
1

2

{
−(a1 + a4) ±

[
(a1 + a4)2 − 4(a1a4 + a2a3)

] 1
2

}

=
1

2

{
−(a1 + a4) ±

[
(a1 − a4)2 − 4a2a3)

] 1
2

}

Consequently, the zero solution of the linearized system is a stable node if (a1a4)2 ≥ 4a2a3 and a stable focus if

(a1a4)2 < 4a2a3.

Case 3 (Class of Patients on Proper Diet but with Kidney Malfunction)

In this case, u f = 0, up � 0, and the only source of uric acid will be considered to stem from slight disorders in the

metabolic pathway of endogeneous purine.

Our system of equations then become:

⎧⎪⎪⎨⎪⎪⎩
ε dx

dt = −a1εx − a2 p
dp
dt = a3εx − a4 p + g2up,

(4.4)

where ε represents some disorder (perturbation) in purine metabolic pathways triggered off by the use of drugs

like diuretics which prevents urine retention in kidney malfunction patients. Such drugs cause dehydration and

a resultant increase in the concentration of serum uric acid. To prevent such increase, more puricase has to be

injected into the blood. This will in turn increase a2. To effect a cure, ε must be minimized, while a2 must be

increased by a steady increase in up. This may produce two effects:

(i) a blow-up (instability) of the term a2

ε
with time (at infinity);

(ii) an overdose of the drug puricase.

Theorem 4.2 System (4.4) is completely controllable provided a2

ε
is bounded at ±∞ and the optimal dosage of

puricase required to prevent an overdose is − p2g2

2ea1 t .
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Proof. We rewrite system (4.4) in matrix form as

d
dt

(
x
p

)
=

(−a1
−a2

ε

a3ε −a4

) (
x
p

)
+

(
0

g2

)
up (4.5)

or
dX
dt
= AX + Bup.

This implies that

Bupdt = dX − AXdt,

where

X =
(
x
p

)
; A =
(−a1

−a2

ε

a3ε −a4

)
and B =

(
0

g2

)
.

The controllability matrix for system (4.5) is given by

C =
[
B AB A2B · · · An−1B

]
=

(
0

−a2g2

ε

g2 −a4g2

)
.

The matrix C has two linearly independent rows (that is C is of rank 2), and A has order 2. Therefore we arrive at

the following conclusions:

(i) That system (4.5) is completely controllable implying that complications such as chronic topheceous gouty

arthritis which may lead to stiffness, crippling and deformity can be prevented and hence cure may be effected in

finite time through drug action, for a patient on proper diet.

(ii) Subsequent attacks following an initial episode can be arrested in finite time. From the equation

ε
dx
dt
= −a1εx − a2 p,

we have

ε
dx
dt
+ −a1εx = −a2 p

which implies that

x = e−a1t

t∫
0

(−a2 p
ε

)
ea1τdτ. (4.6)

thus, safe levels of uric acid may be attained by using large doses of drugs, but this may induce dangerous side-

effects. Moreover, such drugs may be rather too expensive.

To balance up the two effects, Hocking (1991) employed the following cost functional

J =
1

2

t1∫
0

(
g2 + k2u2

)
dt,

where t1 is the equilibrium time during which u is reduced to zero, g is the amount of glucose, u is the amount

of insulin and k2 is the weighting factor between the two cost components. Employing Equation (4.6) above, and

modeling after Hocking (1991), we shall define our cost function as

J =

t1∫
0

(
k2u2

f + u2
p

)
ea1tdt,

where u f and up are defined as in section 2 and a1 represents the rate at which serum uric acid crystallizes into

urate.

Exponential decay stems from the fact that the concentration of serum uric acid decreases in a simple exponential

way, as uric acid crystallizes into urate salt, which settles in the joints and tissues with k as the relative importance

of malnutrition and overdose.
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We shall consider the fixed endpoint problem with sufficiently large upper bound on g2 and with x(t1) and p(t1)

fixed, in which case x(t1) is just a point on Rn and p(t1) is another point on the same Rn.

In the fixed endpoint problem, terminal conditions are required. Hence we shall introduce the adjoint (co-state)

variables p1 and p2 and state our terminal conditions as follows

p1(t1) = p2(t2) = 0.

Our next task is to minimize the cost function. This is achieved by first obtaining the optimal control function and

using same to replace all the control variables in the subsequent equations.

It is worthy of note that the carrier of the optimal control function in question is the Hamiltonian which in the study

by O’malley and Kung (1975) is represented by the equation

H(x, p, p1, p2, u, t) =
∂J
∂t
+ 〈co − state variable, system equations〉

=
∂J
∂t
+ 〈(p1, p2), (A, B)〉,

where the angled brackets 〈·, ·〉 represent a scalar product. In the context under consideration, the Hamiltonian

takes the form

H = (k2u2
f + u2

p)ea1t + p1(−a1εx − a2 p) + p2(a3εx − a4 p + g2up).

Now

ε
∂p1

∂t
= −∂H
∂x
= p1a1ε − p2a3ε

and

ε
∂p2

∂t
= −∂H
∂p
= p1a2 + p2a4. (4.7)

Along the optimal trajectory, the derivative of the Hamiltonian with respect to the control variable up must be

equals to zero, that is,
∂H
∂up
= 0, (4.8)

a condition typified by PONTRYAGIN’S MAXIMUM PRINCIPLE. By virtue of this principle, Equation (4.8) is

quickly reduced to the form

2ea1tup + p2g2 = 0,

hence,

up = − p2g2

2ea1t . (4.9)

Furthermore, since
∂2H
∂u2

p
= 2e−t > 0,

then our up will minimize J. Therefore up is an OPTIMAL CONTROL, since it minimizes J over all admissible

inputs (controls).

Case 4 (The Critical Case)

In this case, two conditions abound:

(a) the rate a1 at which serum uric acid crystallizes into urate crystals is so high that a1ε does not tend to zero as

ε→ 0.

(b) the corresponding rate a3 at which the concentration of the drug puricase is increasing is so high that a3ε
does not tend to zero as ε→ 0.

We shall let a1ε = α and a3ε = β so that system (4.4) now becomes

⎧⎪⎪⎨⎪⎪⎩
ε dx

dt = −αx − a2 p
dp
dt = βx − a4 p + g2up
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and Equations (4.7) and (4.8) can be written as

⎧⎪⎪⎨⎪⎪⎩
ε dp1

dt = αp1 − βp2
dp2

dt = a2 p1 + a4 p2.
(4.10)

Substituting up = − 1
2
e−a1tg2 p2 into system (4.9), we obtain the following system of equations

⎧⎪⎪⎨⎪⎪⎩
ε dx

dt = −αx − a2 p
dp
dt = βx − a4 p − 1

2
g2

2e−a1t p2.
(4.11)

In matrix form we have

d
dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x
p
p1

p2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−a1 − a2

ε
0 0

a3ε −a4 0 − 1
2

(
ge−a1t p2

)
0 0 a1 −a3

0 0 a2 a4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x
p
p1

p2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4.12)

In the limit as ε→ 0, we have the reduced system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = −αx − a2 p
dp
dt = βx − a4 p − 1

2
g2

2e−a1t p2

0 = αp1 − βp2
dp2

dt = a2 p1 + a4 p2.

(4.13)

Let (x0, p0, p10, p20) be the solution of the reduced (limiting) problem (ε→ 0), then the subsystem,

⎧⎪⎪⎨⎪⎪⎩
0 = −αx0 − a2 p0

0 = αp10 − βp20

(4.14)

of the reduced problem can be written in matrix form as

(
a2 0

0 β

) (
p0

p20

)
=

(−α 0

0 a1

) (
x0

p10

)
. (4.15)

The coefficient matrices in (4.15) are nonsingular in the sense that the following conditions are satisfied:∣∣∣∣∣∣a2 0

0 β

∣∣∣∣∣∣ � 0 and

∣∣∣∣∣∣−α 0

0 a1

∣∣∣∣∣∣ � 0.

Therefore the reduced system has a unique solution.

Case 5 (Puricase is Perturbed by the Action of Certain Inhibiting Enzymes)

In this case, our system of equations become

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt = −αx − εa2 p
ε dp

dt = a3x − εa4 p − 1
2
g2

2e−a1t p2
dp1

dt = αp1 − βp2

ε dp2

dt = εa2 p1 + εa4 p2.

(4.16)

The reduced problem is ⎧⎪⎪⎨⎪⎪⎩
0 = a3x − εa4 p − 1

2
g2

2e−a1t p2

0 = εa2 p1 + εa4 p2.
(4.17)

From the first equation in system (4.17), we have

a3x = εa4 p +
1

2
g2

2e−a1t p2 (4.18)

or

a3x = εa4 p − g2up
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From Equation (4.18), we shall conclude that at the point when all inhibiting factors have been eliminated (ε = 0),

continuous application of puricase (in which case a4 = 0), will progressively (in the limit as t → ∞) eliminate

stores of serum uric acid.

Case 6 (The Hazardous Case)

This case may stem from genetic or hereditary factors or from other disease conditions. In this case serum uric

acid level becomes very high, and we may adopt a cost functional that is linear in up, and quadratic in x. We shall

define our cost functional as

J =

t1∫
0

e−a1t
(
k1x2 + k2up

)
dt

and our optimal control problem shall be defined as:

Minimize u ∈ [u1, u2]

t1∫
0

e−a1t
(
k1x2 + k2up

)
dt

subject to system (4.4), where k1 is the cost of prevention and k2 is the cost of treatment.

Since the cost k2 of treatment is directly proportional to the rate g2 of supply of the drug puricase, we shall let

k2 = αg2, where α is an arbitrary constant. Moreover, the aim of treatment is to prevent an attack of gout and the

cost k1 of prevention is directly proportional to the cost k2 of treatment. That is, k1 = βαg2.

Theorem 4.3 The optimal amount of serum uric acid resulting from proper diet and optimal dosage of puricase
depends on the rate a1 at which serum uric acid crystallizes into urate.

Proof. Employing the facts above, we can rewrite our cost functional as

J = αg2

t1∫
0

e−a1t
(
k1x2 + up

)
dt.

Corresponding to system (4.4), the Hamiltonian function to be minimized is given by:

H
(
x, p, p1, p2, up, t

)
= e−a1t

(
k1x2 + k2up

)
+ p1

(
−a1x − a2 p

ε

)
+ p2

(
−a4 p + g2up

)

Differentiating the first equation in system (4.4) once with respect to t yields:

ε
d2x
dt2
= −a1ε

dx
dt
− a2

dp
dt
. (4.19)

Substituting the value of
dp
dt from the second equation of system (4.4) into Equation (4.19) yields:

ε
d2x
dt2
= −a1ε

dx
dt
− a2

(
a3εx − a4 p + g2up

)

which implies

−εd2x
dt2
= a1εdx + a2

(
a3εx − a4 p + g2up

)
dt

or

a2

(
a3εx − a4 p + g2up

)
dt = −εd2x

dt2
= a1εdx.

Hence,

updt =
1

g2

{
−εd2x

dt2
dt − a1εdx − a2 (a3εx − a4 p) dt

}
. (4.20)

Substituting the value of updt derived from Equation (4.20) into our cost functional, we obtain the line integral

JC = αg2

∫
C

e−a!t
[
k1x2dt +

1

g2

{
−εd2x

dt2
dt − a1εdx − a2 (a3εx − a4 p) dt

}]
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along any curve C in the (x, t) space. We shall apply the Green’s theorem to our line integral over an area R bounded

by C to obtain:

JC = αg2

∫ ∫
R

[
− ∂
∂t

(
a1εe−a1t

)
+
∂

∂x
e−a!t
{

k1x2dt − ε
g2

d2x
dt2
− a2a3εx + a2a4 p

}]
dtdx

or

JC = αg2

∫ ∫
R

[
− ∂
∂t

(
ε1e−a1t

)
+
∂

∂x

(
e−a!t
) (

e−a!t
)
∗
{

k1x2dt − ε
g2

d2x
dt2
− a2a3εx + a2a4 p

}]
dtdx (4.21)

where ε1 = a1ε.

As it stands, ε→ 0 faster than ε1. Hence in the limit as ε→ 0, Equation (4.21) becomes

JC = αg2

∫ ∫
R

[
− ∂
∂t

(
ε1e−a1t

)
+
∂

∂x

(
e−a!t
) {

k1x2 + a2a4 p
}]

dtdx

=

∫ ∫
R

αg2

[
a1ε1e−a1t +

(
e−a!t
)

(2k1x)
]

dtdx (4.22)

To specify our optimal control, we need to partition the (t, x1) space into regions where the integrand in Equation

(4.22) above takes positive and negative values. Equating the integrand in Equation (4.22) to zero, we have:

αg2

[
a1ε1e−a1t +

(
e−a!t
)

(2k1x)
]
= 0

⇒ 2k1x = −a1ε1

⇒ xopt = −a1ε1

2k1

5. Application of Boundary Layer Analysis to a Singularly Perturbed Model of the Gout Disease

Gout is a metabolic disorder in which excess uric acid is produced and deposited mostly in the joints. Note that a

joint depicts the junction or boundary between two bones.

In this section we shall carry out some boundary layer analysis on our singularly perturbed model of the gout dis-

ease. Generally substrate (urate) velocity increases across the boundary layer (the joint), causing a corresponding

increase in temperature around the affected joint, which in turn may lead to an attack. This increase in temperature

in turn increases the particle deposition rate (Joshua, 2008).

Fluid velocity increases across the boundary layer, reaching its peak value and then decreasing to the free stream

velocity value. Possible heat generation effects may alter the temperature distribution and the particle deposition

rate.

Boundary layer analysis involves the matching of the inner (fast transient) solution xi(τ, ε), yi(τ, ε) (also called

the boundary layer correction), which approaches zero and the outer (slow decay) solution x0(t, ε), y0(t, ε). The

matching is done through a stretching (straining) transformation τ = t
ε
. Since they just represent two pieces of the

same trajectory, the inner and outer solutions have to match up in an intermediate time range, through the stretching

(straining) transformation. In composite form

(
x
y

)
=

(
X(t, ε)
Y(t, ε)

)
+

(
ξ(τ, ε)
η(τ, ε)

)

with the outer expansion (
X(t, ε)
Y(t, ε)

)
∼
∞∑
j=0

(
Xj(t)
Yj(t)

)
ε j

and the initial (boundary) layer correction

(
ξ(τ, ε)
η(τ, ε)

)
∼
∞∑
j=0

(
ξ j(τ)
η j(τ)

)
ε j
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whose terms all decay to zero as the stretched variable τ = t
ε

tends to ∞. Then the asymptotic solution for each

fixed t > 0 will be given to all orders by the outer solution. The outer solution is supposed to be valid when is not

too small while the inner solution is valid when τ is not too large (Roussel, 2005).

In our analysis, the function
{
xi

(
t
ε
, ε
)
, yi

(
t
ε
, ε
)}

will be called the boundary layer solution (or correction term). Our

controllable process shall be partitioned into 2 phases namely: The build up of high serum urate levels (triggers),

and the onset of gouty arthritis (1st attack). Whereas the build up is slow, the onset of attack is fast and can only

be described in a continuous time model. We shall therefore identify two adjoining regions (subdomains) and

two time variables namely: a slow time variable (t) and a fast time variable (τ).We shall consider two adjoining

domains: an inner (boundary layer, 0 < t < t0) domain representing the ligament and an outer (t0 < t < t1) domain

representing the tendon.

From equation (4.20), we have

ε
d2x
dt2

dt = −a1εdx − a2

(
a3εx − a4 p + g2up

)
dt. (5.1)

We shall assume that a4 → 0 as→ t1, in which case a single dose therapy can be employed towards the end of the

treatment. In this case, Equation (5.1) becomes:

ε
d2x
dt2
= −a1ε

dx
dt
− a2

(
a3εx + g2up

)

or

ε
d2x
dt2
= −αdx

dt
− a2

(
βx + g2up

)
.

In the outer domain, the leading term ε d2 x
dt2 becomes more and more negligible, as ε becomes smaller and smaller

(ε→ 0). Hence, provided x is finitely differentiable (that is provided the disease is controllable), we shall consider

the equation

−αdx0

dt
− a2

(
βx0 + g2up

)
= 0

which implies

up =
1

a2g2

(
a2βx0 + α

dx0

dt

)
(5.2)

in the outer domain. Here the superscript 0 denotes the outer region and the inner boundary condition x1(t0) = x10

has been dropped.

In the inner (boundary layer) domain however, where changes are rapid, d2 x
dt2 becomes so large that the ε d2 x

dt2 term

cannot be neglected as ε→ 0 and so we consider the equation

ε
d2xi

dt2
= −αdxi

dt
− a2

(
βxi + g2up

)

or

up = − 1

a2g2

(
ε

d2xi

dt2
+ α

dxi

dt
+ a2βxi

)
(5.3)

To develop a mathematical model that can slow down fast transients in the inner, narrow boundary layer region of

the singularly perturbed model of the disease gout (a phenomenon which depicts a reduction of the amount of uric

acid in the blood and a consequent reduction of the effect of the gout disease), we shall let

xi(t, ε) = xi
10(t) + εxi

11(t) + ε2xi
12(t) + · · · (5.4)

and

u(t, ε) = u1(t) + εu1(t) + ε2u3(t) + · · · (5.5)

Equations (5.4) and (5.5) are nave perturbation expansions. The superscript i denotes the inner region, and the

outer boundary condition x0
1
(t1) = 0 has been dropped.

We shall introduce a stretching transformation τ = t
εβ

, where β > 0. This transformation magnifies the time

variable t as ε → 0 in the sense that t → ∞ as ε → 0. Finally, we shall choose β to be sufficiently large such
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that
(
xi

1

)′
=

dxi
1

dτ and
(
xi

1

)′′
=

d2 xi
1

dτ2 are bounded. In this way the various terms in our asymptotic expansions can be

ordered in magnitude by comparing the powers of ε by which they were multiplied.

Now
dxi

dt
=

dxi

dτ
· dτ

dt
= ε−β
(
xi

1

)′
and

d2xi

dt2
=

d
dτ
· dτ

dt

[
ε−β

dxi

dτ

]

= ε−β
[
ε−β

d2xi

dτ2

]
= ε−2β

(
xi

1

)′′

Substituting the expansions obtained above into Equation (5.3), we arrive at the following equation:

up =
1

a2g2

(
−ε
(
xi

1

)′′ − a1

(
xi

1

)′ − a2a3

(
xi

1

))
(5.6)

Theorem 5.1 The control BT (τ)φT (t0, τ) x0φ
′ (t0, τ) leaves the system
⎧⎪⎪⎨⎪⎪⎩

dx
dt = A(t)x(t) + B(t)u(t);
x(t0) = x0

invariant.

Proof. ⎧⎪⎪⎨⎪⎪⎩
ẋ = A(t)x(t) + B(t)u(t);
x(t0) = x0

this means that

x(t) = φ (t, t0)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣x0 +

t∫
t0

φ (t0, τ) B(τ)u(τ)dτ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

where

φ (t, t0) = e

⎛⎜⎜⎜⎜⎜⎜⎝
t∫

t0

A(t)dt

⎞⎟⎟⎟⎟⎟⎟⎠

is the state transition matrix. At t = t1, we have

x(t1) = φ (t1, t0)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣x0 +

t1∫
t0

φ (t0, τ) B(τ)u(τ)dτ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (5.7)

Replacing u(t) with BT (τ)φT (t0, τ) x0φ
′ (t0, τ) in Equation (5.7) above, we obtain

x(t1) = φ (t1, t0)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣x0 +

t1∫
t0

φ (t0, τ) B(τ)BT (τ)φT (t0, τ) x0φ
′ (t0, τ) dτ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

= φ (t1, t0)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣x0 + x0

t1∫
t0

φ′ (t0, τ) dτ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= φ (t1, t0)

[
x0 + x0 {φ (t0, t1) − (t0, t0)}]

= φ (t1, t0)
[
x0 + x0φ (t1, t0) − x0

]
= φ (t1, t0) · x0φ (t0, t1)

= φ (t1, t1) · x0 = x0

≡ x(t0).
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To slow down the fast transients
(
xi
)′

and
(
xi
)′′

in Equation (5.6), we introduce a new control u(t − t∗, ε) =
BT (t − t∗)φT (t0, t − t∗) x0φ

′(t0, t − t∗) in Theorem 5.1 above and consiquently transform Equation (5.6) into the

following statement

−ε1−2β
(
xi
)′′ − a1ε

−β (xi
)′ − a2a3

(
xi
)
= BT (t − t∗)φT (t0, t − t∗) x0φ

′(t0, t − t∗), (5.7)

where φ (t, t0) = exp

⎛⎜⎜⎜⎜⎜⎝
t∫

t0

A(t)dt

⎞⎟⎟⎟⎟⎟⎠ is the state transition matrix, ˙( ) = d
dt , (′) = d

dτ ,
(

T
)

denotes the transposition matrix,

(t − t∗) << ε denotes the time lag, u(t − t∗) = BT (t − t∗)φT (t − t∗, t0) x0φ
′(t − t∗, t0) is the slow control and β strikes

the balance between food and drug input (rate of exogeneous supply of urate) and the rate of recovery (rate of

elimination of urate).

In order to attain this balance, we shall equate the corresponding powers of ε on both sides of Equation (5.7), to

obtain 1 − 2β = −β or β = 1 such that Equation (5.7) now becomes

−ε−1
(
xi
)′′ − a1ε

−1
(
xi
)′ − a2a3

(
xi
)
= BT (t − t∗)φT (t − t∗, t0) x0φ̇(t − t∗, t0).

6. Summary and Conclusion

That the Hamiltonian (in Equation 4.18) is linear in u implies that our optimal control u∗(t) is bang-bang (Sethi &

Staats, 1978). That is

u∗(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 i f x < 7

u1 i f x = 7

u2 i f x > 7.

This implies that at the hazardous stage, when puricase is not applied continuously, the health status of the patient

fluctuates back and forth between a steady state health level and an unhealthy one.

(i) From Equation (4.18), we conclude that at the point when all inhibiting factors must have been eliminated

(ε = 0), continuous application of puricase (in which case a4 = 0) will progressively (in the limit as t → t1) deplete

stores of serum uric acid. A single dose therapy of puricase may therefore be applied continuously until stores of

urate crystals are completely eliminated.

(ii) Subsequent attacks of gout following an initial episode can be arrested in finite time and complications such

as Chronic Topheceous Gouty Arthritis which may lead to stiffness, crippling and deformity can be prevented and

cure can be effected in finite time through the action of the drug puricase, for a patient on proper diet.
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