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Abstract

In this paper we study the structure and properties of complex infinite supersymmetric hypermatrices generated by a

semisimple basis, exponential sets of hypermatrices, hypermatrix Lie algebra and elements of the group of complex

matrices of order two and determinant one. We study the hypermatrix Lie algebra generated by the polygons on

analytic torus of genus g. By using new algebraic tools, namely cubic hypermatrices we study the algebraic

structures associated with the hypermatrices of certain Lie algebras e.g. {sl2; f ,∞}; {sl2;∞,∞} and {S L2; f ,∞};
{S L2;∞,∞} and we construct generators of infinite periodic hypermatrix Lie algebraic structures which have

classical Lie algebra decomposition; specifically a set of Lie algebras composed of hypermatrices. We study

the exponential of a complex analytic Lie algebra, rotations of hypermatrices, and relations between hypermatrix

groups, hypermatrix Lie Algebra, Fourier hypermatrices and the Laurent hypermatrix. Finally, as an application

we will show that there is an isomorphism of the hypermatrix Lie algebra associated with a set of polygons on the

torus of genus g and analytic functions associated with a countable set of solutions of a meromorphic function on

the torus. In conclusion we will present a Riemann type isomorphism theorem for hypermatrices on a torus and the

convoluted complex plane, generated by holomorphic functions, based on the equivalent relations of the geometry

and the algebra of the torus of dimension three and genus g.

Keywords: basis, convoluted, generator, global trace, Hermitian, hypermatrices, holomorphic, Kojima conditions,

meromorphic, normal hypermatrix, semisimplicity, skew-symmetry, supersymmetry, torus, trace, triangular, uni-

tary

1. Introduction

In this paper we will investigate the algebraic structures associated with infinite hypermatrices and infinite hyper-

matrix Lie algebra. Hypermatrices were defined in Schreiber (2012a). The paper is based on classical definitions

in matrix theory, infinite matrix theory such as described in Cooke (1955), classical Lie algebra see (Humphreys,

1972; Jacobson, 1962; Serre, 1987; Bourbaki, 1980) and previous work we have done on hypermatrices (Schreiber,

2012a; 2012b). As application we will study the relations between the field of values associated with a divisor on

the torus and its geometry and we will show that there is an isomorphism of hypermatrix Lie algebras structured

holomorphically as a set of divisors on the torus and the set of polygons associated with certain convoluted ana-

lytic functions represented algebraically on the torus and on a convoluted complex plane (see also Griffith & Harris,

1978).

Definition 1 Lie Algebra of Hypermatrices (Schreiber, 2012a). Consider the space {W} over a field F, with an

operation WW ∈ W∗. Note that W∗ is the first extension, e.g., if Wi, j is a two sheet hypermatrix W∗ is a 4-sheet

hypermatrix.

Denote by (Wi,Wj) the hypermatrix Lie bracket over F; the set {W∗} constitutes a Lie hypermatrix algebra if the

following conditions are satisfied:

A) WW ∈ W∗ where (Wsi,Ws j) ∈ W∗, Wsi a component sheet of W∗k, i.e., (W,W) ∈ {×,+,−,W∗} ∈ Linear{W∗} - a

linear combination in W∗i sheets.

B) 1) the bracket operation is bilinear.

2) (W,W) = 0∗ for all W ∈ {W}.
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C) (Wi, (Wj,Wk)) + (Wj, (Wk,Wi)) + (Wk, (Wi,Wj)) = 0∗∗, ∀Wi,Wj,Wk ∈ {W}. ∗∗ - is the second extension under

hypermatrix multiplication.

The hypermatrix algebra has to be closed in terms of its components, and with respect to the field operations, in

the sense that the component sheets {WsiW} are well defined in the extended space. In short it follows from the

definition that in the extended open space the hypermatrix Lie algebra is characterized by the following relations

〈{Wg}; w × w ∈ w∗; (wi,wj) + (wj,wi) = 0∗; (wi, (wj,wk)) + (wj, (wk,wi)) + (wk, (wi,wj)) = 0∗∗}〉. Using the bracket

operation {W × W ∈ W∗}. 〈{W},×〉 with a multiplicative operation of hypermatrices we define the hypermatrix

group (see Schreiber, 2012b and the extended open algebra).

Definition 2 A semi infinite matrix sheet is a matrix that has a beginning and no end. There are three types of

infinite hypermatrices that have semi-infinite sheets or hypermatrix structures.

a) The hypermatrix sheets/sub-hypermatrices are infinite, W∞, f , Wf ,∞ (e.g., the number of rows/columns is finite

and each has infinite length; there are several sub-cases of this class and it is possible to do elementary operations

with these sheets algebraically if the sequences converge under matrix multiplications).

b) The number of sheets/sub-hypermatrices is infinite Wf ,∞;∞ the sheets/sub-hypermatricess are finite Wf ,∞; f .

c) The number of sheets and size of (rows and columns) sheets is infinite W∞,∞;∞.

The other possibilities include Laurent type hypermatrices with matrix sheets that have no row or column beginning

or end, they will be considered later.

1.1 The Invertibility of Infinite Matrices

Kojima Conditions

For a given matrix Mf ,∞, M∞, f or M∞,∞ with components ai, j the necessary and sufficient conditions for transform-

ing every convergent sequence Φ′. Φ′ = Σ∞j=1ai jφi to another sequence Φ′′ = Σ∞j=1ai jφ
′
i is that

a) Σ∞j=1|αi j| ≤ R for all i > i1.

b) limi→∞ai j = α j for fixed j.

c) Σ∞j=1|αi j| ≤ Mn → α as i→ ∞.

A special semi infinite example given by the lower triangular Toeplitz matrix Tαi, j, αi j = 1/n, 1 ≤ j ≤ i,= 0, j > i.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 . . .
1/2 1/2 0 0 0 . . .
1/3 1/3 1/3 0 0 . . .
1/4 1/4 1/4 1/4 0 . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Definition 3 Let T be an (n× n) matrix (with possible n→ ∞) then Tαi, j is a Toeplitz matrix, if for all i, j between

1 and n, αi j = 1/n, 1 ≤ j ≤ i,= 0, j > i.

In general a Toeplitz matrix has descending diagonal from left to right and it is constant along the diagonals.

Theorem 1 If W∞, f ; f is a lower triangular hypermatrix whose sheets have infinite dimension (each sheet is in-
vertible and it satisfies Kojima conditions, see Cooke, 1955), then ∃ a unique right hand hypermatrix W−1

f ,∞ which
is lower triangular such that ∀Wi ∈ {W} if DW = 0 and for all sheets S i of W we have DWsi � 0,∀i, D-the
determinant of W (Schreiber, 2012b), then W−1 the inverse element of.

Proof. If W is finite then there is a matrix W−1 such that WW−1 = I∗ (see Schreiber, 2012a) and we note that

in the finite case W−1 is lower triangular when W is lower triangular. In the infinite case W−1 is lower triangular

because the sequences must converge (by Kojima conditions). As in the finite case also in the infinite case DW = 0

is a necessary condition and another condition is that all the sheets be equal for W to be invertible, but it is not a

sufficient condition (Schreiber, 2012a). For each sheet of W it is necessary by the Kojima convergent conditions

and the finite conditions for invertibility (defined in Schreiber, 2012a) that DWs must not vanish for the product of

sub sheets in WW−1 to result in an identity hypermatrix. If W−1 is finite unique and WW−1W is pair-wise associative

then W−1 is a left inverse. In general the set {W∞,∞} is not associative, but an invertible set of hypermatrices is
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associative, e.g., a set of lower triangular hypermatrics {W∞, f ; f }, or upper triangular hypermatrics without loss of

generality. In short, we have the following

Theorem 2 If W∞, f ; f is an invertible lower triangular hypermatrix satisfying the Kojima conditions there exists an
invertible hypermatrix W−1 such that WW−1 = W−1W = I∗.

Notation: If the number of sheets in W is infinite and the sheets in W are infinite (rows and columns) the resulting

product of sheets in {WW−1} has an infinite sheet structure Wf ,∞;∞, W∞, f ;∞, or W∞,∞;∞ hypermatrix.

Theorem 3 If Wf ,∞;∞ or W∞, f ;∞ is an invertible lower triangular hypermatrix (an infinite cubic hypermatrix, and

we may replace lower triangular by upper triangular without loss of generality) satisfying the Kojima conditions,

there exists an invertible hypermatrix W−1 such that WW−1 = W−1W ≈ I∗∞,∞.

Proof. If we add to Kojima conditions the following hypermatrix conditions Kojima conditions plus hypermatrix

conditions, K+.

For a given hypermatrix the matrix sheet M∞,∞ with components ai, j a necessary and sufficient conditions for

transforming every convergent sequence Φ′ Φ′ = Σ∞j=1ai jφi to another sequence Φ′′ = Σ∞j=1ai jφ
′
i is that

a) Σ∞j=1|αi j| ≤ R for all i > i1.

b) limi→∞ai j = α j for fixed j.

c) Σ∞j=1|αi j| ≤ Mn → α as i→ ∞.

d) Σ∞j=1|Mi j||Mkl| → M, as i, k → ∞, ∀M sheets ∈W∞,∞.

and require conditions K+ for sequences in products and the conditions of theorems one and two above for the

invertibility then the theorem follows. Effectively, we add the product conditions for all sub matrices and require

convergence under matrix multiplication.

2. General Infinite Hypermatrices

A finite unitary matrix is a (square) Un×n, or possibly a rectangular Un×m complex matrix or U∗m×n matrix satisfying

the condition U∗U = UU∗ = I, where In×m is the identity matrix in n × m dimensions, where U∗ is the conjugate

transpose of U. Note this condition implies that a matrix U is unitary if and only if it has an inverse which is

equal to its conjugate transpose U∗, U−1 = U∗. For infinite hypermatrices we need to adjust the unitary sheets to

dimensions n ×∞ or m ×∞; thus an inverse element exists if the product of sequenced sheets in U∗U converges.

Definition 5 A hypermatrix composed of sheets which are all lower or upper triangular matrices is said to be a

triangular hypermatrix.

Definition 6 The global trace of a hypermatrix W is the sum of the elements along the main diagonals of all the

Wsi sheets of W, gtr(W) = n
i=1

trWsi.

Definition 7 The hypermatrix W is said to be a Hermitian hypermatrix if Wh = W. Here h is the transposed

complex conjugate operation of matrix theory (I use the notation h instead of the usual notation of ∗ because ∗ is

reserved here for the multiplicative extension of hypermatrices).

Definition 8 A hypermatrix W is said to be normal if WhW = WWh.

If for a set of hypermatrices over the complex numbers {W} ∈ C, C the complex field, Wh = W for all W then

trivially all the Hermitian hypermatrices are normal. By right multiplication we obtain WhW = WWh.

We may distinguish among two kinds of Hermitian hypermatrices: a) supersymetric - all component matrix sheets

are identical, b) not all component sheet are identical.

Theorem 4 The hypermatrix W is normal if and only if all of its component matrix sheets are identical, and each
sheet WS i satisfies WS Wh

S = Wh
S WS .

Proof. By the definition of multiplication of hypermatrices (Schreiber, 2012a) a necessary and sufficient condition

for the existence of a conjugate hypermatrix relation is the equality of all its sub-matrix sheets; hence the necessary

requirement that WS Wh
S = Wh

S WS follows and it is sufficient for normality.

Theorem 5 All invertible hypermatrices are normal.

It follows from (Schreiber, 2012a) that all invertible hypermatrices are normal, because the sheets of the invertible

hypermatrix are identical and have non-zero determinant; to see that all normal non-trivial hypermatrices are
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invertible just reverse the arguments on normal hypermatrices needed to prove the above theorem.

We note that an invertible Hermitian hypermatrix is normal with WhW = WWh = WW = W∗. A non invertible

Hermitian hypermatrix has all his components sheet identical in WWh and WhW.

Definition 9 A hypermatrix is said to be skew Hermitian if Wh = −W. We note that WhW = −W2 = WWh,

therefore, the skew Hermitian hypermatrices are normal (see also skew symmetric hypermatrices in Schreiber,

2012a).

Definition 10 A hypermatrix is said to be unitary if Wh
UWU = WUWh

U = I∗. By the above work on normal

hypermatrices we have the next theorem.

Theorem 6 The hypermatrix Wu is unitary if and only if its component sheet matrices are unitary and identical.

Proof. We have seen above that a matrix U is unitary if and only if it has an inverse which is equal to its conjugate

transpose U∗, U−1 = U∗. For Wu to be unitary W−1
U WU = WUW−1

U = I∗ must hold, therefore all sheets in Wu must

be identical and unitary.

Theorem 7 If W is an invertible hypermatrix with distinct eigenvalues (for each sheet) then there exists a unitary

hypermatrix WU with all sheets identical such that Wh
UWWU = W∗∗D , WD-diagonal hypermatrix.

Proof. The unitary matrix that does it to one sheet of W will be the sheet component of Wu, the same Wu that

satisfies the above theorem.

Definition 11 The eigenvalues of W are the solutions of the determinant D(W −λ) = 0, D was defined in Schreiber

(2012b) . The solution for D(W − λ) = 0 are the alternating sum of main transversals +DW.

D(W − λ) = alternating sum of main transversals +DW = Signed sum of transversals +DW.

By Schur’s theorem (matrix theory) if A ∈ Mn, with n-eigenvalues λi, then there exist a unitary matrix U ∈ Mn,

such that UhAU = T , T a triangular matrix with λi strung along the main diagonal, in a prescribed order.

Definition 12 A hypermatrix which is made of triangular sheets, either all upper, or lower triangular sheets is said

to be strictly triangular hypermatrix.

2.1 Diagonal & Triangular Hypermatrices

A hypermatrix which is composed of lower triangular and upper triangular sheets is said to be of mixed type.

Any proper (non trivial) mixed type hypermatrix may be decomposed into a sum of hypermatrices as follows:

W = Wupper−triangular +Wlower−triangular +Wdiagonal.

Theorem 8 If W∞, f is a hypermatrix satisfying the Kojima conditions, and in it each pair of sheets commutes, then

there exist a pair of unitary Kojima infinite hypermatrices WU∞, f , and a infinite hypermatrix WU∞, f 

WU∗( f ,∞)W∞, f WU(∞, f ) = ΨT ( f , f ) (1)

Depending on the convergent conditions ΨT ( f , f ) is triangular hypermatrix, or a hypervector (1 × n, n − times).

Proof. For all matrices M ∈ W∞, f satisfying Kojima conditions ∃ a unitary matrix U 
 the hypermatrices structured

from the matrices satisfy WU∗f ,∞W∞, f WU∞, f = WT(∞, f ) provided the product exist and in WU∗f ,∞W∞, f WU(∞, f )

sheets are pair-wise associative (see also Schreiber, 2012b). If each pair of matrices in W commutes then they

can be simultaneously triangulated and for any two sheets k, l we can write WkWl = WlWk. Therefore, the global

trace gtr(WkWl) = gtr(WlWk) for any two sheets in W. By Schur theorem the existence of unitary US matrices

satisfying the triangulation of each pair is guaranteed. But in W all the commuting sheets are equal; therefore, by

Schur theorem the existence of unitary WU hypermatrices satisfying the triangulation conditions also follows.

Theorem 9 If W∞, f is an invertible hypermatrix satisfying the Kojima conditions, then there exist a unitary hyper-
matrix WU∞, f 


WUh
(∞, f )W∞, f WU(∞, f ) = ΨD( f , f ) (2)

Where ΨD( f , f ) is a diagonal hypermatrix or a hypervector.

Proof. Using the above lines of proof note that if all sheets of WT( f , f ) are invertible they are normal and by Theorem

7 and schurs theorem there exists a unitary matrix such that ΨD( f , f ) is diagonal hypermatrix, or a vector.

3. Hypermatrix Lie Algebra Associated with S L2

S L2 is the group of complex matrices of order 2 and determinant equal 1. It is a complex Lie group with Lie
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algebra sl2. When we apply to the elements X, Y , H of sl2 the exponential function it generates sub-groups. We

have the standard relations with respect to x, y, h:

x =
(
0 1

0 0

)
, y =

(
0 0

1 0

)
, h =

(
1 0

0 −1

)

and

ext =

(
1 t
0 1

)
, eht = W∞

(
et 0

0 e−t

)
, eyt =

(
1 0

t 1

)
(3)

For example the exponential of ex is

eWxt = In +WtI(n−1) +
(Wt)

2

2!
I(n−2) + ... +

(Wt)
n

n!
+ ... =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
. ... .

.

(
1 t
0 1

)
.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
x

The summation of the sequence is conditioned on the convergence of the sequence term by term and on summation

of hypermatrix sub-products. The size of the component hypermatrices changes at each step, therefore, summation

is generally impossible. Since Wx is nilpotent we are actually summing only the first two terms in eWxt. If we

consider eht then summation is conditioned on the completion of Wn−1 to Wn by adding trivial sheets term by term

and deciding where to stop adding terms. So in order to sum eWxt, eWyt, and eWht they will have to have the same

number of terms in conjunction along the developing sequence.

In general for n = 2 we have a 4-sheet-hypermatrix, but the exponential of a generator in general will result in

infinite sum of hypermatrices, in which most are trivial. Similarly for y and h we have:

eWy(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
. ... .

.

(
1 0

t 1

)
.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
y

(4)

eWh(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
. ... .

.

(
et 0

0 e−t

)
.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
h

In short, let eWh(t) be written as eWh(t) = (., ., ., ., ...) right to left infinitely many time, with most dots standing for

trivial matrices.

3.1 The Exponential Lie Hypermatrix Algebra (ELHA)

The nine components, eWx,y,h arranged two at a time, of eWx,y,h constitute an hypermatrix Lie algebra, see Schreiber

(2012a) for non-exponential construction.

W1 =

(
etx

etx

)
,W2 =

(
ety

etx

)
,W3 =

(
eth

etx

)
,W4 =

(
etx

ety

)
,W5 =

(
ety

ety

)
,

W6 =

(
eth

ety

)
,W7 =

(
etx

eth

)
,W8 =

(
ety

eth

)
,W9 =

(
eth

eth

)
(5)

W1, W5, W9 are the invertible hypermatrices. The non invertible elements have bracket relations given by (W2,W4) =

(−t2h, 2t(y − x), 2t(x − y), t2h) hypermatrix sheet products arranged from right to left. It also follows by direct cal-

culation that (W2,W4) = (W4,W2)∗. Similarly, (W6,W8) = (t(e−t−et), 2t(y−h), 2t(h−y), t(et−e−t)) and (W6,W8) =

(W8,W6)sic2,3;1,4, where sic2, 3; 1, 4 is the sheet interchange indicated. And, (W3,W7) = (W7,W3)sic2,3;1,4.

Open Problems: a) What is the structural relation between the extended Lie hypermatrix algebras of {WS L} and

{Wsl}? b) What are the characteristic of the extended algebra ELHA?

Claim The hypermatrix Lie algebra, with basis {x, y, h : Wsl(2,2);∞} is semisimple.

Proof. We note that in the finite case for two by two matrices A2×2 ∈ sl2 we have constructed nine hypermatrices

(see Schreiber, 2012a) while in the infinite Hypermatrix construction we have the elements of sl2 set in an infinite

set of cubes {x, y, h : Wsl(2,2);∞}.
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Constructing the hypermatrix algebra of {WS L} we find that each element is an element of semisimple hypermatrix

Lie algebra {WS L; (2, 2);∞ }. That follows from the fact that {WS L; (2, 2);∞ ,WS L; (2, 2);∞ } ∈ {Wsl; (2, 2);∞ } is an

imbedding for all elements of WS L.

The integration of {WS L; (2, 2);∞ ,WS L; (2, 2);∞ } with respect to (t) in the complex field C results in

∫ ∞

−∞
{WS L(α(t)) : 2, 2;∞,WS L(α(t)) : 2, 2;∞}dt = {α(±∞)}{x, y,H : Wsl : 2, 2;∞} (6)

Which results in {W} ∈ Wsl : (2, 2);∞. The semisimplicity of the algebra {Wsl : (2, 2);∞} follows by induction and

induction on dimension for higher dimensional hypermatrices.

4. The Exponential Complex Analytic Hypermatrix Lie Algebra

I define the exponential of complex hypermatrices as follows: For example the exponential of eiW is

EXP(iWxc) = In +WiI(n−1)
c +

(Wic)2

2!
I(n−2) + ... +

(Wic)n

n!
+ ... (7)

In short

EXP(iW) = Σ0
k=nΣ

∞
n=0

(W)n

n!
Ik

If W ∈ W(C) we can write for certain hypermatrices EXP(iW) = COS (W) + iS IN(W) ∈ W∞,∞;∞ were the number

of sheets of EXP(W) is finite or infinite depending on whether W is proper or improper, in terms of converging

according to Kojima conditions.

Definition 13 A hypermatrix W∞,∞;∞ is proper if it satisfies the Kojima conditions for webs in W(C) space, other-

wise it is improper.

4.1 Symmetry Properties of Complex Hypermatrices

A point α in W(C) space is symmetric or conjugate to a point β with respect to some axis Zi, 1 ≤ I ≤ n if and only

if exp(iα) = exp(−iβ) or exp(iα) = −exp(iβ). If α and β are of the form α
n , or

β
n then the symmetry is with respect

to an orthogonal basis in a normalized space Cn. Generally, e±iW does not generate symmetry with respect to the

origin.

If W is Kojima e±iW∞,∞,k → {W∞,∞;m},m < ∞. W possess some symmetry properties with respect to its unit ball

representation. For W∗∞,∞;k to exist we need that eiW → W∗ whenever exp(iW)∗ → W.

4.2 The Exponential of Kojima Hypermatrices

If W1, W2 are Kojima and eiW1 eiW2 are well defined, then in certain domains, e.g., for FD, we have

eiW1 eiW2 = ei f (W1,W2),∀ (W1,W2 ∈ FD) (8)

Proof. Let {Wk,×} be a hypermatrix Lie algebra obeying Kojima convergent conditions then ∃ a domain D ∈ {W} 

#8 holds. Let ||w1|| be a norm in K. If We1, ...,Wen is a basis in K we define

||W1|| = Σ∞i=1|WS i| with ||WSi|| = Σm
i=1|Si|, and Si = Σ

∞
i=1Siei (9)

If f (0, 0) = 0. Let Kr denote the set of elements S i ∈ {W}||S i|| < r, r > 0. Choose a numberε > 0 
 the exponential

mapping is one to one on the set {WKε}. We also take δ > 0 
 δ < ε, and exp(Wδ) × exp(Wρ) ⊂ exp(WKε). Hence

the mapping of f defines analytic mapping of WKδ × WKε into WKε. Take ϑ(u, v) = f (uW1, vW2) in WK ; and if

{WK} is structured from Kojima hypermatrices we define: Cn(W1,W2) = 1
n!

[ dn

dtΨ(t,W1,W2)]|t=0,∀n ≥ 0 and since

Ψ is analytic we may write Ψ(t,W1,W2) = Σ∞n=0tnCn(W1,W2), ∀ sufficiently small t and furthermore the series

Σ∞n=0||t||n||Cn(W1,W2)|| converges. To define Ψ(t,W1,W2) it is sufficient to find the coefficients Cn(t,W1,W2). The

function f defines Ψ because f (W1(t),W2(t)) = Ψ(t = 1,W1(t),W2(t)).

Lemma 1 A continuous finite dimensional representation of a hypermatrix Lie algebra WLr ∈ WK (Kojima
hypermatrix Lie algebra) is (real) analytic.

Proof. Let U be the set of all elements in Wk1 ×Wk2 ∈ WK of the form (Wk1, ϑ(Wk1)),Wk1 ∈ WK1, hence U is

a closed sub-algebra of {WK}. Therefore, U is also sub-algebra of WK1 ×WK2. The map ϑ(WK1,WK2) → WK1

is an onto analytic homomorphism of WK1 × WK2 → WK1 and the restriction to U is a one to one analytic
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mapping and WK1 × WK2 → WK1 is an isomorphism. The inverse mapping WL1 → (WL1, (WL1)) is analytic

since, ϑ(WL1,WL2) → WL1 is analytic and so is the composition map WK1 → (WK1, ϑ(WK1)) → (WK1). If

the elements of {WK} are of type {W∞,∞;n}. Lemma 1 holds provided the hypermatrix Lie algebra {WLr} satisfies

Kojima conditions for each component.

Theorem 10 Let {WKr} be a Kojima hypermatrix Lie algebra with components {W∞,∞;n} (Kojima convergent condi-
tions satisfied), WKr is simply connected, and the representation of WKr is a real analytic hypermatrix Lie algebra,
under the exponentiation {ew∞,∞;n }.
Proof. By Lemma 1 WKr is real analytic. Any hypermatrix component is simply connected by Lie’s third theorem

and induction on dimension the entire algebra is simply connected. Since WKr is a Kojima hypermatrix algebra and

its exponentiation is a finite sheet hypermatrix algebra and a hypermatrix Lie algebra with {ew∞,∞;n} ∈ {W∞,∞;n}.
Therefore, it is (real) analytic as well as simply connected (m ≤ n).

Theorem 11 If {WKr1} is a Kojima hypermatrix Lie algebra with components {W∞,∞;n}. Then there exists a simply
connected hypermatrix Lie algebra WLr2 with components {ew∞,∞;ki } whose real analytic representation is {W∞,∞;n′ };
it is given by the mapping E: {ew∞,∞;ki} → {W∞,∞;n′ } and it is isomorphic to Kr1(ki ≤ n′).

Proof. If {WLr1} is Kojima hypermatrix Lie algebra then {WLr1} is simply connected and real analytic by the last

theorem. If {WKr2} is a hypermatrix Lie algebra such that its exponential representation {ek2} → {W∞,∞;n} is real

analytic. It follows from the last theorem that the algebra {W∞,∞;n} is a simply connected Kojima hypermatrix Lie

algebra.

Kojima hypermatrix Lie algebras which are simply connected and real analytic are homeomorphic. Therefore,

among the ekr2 hypermatrix Lie algebra’s there is at least one algebra {WKq} = {WK2}, i.e., WK2 ⊂ {ek2}, and

so ∃WK1,WK2 ⊂ {Wk∞,∞;m}, the invertibility of the mapping defined by E1 : {Wk∞,∞;m} → {ew∞,∞;n } gives the

isomorphisim WK1 ∼ WK2.

4.3 Rotational Properties of Hypermatrices

Denote by R180◦ the hypermatrix rotation by 180 degrees along an axis or a diagonal line of the hypermatrix.

Denote the transformed hypermatrix W by WR180T or WRT .

Theorem 12 If WRT = W then there exists a non trivial unitary hypermatrix WU 
 WUWRT W∗U = WT . Where WT -
is a triangular hypermatrix.

(A unitary hypermatrix satisfies Wh
UWU = WUWh

U = I∗, with (∗) denoting the hypermatrix extension under multi-

plication, see Theorem 6, Definition 8).

Proof. If W/ − RT = W, then WRT W = WWRT , and if W and WRT commute so are their component sheets, thus W
has commuting elements, and therefore, if any two elements commute WUWRT W∗U = WUWT W∗U = WT .

Theorem 13 If WRT = W then there exists a unitary hypermatrix WU 
 WUWRT Wh
U = WD.

(By Theorem 7 a WD - diagonal hypermatrix satisfies Wh
UWWU = W∗∗D , ∗∗ - the second extension).

Proof. Rotate Wk,k;n along the main diagonal 180 degrees, then for 2 ≤ k ≤ ∞, n - finite if WRT = W and the sheets

of W are symmetric to start with because WRT = W, W is Hermitian and WUWW∗U = WUW∗W∗U hence the result

follows. (By Definition 7 the hypermatrix W is said to be a Hermitian hypermatrix if Wh = W, h is the transposed

complex conjugate).

5. Relations between Hypermatrix Groups, Hypermatrix Lie Algebra and Fourier Hypermatrices

Theorem 14 If G = 〈{W},×〉 is a finite dimensional matrix group (e.g., D3, see Schreiber, 2012b) and {Wn,n;k} is a
set of hypermatrices composed of a finite arrangement of all elements of the matrix group G then the components
of {Wn,n;k} generates a hypermatrix Lie algebra which is isomorphic to the elements of the exponential extension
given by {ei f Wn,n;k }.
Proof. If the hypermatrices are structured from the elements of a finite group of matrices, or a finite group rep-

resentation of n-polygon structure (e.g., D3, described in Schreiber, 2012b); the exponential extension of these

hypermatrices might terminate after n-steps of the exponential sequence expansion and converge or they may di-

verge. In any case we may limit the series to a finite number of steps such that the generated set of elements

constitutes a clearly defined set and generate a basis for the Lie hypermatrix algebra. Since it is generated from

an exponential basis they are 1-1 homeomorphic and isomorphic. An example was given in section 3, and for
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non-exponential expansion in Schreiber (2012b).

If the groups is a Kojima hypermatrix group 〈Gk,×,+〉 (composed of Kojima set of hypermatrices), and the hyper-

matrices are Kojima lower triangular infinite hypermatrices {WT,∞} the resulting exponentiation is converging, and

the resulting hypermatrix algebra will have a bound on the number of sheets, for each hypermatrix. If the sheets

are finite {ei f W∞,n; j }, {ei f Wn,∞; j }, we will have a finite converging sequence and well defined set of hypermatrices for

all the components of W in the hypermatrix algebra {ei f Wn,n;k }.
If the set {W} is Kojima, and we consider {W} with components vectors-series in WLk then the Fourier series

E = E0ei f Wn,n;k has a finite convergent series. For example if the wave function describes a spin (s), and period ω of

an elementary boson particle system then E = E0ei f Wn,n;k describes the energy for many bosons, e.g., E converges

for Kojima hypermatrices, and diverges otherwise. Note that in these Fourier settings of the physical systems the

energy and some of the physical characteristics of the system are expending and changing dimensions according

to the series expansion we use and convergent properties we might have in a particular problem; it is an open

algebraic system in the sense that the constituent elements might change dimensions with the dynamics of the

system and with relation to the operations performed.

5.1 Laurent Hypermatrices

We consider {WLk(Ψz)} to be the set of hypermatrices structured from the Laurent matrix sheets in a Kojima space

WLk = W∞

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

... ... ... ... ...

... α0 α−1 α−2 ...

... α1 α0 α−1 ...

... α2 α1 α0 ...

... ... ... ... ...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

of all possible arrangements of the hypermatrices. Here Wαn are structured from complex numbers and WLk is

doubly infinite (∞,∞).

Next we consider the associated complex Fourier hypermatrix series structured out of elements hypermatrices

f (WLk(Ψz)) = Σ
∞
n=−∞Cne2ΠiWn(ω) where the coefficients are given by Cn = 1/ω

∫ a+ω
a f (WL(ψz))e−2ΠiWn(ω)dW. Where

f (z + ω) = f (z) and W(Ψk) is a Cauchy-Laurent matrix.

Theorem 15 If the convoluted direct sum series |C1| � |C2| � |C3| � ... � |Cn| on a set of Kojima simply con-
nected spaces � |Ci| ∈ {WKLr } converges uniformly then the Fourier series f (WK(Ψz)) converges uniformly in the
〈{WK};×,+〉 hypermatrix Kojima space.

Proof. The idea of the proof is that if W(Ψμ) is bounded and if � Cn is bounded then the finite sum of a conver-

gent series is convergent on a simply connected convoluted hyperspace �Cn and therefore f (WK(Ψz)) converges

uniformly.

In the next section we consider applications of holomorphic functions and complex hypermatrices to the represen-

tation of the torus Tg and properties of the convoluted direct sum series.

6. The Classical Construction of Standard Basis for Analytic Torus Tg Using a Skew Hermitian Basis on T2,g

and Isomorphism of Infinite Supersymmetric Hypermatrix Lie Algebras

Consider the even 2 dimensional tours (the Riemann surface or an isomorphic one dimensional compact complex

connected differential manifold) T2,g, n = 1, ..., j, j < ∞ and assume that it is smooth, without holes (Griffith &

Harris, 1978). We may construct the standard basis for the analytic torus Tg using holomorphic functions on T2n,g.

For the Riemann surface with g = 1 the standard construction by all possible holomorphic functions f (zi) over a

point p is such that, mapping from the region Ω to C, f (z) : Ω→ C is analytic. The function f (z) over the space of

functions Ω f (α) is defined around a local coordinate system of an effective divisor D = Σpi ∈ Tg with μ : Tg → J
and is given by the associated set of holomorphic functions to the Jacobian J(μ) at a point D, denoted by

f (Z) = (1/(2πi)n)

∫
αΩ

...

∫
αΩ

f (ω1...ωn)

(ω1 − Z1)...(ωn − Zn)
(10)

(see Hartshorne, 1977; Horen & Johnson, 1991).

Given a fixed point, at a disc, and analytic cycles on T2,g classically there exists a skew Hermitian basis which is
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given by the matrix

Ξ1 =

(
0 iI(n−k)

iIk×k 0

)
, n ≥ k, g = 1, with Ξ∗ × Ξ = Ξ × Ξ∗, Ξ normal

By the Toeplitz-Hausdorff theorem the field values for Ξ normal is given by F(Ξ) = Co(σ(Ξ)) where the convex

hull Co spectrum of eigenvalues σ(Ξ) determines the resulting convex polygon on C. The field of values of the

normalized Hermitian matrices F(Ξ) is a set of complex numbers associated with a set of matrices; it might be a

continuum while the spectrum σ(Ξ) is a discrete countable set of values.

6.1 The Field of Values Associated with the Torus

The field of values of an nn matrix Mg×g is given by the set of complex numbers (g × g) ways on the torus Tg. The

set of {Wg} hypermatrices composed of the Mg×g matrices on the torus Tg constitutes a skew Hermitian hypermatrix

Lie algebra (for the construction of a skew Hermitian hypermatrix Lie algebra see Schreiber, 2012a). It has a set

of values F(Wg) possibly continuous such that σ(Ξw) ⊆ F(Wg), and if we know the field of values associated with

the hypermatrices F({Wg1
}) and F({Wg2

}) we can say that the spectrum of W1 and W2 has the following additive

property σ({Ξ}w1
+ {Ξ}w2

) ⊆ F(Wg1
+Wg2

) ⊆ F(Wg1
) + F(Wg2

), for a discussion on the field of values of matrices

see Horen and Johnson (1991).

Consider the following long exact sequence of homeomorphisms of hypermatrices associated with a divisor D on

the torus Tg and an exact sequence Wg=1 → ... →αk Wg−i → ... →αn−1 Wg−k with Kerαk = Imαk−1 (for exact

sequences see Maclane, 1963) and use it to construct the following exact diagram of hypermatrices and sequences

of polygons
Wg=1 → ... → Wg−i → ... → Wg−k →
↓ ↓ ↓

F(Wg=1)→ ... → F(Wg−i)→ ... → F(Wg−k)→
↓ ↓ ↓

Pg=1 → ... → Pg−i → ... → Pg−k →

(11)

Each horizontal sequence is exact as F(Wgi ) modules or Pj groups (For examples, I use modules of polygons

and groups of polygons, modules of hypermatrices with 〈{WRhyper},×,+〉 being a ring structure with commuting

squares in the diagram, and commuting diagrams squares having invertible arrows; see also Schreiber (2012b) for

hypermatrix groups 〈Ghyper,×,+〉 from which the extended ring 〈{WRhyper},×,+〉 of hypermatrices is structured.

The set of polygons {Pj} on a convoluted set of a sum of copies C ∈ Cn such that Σ � Cn ∈ Cn constitutes

for Wg × C ∈ Cn a complexified (permuted) hypermatrix Lie algebra with a bracket operation 〈{Wg}; w × w ∈
w∗; (wi,wj)+ (wj,wi) = 0∗; (wi, (wj,wk))+ (wj, (wk,wi))+ (wk, (wi,wj)) = 0∗∗}〉 (Schreiber, 2012a). The algebra of

the Pi polygons may be set into even, and odd sets of matrices (e.g., see the 3-gon example in Schreiber, 2012b).

The dimensions of these hypermatrices are determined by the field of values F(WT2n,g) which is defined by the

number of vertices on the polygons being used as divisor on the torus. The polygons determine the number of even

and odd elements in the Lie hypermatrix algebra. As the dimension and genus of the torus increases the algebraic

subdivision of the hypermatrix Lie algebra representation is characterized by a variety of sets of hypermatrices

with unique transpositions related to the oddness and evenness of the permuted n-gon sub-structures. These sub-

algebraic Lie structures are part of the general hypermatrix Lie algebra; they are nested along the main diagonals

of each extended hypermatrix algebraic representation (see the tables in Schreiber, 2012a & b). They characterize

the hypermatrix algebra together with the minor diagonals, characteristic skew symmetry, symmetry, and some of

the sub-structures might be reflected along the diagonal of the extended algebraic representation. In the extended

Lie algebra the hypermatrices and sub-Lie algebra could be Hermitian or skew Herrmitian hypermatrices; these

mainly characterize the even hypermatrices. The odd hypermatrices and the mixture of odd-even hypermatrices are

characterized by interchanges of rows and columns represented by complexified skew-symmetric hypermatrices

(see tables two, three and four in Schreiber (2012b) for the 3-gon-triangles).

To sum up, it is possible to represent the characteristics torus Tg by a hypermatrix Lie algebra structured from a

countable permuted polygon basis Tg. It also has a holomorphic representation by a set of functions Ω f (α) defined

around a local coordinate system of an effective divisor D = Σpi ∈ Tg.

6.2 Construction of Hypermatrix Lie Algebra on the Torus T3ν,g

If we consider the hypermatrix Lie algebra on a compact connected differentiable Torus T3ν,g ν = 2k + 1, k =
0, 1, ..., g ≥ 1, we find that it could be represented globally by a skew Hermitian sub-Lie algebra with the even
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elements represented by Teven = In×n sub-matrix and the odd elements are represented classically by the Hermitian

matrices

Todd =

(
0 iI(n−k)

iIk×k 0

)
, g = 1, n ≥ k (12)

The resulting hypermatrix set {WTg } is precisely the even generators of the field of values, representing polygons

on a convoluted direct sum of copies of C, Σζ = C1 � C2 � ... � Cn ∈ Cn (see remark 2 below). Multiplying the

elements WTi ,WT j ∈ {WTg }, we obtain an extension set {W∗Tg
} which was shown to be a hypermatrix Lie algebra,

this Lie hypermatrix algebra is infinitely generated, infinitely extended from a relatively simple holomorphic basis,

the technique for semisimple extension of Lie hypermatrix algebra is described in Schreiber (2012a).

To construct the initial basis for the extended hypermatrix Lie algebra out of polygons around an effective divisor

we use the even-even...even, odd-odd...odd, odd-even..., ...even-odd, ... permutations or an appropriate elements

arrangement. The resulting extended hypermatrix Lie algebra is characterized by a complex variety of algebraic

properties: symmetric by transposition, by reflection on main diagonal, or by even sheet interchange depending on

the basis elements generating the algebra. Skew-symmetric transpositions, row or column interchange character-

izes the odd elements in a polygonal hypermatrix Lie algebra (Schreiber, 2012a & b).

As a direct consequence of the above commutative diagram of exact sequences, and the structure of the hypermatrix

Lie algebras on the torus Tg which has a characteristic Lie structures 〈{WTg }; w × w ∈ w∗; (wi,wj) + (wj,wi) =

0∗; (wi, (wj,wk)) + (wj, (wk,wi)) + (wk, (wi,wj)) = 0∗∗〉, and the polygon algebra associated with {WPi}, we would

want to show the polygon hypermatrix Lie algebra on Σζ and the hypermatrix Lie algebra generated by constant

and non-constant holomorphic functions on the torus {WT3n,g } are isomorphic; stated in the following theorem.

Theorem 16 The hypermatrix algebra {WT3ν,g }, ν = 2k+1 associated with holomorphic functions covering infinitely

countably the torus 3(2k + 1), k = 0, 1, 2, ...n (odd dimension multiple of 3) genus g ≥ 1 and the hypermatrix Lie

algebra covering countably j-sided-polygons on the convoluted space Σ� Cn ∈ Cn are isomorphic.

Hypermatrix Lie Algebra {WT3(2k+1),g } � Hypermatrix Lie Algebra {Wp j,Σ�Cn } (13)

Remark 1 We note that that it follows from (13) that ν = 2k + 1, g and j are related by some function Φ(ν, g) =

Σ � (WT , j) to be determined. Here g determines the distribution of eigenhypermatrix-values on Σ � Cn (for

the definition of eigenhypermatrix-values HW − λI = 0, see Schreiber, 2012b) and the structure of the convex

j-polygon, WT determines the j-polygons as well as the associated coefficients.

Remark 2 Classically the Riemann surface of genus 1 in dimension 3 admits a topological surgery, and cuts, in

two ways horizontally and vertically such that the resulting surface is isomorphic to the complex plane (see for

example Griffith & Harris, 1978). For the torus T3,g it is possible to construct a similar set of cuts on T3,g resulting

in convoluted complex plane which is isomorphic to a sum of copies of C, denoted Σζ which is also related to Φ

by Φ(ν, g) = Σ(ζ, j).

Proof. Consider the 3 dimensional torus of genus g then globally there is a basis for the representation of the

holomorphic functions
∫

áω ...
∫
αω

f (ω, z)dω1...dωn in the region Ω ∈ ΣCn given by the following skew Hermitian

matrices

Ξ3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Iν×ν 0 0

0 0 ikIn− j−ν
0 −ikI j×k 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (14)

Locally a hypermatrix basis of the Lie algebra is generated from W(Ξ) = Ik∗
n×n from which we may construct the

hypermatrix Lie algebra {WT3ν
}. On Σ�Cn we consider all j-polygons generating the field of values of F(WT3ν,g ), a

countable set of j-sided polygons over a divisor, from which the hypermatrix Lie algebra is structured. To see the

construction a little more clearly we note that for the extended elements Ξ2, and Ξ3 we have

Ξ2Ξ3 − Ξ3Ξ2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 ikI −kkI
−ikI 0 ikI
kkI −ikI 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = a, and aT = a

These represent a normal typical second extension component sheet; in absolute value (e.g., see Schreiber, 2012b).

Note that for

I − Ξ2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
I −ikI 0

ikI I 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = β, and β∗ = −β.
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The resulting hypermatrix has normal components and a normal representation. We also notice that the left hand

side of Equation (13) is a representation of the geometry of the T3ν,g torus by holomorphic functions from which

it is possible to generate a hypermatrix Lie algebra; it is related to the distribution of eigen-hyper-matrix-values

on the convoluted direct sum of complex connected sheets Σ� Cn, and has an isomorphic structure to the spectral

set of eigen-hyper-matrix-values on T3n,g. The right hand side is a representation of the torus by a set of j-sided

polygons which generates hypermatrix Lie algebra in terms of the field of values on the torus.

Here we actually take a different approach in order to show the isomorphism of the two algebras. In order to show

that two extended hypermatrix Lie algebras are isomorphic it is enough to show that they have a 1-1 homeomor-

phisms at each extended state and that there exist a map kernel( f ) =basis between the two algebras at each stage

of extending the hypermatrix algebras. The structure of the homomorphism and kernel map depending on the type

of the Lie algebra (semisimple, polygonal and the unique symmetries and asymmetries of the sub hypermatrix

algebras: symmetric, skew-symmetric etc’, see Schreiber, 2012a & b for characteristic symmetries of Lie hyper-

matrices). In certain cases, it is sufficient to show that in the first and last stage of algebraic extension there is an

isomorphic, or that just in certain stages of algebraic extensions are isomorphic. Here the two algebras have the

same extensions at each stage because they are generated by all the symmetries of polygons on the convoluted com-

plex space in one situation and by the counting and permutations of all possible cycles of holomorphic functions

on a countable infinite set of points (or around polygons) situated on the three torus. As the hypermatrix extension

gets larger there is a greater technical difficulty to show such isomorphism in practice, however, in certain cases

we may look at the limit of the extension, the kernel of the extension, and their algebraic structures.

We obtain:

lim
in f inite extension

Ker[Even cycles on Conv(Cp j,Σζ)]→ζExt→∞ 0 (15)

and the

lim
in f inite extension

Ker[Even cycles T (3ν, g)]→even
Ext→∞ 0

At the infinite extension limit polygons behave just like circles and cycles, therefore, one can check that the ho-

momorphism holds in the first and second extensions because each permuted set of hypermatrices is structured

from one of the classes: even-even...even, odd-odd...odd, odd-even,..., even-odd,...permutations or an appropri-

ate elements arrangement on the convoluted Conv(Cp j,Σζ) space and functional meromorphic cycles on the torus

T (3ν, g), for any countable divisor D = Σpi ∈ Tg. They have a homeomorphic structure for analytic/meromorphic

functions. If we consider the even cycles all permutations we find that limit of their extended kernel Lie hyper-

matrix algebra vanishes. It is a universal property of the polygonal hypermatrix Lie algebra. For intermediate

extensions of the other permuted set of hypermatrices the task of establishing the isomorphism is more difficult

and requires a careful analysis of the components in each sub-Lie algebra. For example odd-odd elements tend

to be symmetric, skew-symmetric or skew-Hermitian in the complex plane. Instead of checking all the elements

we could work with each class and establish the isomorphism by showing that the representation exists in each

algebraic extension. Thus for an infinite polygonal hypermatrix Lie algebra structured over analytic manifolds

and over countable divisors we can check the isomorphism problem by checking systematically all possibilities, in

practice, e.g.

lim
in f inite extension

{Ker[odd... − Odd cycles] on Conv(Cp j,Σζ)} � lim
in f inite extension

{Ker[Odd... − Odd cycles]T(3ν,g)}

lim
in f inite extension

{Ker[Odd − Evencycles] on Conv(Cp j,Σζ)} � lim
in f inite extension

{Ker[Odd... − Even cycles]T(3ν,g)}

lim
in f inite extension

{Ker[Even − Odd... − Evencycles] on Conv(Cp j,Σζ)]

� lim
in f inite extension

{Ker[Even − Odd... − Even cycles]T(3ν,g)}

for all permutations of even-odd classes, etc’. In conclusion, we have shown in general terms, that the algebra of

the torus T3,g and its geometry are isomorphic hence we write

Geometry o f T3ν,g � Algebra Conv(CP j,Σζ) (16)

and Φ(ν, g) = Σ(ζ, j).
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6.3 An Application of Complex Hypermatrices to the Solution of Holomorphic Functions on the Convoluted Com-
plex Spaces Σζ[Conv(CP j,Σζ)] and Solutions of Meromorphic Functions on the Torus T3ν,g

By the Hurwitz theorem (Ahlfors, 1979) if the functions fn(z) are analytic and nonzero in a region Ω ∈ C, and if

fn(z) converges to f (z), uniformly on every compact subset of Ω, then f (z) is either identically zero or never equal

to zero on Ω. For example, the infinite analytic series Σn=1n−σ converges uniformly for all real σ greater or equal

to a fixed σ0 > 1. It is the majorant of the infinite Riemann ζ series ζ(s) = Σn=1n−s, s = (σ + it), which represents

an analytic function in the half plane Re(s) > 1. Classically the integral of ζ(s),
∫
ζ(s) is convergent in the entire

plane and by Cauchy’s theorem it’s value does not depend on the shape of curve if it does not enclose a multiple

of 2πi.

Definition 14 A set GH complex (real) is called a hypermatrix Lie Group if:

a) GH is a topological hypermatrix group (Hypermatrix groups and topological groups are respectively defined in

Schreiber, 2012b; Naimark & Stern, 1982);

b) G is an analytic manifold (Naimark & Stern, 1982);

c) The onto mapping of hypermatrix groups GH × GH → GH denoted (g, h) → gh−1 is an analytic mapping of

manifolds in an extended higher product space (gh−1)∗.

Theorem 17 Geometrically, the coordinates of the set of zero solutions of the function ζ(s) on the complex con-

voluted space Conv(ΣCn) has a representation by a (separated set of points) g-convoluted on a connected line

LΣTi(ζ(s))∈T3,g . Algebraically, the solution set of holomorphic function represented by ζ(s) on T3,g is a linear count-

able set of points which corresponds 1-1 to a countable linear set of solutions of ζ(s) on Conv(ΣCn).

Geometry o f LΣTi (ζ(s))∈T3ν,g � Algebra Zeros o f ζ(s)∈Conv(CP j,Σζ) (17)

Outline of the proof

We will show that (17) holds in three steps: a) If the functions fn(z) are analytic and non-zero in a region

Ω ∈ Conv(C fn(z)), and if fn(z) converges to f (z), uniformly on every compact subset of Ω, then f (z) is either

identically zero or never equal to zero in Ω. b) Moreover, if we consider the set of countable zeros of fn(z) then

from the relation of the geometry of T3,g to the hypermatrix Lie algebra of polygons on Conv(C fn(z)) we find that

on any open convoluted region, say Convn(Pj,Σζ), we may apply to the zero points set of solutions of f (z) the

associated Lie hypermatrix algebra of holomorphic functions, on Ση at points of the divisor D generated by the

associated Lie algebra of polygons (see Schreiber, 2012b). Next we consider elements of the hypermatrix algebra

of holomorphic functions f (z) ∈ T3,g and we will show that the set of zero solutions is in one continuous region

of space on the Convn(Pj,Ση) space and as part of the Geometry of T3,g, it has a single countable representation

in an extendable hypermatrix Lie algebra (see Schreiber, 2012a & b, Tables 2 & 4, respectively). c) Geometrically

the real coordinates of the zero solution set of holomorphic functions type ζ(s) on Conv(Cn) corresponds homeo-

morphically to a countable set of zero solutions of ζ(s) on T3,g. To show this we use the isomorphism relations in

(15).

Algebraically the basic important structures enabling the proof of the isomorphism theorems and relation (17)

is the structure of the diagonal elements (all elements of the form (w,w), w ∈ {W} and the associated sub-Lie

algebras classes arranged by even-odd permutations and semisimplicity on the extended Lie hypermatrix extended

representation; generally, if in each extended algebraic representation {(w,w)}Conv(ΣCn) � {(w,w)}T3,g there is a

homomorphism of diagonal structures and a one to one arrangement of hypermatrix sub-algebras and kernel map

will suffice to clinch the isomorphism theorem, see also schreiber, 2012a & b) representation of the infinitely

extended hypermatrix algebra associated with holomorphic and meromorphic functions on T3,g and Conv(ΣCn).

Proof. a) Extend the Hurwitz theorem to the torus T3,g covered with holomorphic functions around points pi ∈ D,

the divisor D, and similarly on the convoluted space Conv(ΣCn) used as a basis for the hypermatrix Lie algebra

structured by a set of polygons around the countable divisor of a set of zeros of ζ(s).

b) Construct the standard basis for analytic torus T3,g using holomorphic functions around a set of countable points

pi of a divisor D on T3,g. For the Riemann surface with g ≥ 1 the standard construction by all possible holomorphic

functions f (zi) over a point pi of a divisor Dp is such that the mapping from the region Ω to C, f (z) : Ω → C is

analytic. The function f (z) over the region Ω f is defined around a local coordinate system of an effective divisor

D = Σpi ∈ Tg with μ : Tg → J and it is given by the associated set of holomorphic functions with the Jacobian

J(μ) at a point pi ∈ D. The extension of these Ω f functional construction to Σζ, using a generated Lie hypermatrix
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algebra of polygons, set on a divisor D of T3,g gives a one to one mapping of (17). The one to one mapping of (17)

and the isomorphism follow by looking at the convoluted Conv(ΣCn) space and T3,g in the following way: note that

there is a polygon hypermatrix Lie algebra representation which is a connected solvable hypermatrix Lie group G;

by (15) it is homeomorphic to n-copies of Ci. Applying Lie’s third theorem it follows that the group G is simply

connected (Naimark & Stern, 1982). On T3,g the topology of holomorphic functions is connected and therefore the

construction of the associated hypermatrix Lie algebra of holomorphic functions is also simply connected. It is also

containing the diagonal (all elements of the form (w,w), w ∈ {W}); and therefore the mapping Conv(ΣCn) → T3,g

is 1-1. There is a continuous homomorphism of hypermatrix Lie groups Φ : T3,g → Conv(C fn(z)) which is real

analytic (Naimark & Stern, 1982).

c) For the infinite Riemann ζ series ζ(s) = Σn=1n−s take any two known zero solutions of ζ(s) on Reζ = 1/2 and

consider that any other solution must be holomorphically in ε ∈ Reζ = 1/2 distance in the neighborhood of the

line Reζ = 1/2 otherwise (15), for this example, is violated. The solution set is a countable connected topological

region on Conv(Cn), therefore, it has a countable compact connected algebraic representation as a Lie algebra of

holomorphic functions on T3,g (Naimark & Stern, 1982). The proof follows directly from relation (15), if (15)

doesn’t hold topologically a countable set of holomorphic functions on T3,g cannot be set as 1-1 and isomorphic

to a countable set of holomorphic functions in the neighborhood δ ∈ D, δ > 0 for a divisor D ∈ Conv(CP j ,Σζ), a

contradiction.

Lemma 2 If the real part of a countable number of the zero solutions of ζ(s) does not all lie on R(s) = 1/2 for
0 ≤ s ≤ 1 the holomorphic topological picture of ζ(s) on T3,g cannot generally be a 1-1 countable set of points on
the line LT (ζ(s)) ∈ T3,g.

The zero solution set of the infinite function ζ(s) = Σn=1n−s has countable set of solutions. The hypermatrix

representation of the solution set by an extended hypermatrix Lie algebra has a countable center (main diagonal

of the extended Lie algebra representation; center: ∀w ∈ {W}k,WiWj ∈ symmetric, skew symmetric, Hermitian

semisimple ... sub-algebras of the extended Lie algebra with the center C = 〈w ∈ {W}|wiwj = −wjwi〉 and each

product being an element in one of the above sub-algebras) represented by the even-even, odd-odd, odd-even sets

of elements and sub-algebras covering all arrangements of the Σζ complex space (Schreiber, 2012a & b, b) Tables

2-4). The elements of the Lie algebra on T3,g can be arranged countably on a line LT (ζ(s)) ∈ T3,g. If we cannot

map LT (ζ(s)) ∈ T3,g directly to R(s) = 1/2 ∈ Σζ (15) is violated.

Theorem 18 The line representation LT (ζ(s)) ∈ T3,g (with 0 ≤ Re(s) ≤ 1) representing the set of zeros of the
infinite Riemann ζ series ζ(s) = Σn=1n−s on T3,g is a countable set of points in the sense that the inverse mapping
of LT is a countable set of points Lζ on Σζ with only δ deviation from the line Lζ , 0 < δ < ε, ∀ε and for σ ∼ 1/2,
s = (σ + it).

Lζ ∼ LT (ζ(s))∈T3,g (18)

Proof. Let the zeros of the holomorphic functions of ζ(s) be represented in the neighborhood of polygons on a

connected convoluted space Σζ, then the hypermatrix Lie algebra representing this set of zero solutions is simply

connected subset of GL(n, c). If the real part of a countable number of the zero solutions of ζ(s) lies on R(s) = 1/2
with 0 ≤ Re(s) ≤ 1 and the topological picture of ζ(s) is on T3,g (either Tg > ε or it is possible that the subsection

on T3,g are just braided such that Tg ∼ δ) and is a countable set of points we are done; otherwise the representation

of the hypermatrix Lie algebra cannot be a continuous compact set, and the isomorphism in (15 & 16) do not hold*

a contradiction.

(*) We can show that result (15) holds also for infinite collection of meromorphic functions on T3,g and on Σζ; if

the deviation is greater then ε when 0 < δ < ε, 15 & 16 do not hold.

The complex part of the solution set of ζ(s) = Σn=1n−s is varying on Σζ since it is represented by a countable

separated set of solutions of a meromorphic functions on Σζ bounded in circles of 2πi radios around the zero set

solution of ζ(s) and on the convoluted space Conv(ΣCn). ζ(s) can be represented by a set of connected regions of

complex spaces on Σζ and thus has a Lie algebra representation by a separated Lie hypermatrix compact connected

sub-algebra which is generated by holomorphic functions on a set of countable n-polygons (e.g. see Schreiber,

2012b, Tables 2-4).
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