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Abstract

We are interested in controlling and removing singularities of the Dirichlet problem involving the bilaplacian

operator in a domain with corner. It’s possible of making the solution to the bilaplacian operator regular, through

acting on a small part of a cracked domain with corner. Then, the best singularity coefficients can be controlled by

simultaneous actions of two controls on a small part of the boundary.
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1. Introduction and Statement of Problem

We consider the Dirichlet problem for the bilaplacian operator in a bounded polygonal domain Ω of R2. Since

the domain is polygonal, the solution of this problem does not only depend on the regularity of data, but also on

the geometry of the domain (Grisvard, P., 1974; Grisvard, P., 1992; Kondratiev, V. A., 1967). This solution is

singular in the neighbourhood of non-convex vertices of Ω (see Bayili, G., 2009; Seck, C., Bayili, G., Sène, A., &

Niane, M. T., 2011). Niane et al. (2006) proved that it is possible by acting on a small part of the domain or on

a small part of the borders, a regular solution of the Laplace equation can be obtained. Let m + 1 the number of

non-convex angles of Ω and Ō a non empty open bounded Ω. We will show that there are infinitely differentiable

functions with support in Ō and satisfying the following condition if f ∈ L2(Ω), (λi)1≤i≤k are the coefficients of the

singularities and (gi)1≤i≤k the singularities of the problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Find v ∈ H2

0(Ω) such that

−Δ2v = f in Ω
(1)

then the problem ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Find y ∈ H2

0(Ω) such that

−Δ2y = f −∑k
i=1 λigi in Ω

(2)

has an unique solution y ∈ H4(Ω).

We will also prove the following result if Γ1 and Γ2 are two analytical open sets of Γ whose measure of the

intersection is non zero, then there exist k functions (hi, gi)1≤i≤k of D(Γ1) × D(Γ2) with compact support contained

in Γ1 ∩ Γ2 such that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δ2y = f in Ω

γy = −∑k
i=1 λihi on Γ1

∂y
∂ν
=
∑k

i=1 λigi on Γ2

(3)

has an unique solution y ∈ H4(Ω).
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2. Bi-orthogonality Property of Biharmonic Functions

Let H be a Hilbert space with a scalar product 〈·, ·〉H .

Lemma (Density lemma) Let H be a Hilbert space, D a dense subspace in H and {e0, ..., em} a subset of H. Then,
there exist {d0, ..., dm} in D such that ∀ 1 ≤ i < j ≤ m,

〈
ei, d j

〉
H
= δi j.

Proof. According to the hypothesis and by Gram-Schmidt orthogonalization, there exist v0, ..., vm, such that

〈vi, e j〉H = δi j, ∀1 ≤ i < j ≤ m. As D is dense in H, there exist sequences (v(n)
i ) of elements in D, such that

v(n)
i −→ vi in H as n −→ ∞, for all i ∈ {0, ...,m}. This implies that 〈v(n)

i , e j〉H −→ 〈vi, e j〉H = δi j as n −→ ∞,

and hence the matrix Kn = (〈v(n)
i , e j〉H)0≤i< j≤m is invertible for n large enough. Fixed this value of n, write

K−1
n = (ci j)0≤i< j≤m. The requested elements are di =

∑m
k=0 cikv(n)

k , since 〈di, e j〉H = ∑m
k=0 cik〈v(n)

k , e j〉H = δi j.

Theorem Let Ω be an open set of Rn and O a non-empty open set of Ω. If (ωi)1≤i≤k is a set of linearly independent
of biharmonic functions of L2(Ω), then there exists a family (g j)1≤ j≤k of C∞ functions with compact support in Ō,
such that

∀ 0 ≤ j < i ≤ k, we have
∫
Ω

ωig jdx = δi j (4)

Proof. Let H = L2(Ō). The family (ωi |Ō)1≤i≤k is linearly independent ?

Effectively, assume that there exist real numbers (αi)1≤i≤k not all of them zero such that

k∑
i=1

αiωi = 0 in Ō (5)

We know that
∑k

i=1 αiωi is an analytical form, according to the unicity theorem of Holmgren’s-Kovalevska in L.

Hormander (1976), we have
∑k

i=1 αiωi = 0 on Ω, we can deduce by hypothesis that αi = 0, ∀i ∈ {1, ..., k} and

consequently (ωi |Ō)1≤i≤k is linearly independent.

Since D(Ō) is dense in L2(Ō), Niane et al. (2006) and Density Lemma imply that there exists a family (g j)1≤ j≤k of

functions of D(Ω) with support in Ō such that:

∀ 0 ≤ j < i ≤ k,
∫
Ω

ωig jdx = δi j (6)

Theorem Let Ω be a non-empty bounded open polygon with R
n of boundary Γ. Let Γ1 and Γ2 be two non-empty

analytic open sets of Γ such that mes(Γ1 ∩ Γ2) � 0. Let (ωi)1≤i≤k be a linear independent family of biharmonic
functions of L2(Ω) verifying

ωi =
∂ωi

∂ν
= 0 on Γ and

(
γ
∂Δωi

∂ν
|Γ1, γΔωi|Γ2

)
∈ L2(Γ1) × L2(Γ2), (7)

then there exist k functions (hi, gi)1≤i≤k of D(Γ1) × D(Γ2) with compact support contained in Γ1 ∩ Γ2 verifying

∀ 0 ≤ j < i ≤ k,
∫
Γ

(
Δωig j +

∂Δωi

∂ν
h j

)
dσ = δi j. (8)

Proof. Let the space H = L2(Γ1) × L2(Γ2) with the following scalar product

∀(x1, y1), (x2, y2) ∈ H, 〈(x1, y1), (x2, y2)〉 = 〈x1, x2〉 + 〈y1, y2〉 (9)

With this product, H is a Hilbert space. Next we prove that the family
{(
∂Δωi
∂ν
|Γ1
,Δωi|Γ2

)
1≤i≤k

}
is linearly indepen-

dent.

Assume the existence of real numbers (αi) such that

k∑
i=1

αi

(
∂Δωi

∂ν
|Γ1
,Δωi|Γ2

)
1≤i≤k

= 0

This implies that ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑k

i=1 αi
∂Δωi
∂ν
|Γ1
= 0

∑k
i=1 αi

(
Δωi|Γ2

)
= 0
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Since ψ =
∑k

i=1 αiωi is an analytical form in virtue of the Holmgren and the Cauchy-Kovalevska theorem (see

Hormander, L., 1976). Hence, we can deduce under our hypothesis that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ2ψ = 0 in Ω

ψ = ∂ψ
∂ν
= 0 on Γ

∂Δψ
∂ν
= 0 on Γ1

Δψ = 0 on Γ2

(10)

According to the Cauchy-Kowalevska Theorem, there exists a non-empty open neighbourhood O ⊂ Γ1 ∩ Γ2 such

that
∑k

i=1 αiωi = 0 in O. By Holmgren Theorem (Hormander, L., 1976), we obtain:

k∑
i=1

αiωi = 0 in O

Consequently, we have:
k∑

i=1

αiωi = 0 in Ω

So we can deduce that αi = 0, ∀i and the family

(
∂Δωi

∂ν
|Γ1
,Δωi|Γ2

)
1≤i≤k

is linearly independent.

Since D(Γ1) × D(Γ2) is dense in L2(Γ1) × L2(Γ2), Niane et al. (2006) proved the existence of a family (hi, gi)1≤i≤k

of compact support contained in Γ1 ∩ Γ2 such that

∀ 0 ≤ j < i ≤ k,
∫
Γ

(
Δωig j +

∂Δωi

∂ν
h j

)
dσ = δi j (11)

3. Cancellation of Singularities

3.1 Preliminary Results on Dual Singular Functions

We show that, in a cracked domain, we can obtain a regular solution of the biharmonic problem by acting two

simultaneous controls on two small parts of the boundary of intersection not empty and not reduce to a point on

the small part O of Ω not intercepting any vertices.

Lemma (P. Grisvard, 1985) If f ∈ L2(Ω), the solution u of Problem (1) related to the crack Oi is writen as
u = uR +

∑4
i=1 λiS i where uR ∈ H4(Ω) and λi ∈ R f or i ∈ {1, ..., 4}. This singular part is described below by its

polar coordinates
S i(r, θ) = rαi sin(αiθ)ηi(r) (12)

where αi =
π
ωi

is the singularity exponent related to the crack Oi and ηi is cut-off function equal to 1 on the
neighbourhood of vertex of the open Oi.

By Grisvard Lemma, in each non-convex vertices, we have finite number of dual singular solutions associated with

the domain Ω.

Pose ω∗i = r− jS i(r, θ) = rαi− j sin(αiθ)ηi(r) f or 1 ≤ i ≤ k and j ∈ {1, 3}. According to Grisvard (1985; 1989) and

Timouyas (2003), (ω∗i )1≤i≤k is the family of dual singular solutions associated to m angles of non-convex vertex of

domain Ω. This family is linearly independent and verifies

∀ i ∈ {1, ..., k}, ω∗i ∈ L2(Ω) ∩ Vc
i and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Δ2ω∗i = 0 in Ω

γ
∂ω∗i
∂ν
= γω∗i = 0 in Γ

(13)

37



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 4, No. 4; 2012

with Vi the ith open neighbourhood of vertex of Oi of the domain Ω.

The singularity coefficients (λi)1≤i≤k associeted with problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Find u ∈ H2

0(Ω), such that

∀v ∈ H2
0(Ω) :

∫
Ω
ΔuΔvdx =

∫
Ω

f vdx
(14)

are obtained as

λi =

∫
Ω

fω∗i dx (15)

3.2 Cancellations of Singularities

Theorem It exist k infinitely differentiable functions with compact support contained in Ō such that if f ∈ L2(Ω)

and (λi)1≤i≤k the singularity coefficients corresponding to the problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Δ2u = f in Ω

γu = ∂u
∂ν
= 0 on Γ

(16)

then the solution of problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Δ2ϕ = f −∑k

i=1 λigi in Ω

γϕ = ∂ϕ
∂ν
= 0 on Γ

(17)

verifies ϕ ∈ H4(Ω) ∩ H2
0(Ω).

Proof. The dual singular solutions of (16) verifies hypotheses of Theorem 2.2. Hence it exist a family (gi)1≤i≤k of

functions with compact support contained in Ō such that

∀ 0 ≤ i < j ≤ k,
∫
Ω

ωig jdx = δi j (18)

Let (λi)1≤i≤k the singularity coefficients associeted with (15) and (ζi)1≤i≤k the singularity coefficients of (16). So we

have:

ζi =

∫
Ω

ω∗iΔ
2ϕdx =

∫
Ω

ω∗i ( f −
k∑

l=1

λlgl)dx

=

∫
Ω

ω∗i f dx −
k∑

l=1

λl

∫
Ω

ω∗i gldx = λi −
k∑

l=1

λlδil = λi − λi = 0

ζi = 0. Consequently and the solution is ϕ ∈ H4(Ω) ∩ H2
0(Ω)
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Figure 1. Non-convex cracked domain
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