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Abstract

Let X be a metric continuum and »n a positive integer. Let F,,(X) be the hyperspace of all nonempty subsets of X
with at most n points, metrized by the Hausdorff metric. We said that X has unique hyperspace F,(X) provided
that, if ¥ is a continuum and F,(X) is homeomorphic to F,(Y), then X is homeomorphic to Y. In this paper we
study Peano continua X that have unique hyperspace F,(X), for each n > 4. Our result generalize all the previous
known results on this subject.
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1. Introduction

A continuum is a nondegenerate, compact, connected metric space. A Peano continuum is a locally connected
continuum. For a given continuum X and n € N, we consider the following hyperspaces of X

F,(X) ={A c X: A is nonempty and it has at most n points},

and
C,(X) ={A c X: A is closed nonempty and has at most n components}.

Both F,(X) and C,(X) are metrized by the Hausdorff metric (Nadler, 1978, Definition 0.1) and are also known as
the n-th symmetric product of X and the n-fold hyperspace of X, respectively. When n = 1 it is customary to write
C(X) instead of C;(X), and refer to C(X) as the hyperspace of subcontinua of X.

Let H(X) be any one of the hyperspaces defined above and let K be a class of continua. We say that X € K has
unique hyperspace H(X) in K if whenever Y € K is such that H(X) is homeomorphic to H(Y), it follows that X
is homeomorphic to Y. If K is the class of all continua, we simply say that X has unique hyperspace H(X).

The topic of this paper is inserted in the following general problem.
Problem. Find conditions, on the continuum Z, in order that Z has unique hyperspace H(Z).

A finite graph is a continuum that can be written as the union of finitely many arcs, each two of which are either
disjoint or intersect only in one or both of their end points. Let

® = {X : X is a finite graph}.
It has been proved the following results (a)-(m).

(a) If X € & different from an arc or a simple closed curve, then X has unique hyperspace C(X), see Duda (1968,
p. 265-286) and Acosta (2002, p. 33-49).

(b) If X € &, then X has unique hyperspace C»(X), see Illanes (2002(2), p. 347-363).
(c) If X € &, then X has unique hyperspace C,(X) for each n € N — {1, 2}, see Illanes (2003, p. 179-188).

(d)IfX e B,n,meN,Y isacontinuum and C,(X) is homeomorphic to C,,(Y), then X is homeomorphic to Y,
see Illanes (2003, p. 179-188).
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(e) If X € ® and n € N, then X has unique hyperspace F,(X), see Castafieda and Illanes (2006, p. 1434-1450).
A dendrite is a locally connected continuum without simple closed curves.

Let
® = {X : X is a dendrite whose set of end points is closed}.

(f) If X € © which is not an arc, then X has unique hyperspace C(X), see Herrera-Carrasco (2007, p. 795-
805). Moreover, if X is a dendrite and X ¢ ©, then X does not have unique hyperspace C(X), see Acosta and
Herrera-Carrasco (2009, p. 451-467).

(g) If X € O, then X has unique hyperspace C»(X), see Illanes (2009, p. 77-96).

(h) If X € ©, then X has unique hyperspace C,(X) for each n € N — {1, 2}, see Herrera-Carrasco and Macias-
Romero (2008, p. 321-337).

(1) If X € ® and n € N — {2}, then X has unique hyperspace F,(X), see Acosta, Herndndez-Gutiérrez and
Martinez-de-la-Vega (2009, p. 195-210) and Herrera-Carrasco, de J. Lopez and Macias-Romero (2009, p. 175-
190).

Let
O = {X : X is a dendrite whose set of ordinary points is open}.

Notice that © & O, see Herrera-Carrasco, de J. Lopez and Macias-Romero (2009, Corollary 2.4).
(j) If X € O, then X has unique hyperspace F»(X), see Illanes (2002(1), p. 75-96).

A local dendrite is a continuum such that every of its points has a neighborhood which is a dendrite. Let
£ ={X : X is alocal dendrite},
and let
£9 ={X € £ each point of X has a neighborhood which is in D}.

(k) If X € £9 is different from an arc and a simple closed curve, then X has unique hyperspace C(X), see
Acosta, Herrera-Carrasco and Macias-Romero (2010, p. 2069-2085).

DIfX e £9,n,m e N-{1,2}, Y is a continuum and C,(X) is homeomorphic to C,,(Y), then X is homeomorphic
to Y, see Herrera-Carrasco and Macias-Romero (2011, p. 244-251).

Given a continuum X, let
G(X) = {p € X : p has aneighborhood T in X such that T is finite graph}.
Let
AM = {X : X is a continuum and G(X) is dense in X},
and let

M ={X € AM : X has a basis of neighborhood g such that for each element U € 8, U N G(X) is connected}.

Notice that 8,0, £ c M, see Hernandez Gutiérrez, Illanes and Martinez-de-la-Vega (in press).

(m) If X € M and n € N—{1}, then X has unique hyperspace C,(X). If X € M and X is neither an arc or a simple
closed curve, then X has unique hyperspace C(X), see Gutiérrez et al. (in press).

The main purpose of this paper is to prove the following result.

(n) If X is a Peano continuum such that X € AM and n € N — {2, 3}, then X has unique hyperspace F,(X), see
Theorem 4.3.

The result (n) generalize (e) and (i), in the case n € N — {2, 3}, see Corollary 4.4.

This is a partial positive answer to the following problem, see Acosta et al. (2009, Question 1.1), which remains
open.

Question 1 Let X be a dendrite and n € N — {1}. Does X have unique hyperspace F,,(X)?
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2. General Notions and Facts

All spaces considered in this paper are assumed to be metric. For a space X, a point x € X and a positive number
€, we denote by By(x, €) the open ball in X centered at x and having radius €. If A is a subset of the space X, we
use the symbols clx(A) and intx(A), to denote the closure and the interior of A in X, respectively. We denote the
cardinality of A by |A| and the set of the positive integers by N. In fact, all concepts not defined here will be taken
as in (Nadler, 1978).

If X is a continuum, Uy, U,,...,U,, € X and n € N we define

U, Us, .Uy = {A eF,(X):AcC U U;and AN U; # 0, for each i}.

i=1

It is known that the sets of the form (U, Us, ..., U,),, where Uy, Us, ..., U, are open subsets of X, form a basis
of the topology of F,(X), i.e., a basis for the topology induced by the Hausdorff metric on F,(X), see Illanes and
Nadler (1999, Theorem 1.2 and Theorem 3.1).

If n € N, then an n-cell is a space homeomorphic to the Cartesian product [0, 1]", where [0, 1] is the unit interval
in the real line R.

The following result was proved in Acosta et al. (2009, Theorem 2.1).

Theorem 2.1 Let X be a continuum and n € N. Given i € {1,2,...,n}, let J; be an arc in X with end points a;
and b;. If the sets Ji, Js, ..., J, are pairwise disjoint, then {J1, Ja, ..., ), is an n—cell in F,(X) whose manifold
interior is the set {J; —{ai, b1}, J» —{ar, by}, ..., J, — {au, by})n.

For a continuum X and a point p € X, we denote by ord(p, X) the order of p in X, see Nadler (1992, Definition 9.3).
We say that p is an end point of X if ord(p, X) = 1. The set of all such points is denoted by E(X). If ord(p, X) = 2,
we say that p is an ordinary point of X. The set of all such points is denoted by O(X). If ord(p, X) > 3, we say that
p is an ramification point of X. The set of all such points is denoted by R(X). Clearly, X = E(X) U O(X) U R(X).

A free arc is an arc J ¢ X with end points p and ¢ such that J — {p, g} is open in X. A maximal free arc is a free
arc in X which is maximal respect to inclusion. A free circle S in a continuum X is a simple closed curve S in X
such that there is p € S such that S — {p} is open in X.

Given a continuum X and n € N, we consider the following sets.

G(X) = {p € X : p has a neighborhood 7 in X such that T is finite graph},

P(X) = X - G(X),
and

&E,(X) ={A € F,(X) : A has a neighborhood in F,,(X) which is an n — cell}.

We recall that a continuum X is said to be almost meshed provided that the set G(X) is dense in X, i. e., X € AM;
and X is meshed if X € M.

Also given a continuum X, let
Us(X) ={J c X : Jis amaximal free arc in X or J is a free circle in X},

and
FAX) = | Jlinix(J) : J € Us (X)),
The following two results appear in Herndndez et al. (in press).

Lemma 2.2 Let X be a continuum. Then clx(G(X)) = clx(F AX)). Thus, X is almost meshed if and only if 7 A(X)
is dense in X.

Lemma 2.3 Let X be a Peano continuum and let J be a free arc. Then there exists K € Us(X) such that J C K.
Theorem 2.4 If X is a Peano continuum, then ¥ A(X) = X — (P(X) U R(X)).
Proof. Suppose that x € ¥ A(X). Then there exists J € Ug(X) such that x € intx(J). Then x € X — (P(X) U R(X)).
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Assume that x € X — (P(X) U R(X)). Then there exists a finite graph 7 in X such that x € intx(T). Moreover, since
x ¢ R(X), there exists a free arc I of X such that x € intx(I). By Lemma 2.3, there exists K € Us(X) such that
I C K. Hence, x € intx(K) and so x € ¥ A(X). This completes the proof of the theorem.

For finish this section we prove the following result.

Theorem 2.5 Let X be a Peano continuum and let n € N. If A € F,(X) and U is a neighborhood of A in F,(X),
then there exists a finite collection Vi, Va, ..., Via| of pairwise disjoint open and connected subsets of X such that
A€V, Va,..., Vi C intr, oo ().

Proof. We assume that |A| = m and let A = {x1, x2,..., x,,}. Since X is Hausdorff, there exists a finite collection
Ci,Cy,...,C, of pairwise disjoint open subsets of X such that x; € C;, for each i € {1,2,...,m}. Moreover, since
A € intp,x)(U), there exists a finite collection Uy, Us, ..., U; of pairwise disjoint open subsets of X such that
Ae(U,Us,...,Up, Cintp,x)(U). Foreachi € {1,2,...,m},let V;=C;n[N{U; : je{l,2,...,l}and x; € U;}].
Notice that Vi, V,,...,V,, is a finite collection of pairwise disjoint open subsets of X and A € (V|, Va,..., V), C
(Uy,U,,...,Up),. Since X is a Peano continuum, we can assume that V; is a connected subset of X, for each
ie{l,2,...,m}. This completes the proof of the theorem.

3. The Set &,(X)

In this section we prove some properties of &, (X).

Theorem 3.1 For a Peano continuum X the following are equivalent.
(a) X is almost meshed,
(b) for each n € N, the set &,(X) is dense in F,(X),
(c¢) each open subset of X nonempty contains a free arc of X.

Proof. Suppose that X is almost meshed, we will prove (b). Let A € F,(X) and let U be an open subset of F,(X)
such that A € U. Assume that |A| = m and let A = {x1, x2, ..., X,;}. By Theorem 2.5, there exists a finite collection
Uy, U,,...,U, of pairwise disjoint open and connected subsets of X such that x; € U; for each i € {1,2,...,m},
and A € (U, U,,...,Uy), € U. By Lemma 2.2, we obtain that # A(X) is dense in X and so U; N FAX) # 0
foreachi € {1,2,...,m}. Lety; € U; N FAX), for each i € {2,3,...,m}. We take n + 1 — m pairwise different
POINtS Vii1s Vims2s - « - s Y1 10 Uy N FAX). Let Viyrt, Vinsa, - - ., Ve be open subsets of X pairwise disjoint such
that Y1 € Viurt, Yms2 € Vipsas o o3 Vet € Vir and Vit Vipso, -, Vi € Uy N FAX).

For each j € {2,3,...,m}, let W; = Uj; and foreach j € {m +1,m +2,...,n+ 1}, let W; = V;. For each
Jj € {2,3,...,n + 1}, there is I; a free arc of X such that y; € inty(/;). For each j € {2,3,...,n + 1} there
exists an arc L; such that y; € inty(L;) C L; C I; " W;. Let B = {y2,y3,...,yn+1}. Notice that |[B| = n and
B € (intx(Lp), intx(L3),...,intx(L,+1)),. By Theorem 2.1, the set (L, L3, ..., Ly:1), is an n—cell. Therefore,
B € &,(X) N U. We Conclude that &,(X) is dense in F,(X).

By Acosta et al. (2009, Theorem 4.9), we obtain (b) implies (c).

Suppose that each open subset of X nonempty contains a free arc of X. We will see that clx(G(X)) = X. Let x € X
and let U be an open subset of X such that x € U. Then there exists a free arc / of X such that / ¢ U. Let
y € I — E(I). Since I — E(I) is open subset of X, we have that y € intx(I). Thus, y € G(X) and so U N G(X) # 0.
Therefore, clx(G(X)) = X, this implies that, X is almost meshed.

Theorem 3.2 The class of Peano continua X such that E,(X) is dense in F,(X) (n € N) contains the class of local
dendrites whose set of ordinary points is open.

Proof. The proof of this theorem is similar to the proof of (a) implies (b) in Theorem 3.1.

Given a continuum X and n € N, let
P,(X)={Ae F,(X): AN P(X) + 0},
R,(X)={A € F,(X): ANRX) # 0},

and
Ay(X) = Fp(X) — (Pp(X) U Ry(X)).

Notice that A € A,(X) if and only if [A] < nand A C [E(X) U O(X)] — P(X), moreover, if A ¢ P,(X), then there
exists a finite graph 7" in X such that A C intx(T).
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Theorem 3.3 Let X be a Peano continuum such that &,(X) is dense in F,(X), wheren € N. If A € F,(X) and U is
a neighborhood of A in F,(X), then for each k € N with |A| < k < n, there exists C C O(X) — P(X) such that |C| = k
and C € l'nlpn(x)((L{). Thus, Clpn(x)({A Cc OX)— P(X) : |A| £ n}) = F,(X).

Proof. Let |A| = m. Since U is a neighborhood of A in F,(X), by Theorem 2.5, there exists a finite collection
Vi, Va, ..., V, of pairwise disjoint open subsets of X such that A € (V,V,,..., V), C intp,x)(U). By Theorem
3.1, for each i € {1,2,...,m} there exists a free arc I; of X such that /; ¢ V;. Foreachi € {1,2,...,m}, we take
o; € (I,—E(I;))NO(X). Let C; = {01, 02,...,0,}. Since U, are pairwise disjoint, the points o; are pairwise different.
So, |Ci| = m. If m < k, we take k — m different points of (I} — E(I;)) N O(X). Let C = C; U {041, Om+25 - - - s Ok}
Hence, |C| = k. Notice that C € (V1,V,,...,Via), and so, C € intr,(x)(U). Notice that, C C O(X). Moreover,
since o; € I; — E(I;), we conclude that o; € intx(I;) and so, C N P(X) = (.

Corollary 3.4 Let X be a Peano continuum such that &,(X) is dense in F,(X), where n € N. Then
F1(X) = clp,x)(F1(X) N Ay(X)).

Proof. Suppose that {p} € F'{(X). By Theorem 3.3, there exists a sequence {A};2 | € O(X)— P(X) such that {A;};7
converges to {p} and |A¢| = 1, for each k € N. Notice that Ay € F(X)NA,(X), and so {p} € clr,x)(F1(X) N A (X)).
Thus, F1(X) C clp,x)(F1(X) N Ay(X)). Since the other inclusion also holds, we have that F(X) = clg,x)(F1(X) N
An(X)).

The following result generalize (Castafieda & Illanes, 2006, Lemma 4.3) for Peano continua such that &,(X) is
dense in F,(X).

Theorem 3.5 Let X be a Peano continuum such that E,(X) is dense in F,(X), wheren € N—{2,3}. If A € F,_1(X),
then no neighborhood of A in F,(X) can be embedded in R".

Proof. We show first that
(Hif C € F,-1(X) — P,(X), then no neighborhood of C in F,(X) can be embedded in R".

To show (1), let C € F,_1(X) — P,(X) and assume that there is a neighborhood V of C in F,(X) that can be
embedded in R". Thus, there is a finite graph 7 in X such that C C intx(T). Then V N F,(T) is a neighborhood
of C in F,(T) that can be embedded in R”, this contradicts (Castafieda & Illanes, 2006, Lemma 4.3). So, claim (/)
holds.

To show the theorem let A € F,_;(X). Assume that there is a neighborhood U of A in F,(X) that can be embedded
in R". By Theorem 3.3, there is C € O(X) — P(X) such that |[C| = |A| and C € intr,x)(U). Hence, C €
F,-1(X) — P,(X). Then, by (1), no neighborhood of C in F,(X) that can be embedded in R”. However, since
C € intp,x)(U), the set YU is a neighborhood of C in F,(X) that can be embedded in R". This contradiction
completes the proof of the theorem.

A simple triod is a continuum G that can be written as the union of three arcs 7, I, and I3 such that [y NI, N1 = {p},
p is an end point of each arc ; and (I; — {p}) N (I; — {p}) = 0, if i # j. The point p is called the core of G.

Given a continuum X, let
T(X) ={p € X : pis the core of a simple triod in X}.

Theorem 3.6 Let X be a Peano continuum and let n € N. If A € E,(X), then A N clx(T(X)) = 0.

Proof. Let |A] = mand let A = {x|, x2, ..., x,}. We see that A N clx(T'(X)) = 0. Assume the contrary and assume
that x; € A N clx(T(X)). Then there is a sequence {r;};7, C T(X) that converges to x;. By (Castafieda & Illanes,
2006, Lemma 3.1), notice that r;, ¢ A, for each k € N. Since A € &,(X), there is a neighborhood V of A in F,(X)
such that V is an n—cell. By Theorem 2.5, there is a finite collection Uy, Us, . .., U, of open subsets of X such that
x; € U, foreachi € {1,2,...,m}and A € (U1, Ua, ..., Uy), C intp,x)(V). Since x; € U, there is N € N such that
ifk>N,thenr, e Ui.If m=n,let B=(A—{x,}) U{ry}andif m < n, let B= A U {ry}. In both cases notice that
B € &,(X) and BN T(X) # 0, this contradicts (Castaneda & Illanes, 2006, Lemma 3.1). Thus, A N clx(T' (X)) = 0.

Theorem 3.7 Let X be a Peano continuum. If p € P(X) N [E(X) U O(X)], then there is a sequence in R(X) — {p} of
pairwise different points that converges to p.

Proof. Let p € P(X) N [E(X) U O(X)] and let d be a metric of X. By (Nadler, 1992, Theorem 9.10), for ¢, = 1,
there is 1 € R(X) such that r; € Bx(p, €1). Notice that r; # p. Let & = min{d(p, 1), %}, again by Nadler (1992,
Theorem 9.10), there is r, € R(X) such that r, € Bx(p, €). Notice that r, # r;. Let &5 = min{d(p, r1), d(p, r2), %},
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again by Nadler (1992, Theorem 9.10), there is r3 € R(X) such that r; € Bx(p, €3). Notice that r3 # r, and r3 # ry.
Proceeding of this form, we obtain a sequence {r;};”, in R(X) — {p} of pairwise different points such that converges
to p. This completes the proof of the theorem.

The following result generalize (Acosta et al., 2009, Theorem 4.5) for Peano continua such that &,(X) is dense in
F.(X).

Theorem 3.8 Let X be a Peano continuum such that E,(X) is dense in F,(X), where n € N. Then
(a) E(X) C Ap(X);
(b) ifn e N—{2,3}, then E,(X) = Ay(X) — Frim1 (X).

Proof. For showing (a) let A € &,(X). By Theorem 3.6, AN clx(T(X)) = 0. Since R(X) C T'(X) (Kuratowski, 1968,
Theorem 8, p. 277), we obtain that ANR(X) = 0. We see that AN P(X) = 0. Suppose the contrary, let p € AN P(X).
Notice that p ¢ R(X). By Theorem 3.7, there is a sequence {r¢};2, in R(X) — {p} of pairwise different points that
converges to p. This implies that {r};7, is contained in 7'(X) and so p € clx(T(X)), this is a contradiction. Thus,
AN P(X) = 0. We conclude that A € A,,(X). This show (a).

For show (b), we show first that ,(X) ¢ A,(X) — F,,-1(X). Let A € E,(X). By (a), we have that A € A, (X). Let U
be a neighborhood of A in F,(X) such that U is an n—cell. Thus, U can be embedded in R”, and so by Theorem
3.5,A ¢ F,_{(X). Thus, E,(X) € A, (X) — F,_1(X).

We see that A,(X) — F,-1(X) € E,(X). Let A € Ay(X) — F,-1(X). Thus, |A] = n and so we can put A =
{x1,x2,...,x,}. Since A € A, (X), we obtain that A C (O(X) U E(X)) — P(X). Let x; € A. Since x; ¢ P(X), we have
that x; € G(X). Hence, there is a finite graph G; C X such that x; € intx(G;). Moreover, since A C O(X) U E(X),
there is an arc J; in G; such that x; € intyx(J;). Without loss of generality, suppose that the arcs J; are pairwise
disjoint. By Theorem 2.1, we have that (J;, J>,...,J,), 1s a neighborhood of A in F,(X) which is an n—cell.
Hence, A € &,(X). This completes the proof of the theorem.

Theorem 3.9 Let X be a Peano continuum such that X is neither an arc or a simple closed curve and let n € N.
Then the components of A, (X) are the nonempty sets of the form:

(intx(1)), intx(I»), ..., intx(L,;)),, where m < n,

the sets intx(I), intx(>), ..., intx(I,,) are pairwise disjoints and I; € Us(X) for each j € {1,2,...,m}

Proof. Let I,1,,...,1, € Us(X) such that intx(ly), intx(l»),...,intx(l,) are pairwise disjoint. Notice that
intx(ly), intx(ly), ..., intx(Il,) are open and connected subsets of X. By Martinez-Montejano (2002, Lemma 1), we
have that (intx(Iy), intx(l»), ..., intx(I,)),, is an open connected subset of F,(X). Notice that if {/, l>,...,[,,} #
{J1,J2, ..., .}, then (intx(Iy), intx(l), ..., intx(I1,)), N {intx(Jy), intx(J2),...,intx(J ), = 0 By Theorem 2.4,
X—(P(X)UR(X)) = U{intx(I) : I € Us(X)}, and so the union of all sets of the form (intx (1), intx(l), ..., intx(L;)),
is equal to A, (X). This completes the proof of the theorem.

The following result generalize (Herrera-Carrasco, de J. Lépez, & Macias-Romero, 2009, Theorem 2.9) for Peano
continua such that &,(X) is dense in F,,(X).

Theorem 3.10 Let X be a Peano continuum such that &,(X) is dense in F,(X), where n € N. If A € P,(X), then for
every basis 8 of open sets of A in F,(X) and each V € B, the set 'V N &E,(X) has infinitely many components.

Proof. Let A € P,(X) and let 8 be a basis of open sets of A in F,(X). Assume that |[A] = m and let A =
{x1, x2, ..., %}, where x; € P(X). Let Uy, U,,...,U, be a finite collection of pairwise disjoint open and con-
nected subsets of X such that x; € U;, for each i € {1,2,...,m}. We take V € B such that V c (U, U, ..., U
and a finite collection Vi, V5, ..., V,, of pairwise disjoint open and connected subsets of X such that x; € V; c U,,
foreachie{1,2,...,m},and (V{,V>,...,V,), C V.
We consider the following cases:

(1) Let x; € P(X) N[E(X)U O(X)]. By Theorem 3.7, there is a sequence {r};_, in R(X) —{x;} of different points
that converges to x;. Let Ly, Ly, ..., Ly, ... be pairwise disjoint open and connected subsets of X such that 7, € Ly,
diam(Ly) < % foreach k € Nand Ly N L; = 0, if k # j. Thus, we can assume that L, C V; for each k € N. By

Lemma 2.2, there is J; € Us(X) such that intx(Jy) N Ly # 0. For each k € N let T}, = intx(Jy) N U,. Again, by
Lemma 2.2, for each i € {2,3,...,m} there is I; € Us(X) such that intx(I;) N V; # 0. For each i € {2,3,...,m}, let
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H; = inty,(I; N U;). For every k € N, let
Wi=<(Hy,H3,...,Hy, Ty, Tir1s - - s Tiinomon-

Notice that ‘W is connected. By Theorem 2.1, we obtain that ‘W, c (U, Ua,..., Uy, N E(X). Let C be the
component of A, (X) such that ‘W, c C. By Theorem 3.9, we have that C N ((U;, Uz, ..., Up)n N E(X)) = Wy
Thus, ‘W is a component of (U1, . .., Uy, N E,(X). Notice that W, NV # 0, for each k € N. Since W, NW; =0
if k # [, the set V N &,(X) has infinitely many components. This completes the case (1).

(2) Let x; € P(X) N R(X). We consider the following subcases:

(2a) There is a sequence {ri};2, € R(X) — {x1} that converges to x;.
This case is similar to case (1).

(2b) There is not a sequence {ry};”, C R(X) — {x{} that converges to x;.
We consider the following subcases:

(i) There is a sequence {e;},; C E(X) — {x;} that converges to x;.

(ii) There is not a sequence {ex};”; C E(X) — {x} that converges to x;.

In both cases, (i) and (ii), from the proof of Nadler (1992, Lemma 9.11), there is a space L homeomorphic to F,

(where F,, is the dendrite with only one ramification point whose order is w) such that x; is the core of L. Let

L = U[x1,e]. Since there is not a sequence {r};2; € R(X) — {x;} that converges to x1, we can assume that [x1, ¢;]
ieN

is a free arc of X contained in V, for each i € N. For every k € N, let

Wi =(Hy, Hs,...,Hy, [x1,e] — {x1, ex}, [x1, exet] = {x1, exer}s - -5 (X1, €ppnem] — (X1, €t} ns
where H,, Hs, ..., H,, are as in the case (1). Proceeding as in the case (1), we have that V N &,(X) has infinitely
many components.
4. The Main Result

We are ready to prove that a Peano continuum X such that &,(X) is dense in F,(X) has unique hyperspace F,(X),
for each n € N — {2, 3}, but first we present two results needed that use the following set.

Given a continuum X, let
I(X) ={A € F,(X) — E,(X) : A has a basis 8 of open sets of F,(X) such that for each V € g,

the set V N &,(X) is arcwise connected.

Theorem 4.1 Let X and Y be continua and letn € N. If h : F,(X) — F,(Y) is a homeomorphism, then h(I',(X)) =
L(Y) and h(Ex(X)) = En(Y).

The following result is the generalization of (Herrera-Carrasco, de J. Lopez, & Macias-Romero, 2009, Theorem
2.10) for Peano continua such that &,(X) is dense in F,(X).

Theorem 4.2 Let X be a Peano continuum such that &,(X) is dense in F,(X), where n € N — {2, 3}. Then
(X)) = F1(X) N Ap(X).

Proof. We show first that I',,(X) ¢ F(X) N A,(X). Let A € I',(X) and let 8 be a basis of open sets of F,,(X) such
that for each V € g, the set V N &,(X) is arcwise connected. By Theorem 3.10, A ¢ P,(X). Thus, there is a finite
graph T in X such that A C intx(T). Since A € (intx(T)),, we can assume that all the members of 3 are subsets
of F,,(T) and so open subsets of F,,(T). Moreover, for each V € g, we have that VN &,(T) = V N E,(X), and so
VN E,(T) is also arcwise connected. By Castafieda and Illanes (2006, Lemma 4.5), A € F((T) — R,(T). Thus,
A€ Fi(X) - R,(X) and so, A € F1(X) N A, (X). We conclude that I',,(X) c F{(X) N A,(X).

To show F;(X) N Ay(X) c I,(X) let A € Fi(X) N A,(X). By Theorem 3.8 (b), we obtain that A ¢ &,(X). Since
A ¢ P,(X), there is a finite graph T in X such that A C intx(T'), we can assume that 7 N P(X) = (. Notice that
A € F|(T) - R,(T), and so by (Castaiieda & Illanes, 2006, Lemma 4.5), there is a basis 3 of open subsets of F,(T)
such that for each V € g, the set V N &,(T) is arcwise connected. Since A C intx(T) we can assume that all the
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members of B are contained in F,(intx(T)) = (intx(T)),. Since (intx(T)), is an open set in F,(X), then 3 is also
a basis of open sets of A in F,,(X). For each V € B, we have that V N &,(X) = V N &E,(T) so this intersection is
arcwise connected. This completes the proof of the theorem.

We are ready to give the main result.

Theorem 4.3 Let X be a Peano continuum such that &,(X) is dense in F,(X), where n € N —{2,3}. If Y is a
continuum such that F,(X) is homeomorphic to F,(Y), then X and Y are homeomorphic.

Proof. Let h : F,(X) — F,(Y) be a homeomorphism. Since X is a Peano continuum, by Charatonik and Illanes
(2006, Theorem 6.3) we obtain that Y is also a Peano continuum. By Theorem 4.1, we have that h(&E,(X)) = &,(Y)
and so &,(Y) is dense in F,(Y). Again, by Theorem 4.1, we obtain that h(I',,(X)) = I',(Y) and so by Theorem 4.2,
it follows that A(F(X) N A,(X)) = F1(Y) N A,(Y). Thus, h(clp,x)(F1(X) N Ay(X))) = clp,m(F1(Y) N A, (Y)). By
Corollary 3.4, we obtain that A(F (X)) = F(Y). We conclude that X is homeomorphic to Y.

Using Hernandez et al. (in press), Theorem 3.1, Theorem 3.2 and Theorem 4.3, we have the following result.

Corollary 4.4 [fn € N — (2,3} and X is a Peano continuum almost meshed, then X has unique hyperspace F,(X).
In particular, if X is a continuum that belongs to some of the following classes:

(a) meshed (remember &,9, £D c M);

(b) local dendrites whose set of ordinary points is open,
then X has unique hyperspace F,(X), too.
We conclude this paper with the following three problems.

Question 4.5 Let X be an dendrite such that §,(X) is not dense in F,,(X) and let n € N — {1}. Does X have unique
hyperspace F,(X)?

Question 4.6 Let X be a Peano continuum such that &,(X) is dense in F,(X) and let n € {2, 3}. Does X have unique
hyperspace F,(X)?

Question 4.7 Does there exists a continuum X (not Peano continuum) such that &,(X) is dense in F,(X), but X is
not almost meshed, for some n € N?
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