Analysis of a Multigrid Algorithm for Mortar Element Method

Jianxin Dai
School of Mathematics and Physics
Nanjing University of Posts and Telecommunications
Nanjing 210046, China
E-mail: daijx_js@126.com

Abstract

In this paper, a multigrid algorithm is studied for mortar element method for rotated Q_{1} element, the mortar condition is only dependent on the degrees of the freedom on subdomains interfaces. We prove the convergence of W -cycle multigrid and construct a variable V -cycle multigrid preconditioner which is available.

Keywords: Multigrid, Mortar element method, Rotated Q_{1} element

1. Introduction

The mortar element method is a nonconforming domain decomposition method with non-overlapping subdomains. The meshes on different subdomains need not align across subdomains interfaces, and the matching of discretizations on adjacent subdomains is only enforced weakly. This method offers the advantages of freely choosing highly varying mesh sizes on different subdomains. The rotat Q_{1} element is an important nonconforming element. It was first proposed and analysised for numerically solving the Stokes problem, the rotated Q_{1} element provides the simplest example of discretely divergence-free nonconforming element on quadrilaterals.
Let $\Omega \in R^{2}$ be a rectangular or L-shape bounded domain with boundary $\partial \Omega$. Partition Ω into geometrically conforming rectangular substructures, i.e..
$\bar{\Omega}=\bigcup_{k=1}^{N} \bar{\Omega}_{k}$ and $\Omega_{k} \cap \Omega_{l}=\phi, k \neq l, \bar{\Omega}_{k} \cap \bar{\Omega}_{l}$ is empty set or a vertex or an edge for $k \neq l$.
Let $T_{1}^{i}=T_{1}^{i}\left(\Omega_{i}\right)$ be a coarsest quasi-uniform triangulation of the subdomain Ω_{i}, which made of elements that are rectangles whose edges are parallel to X-axis or Y-axis. Let $T_{1}=\bigcup_{i=1}^{N} T_{1}^{i}$. The mesh parameter h_{1} is the diameter of the largest element in T_{1} the global triangulation of Ω. We refine the triangulation T_{1} to produce T_{2} by joining the midpoints of the edges of the rectangles in T_{1}. Obviously, the mesh size h_{2} in T_{2} satisfies $h_{2}=\frac{1}{2} h_{1}$. Repeating this process, we get a sequel of triangulations $T_{1}(l=1,2, \cdots, L)$. Let $\Omega_{i, l}$ and $\partial \Omega_{i, l}$ be the set of vertices of the triangulation T_{1}^{i} that are in $\bar{\Omega}_{i}$ and $\partial \Omega_{i}$ respectively.
We construct the rotated Q_{l} element for each triangulation $T_{l}\left(\Omega_{i}\right)$ as follows.
$X_{l}\left(\Omega_{i}\right)=\left\{v \in L^{2}\left(\Omega_{i}\right)|v|_{E}=\alpha_{E}^{1}+\alpha_{E}^{2} x+\alpha_{E}^{3} y+\alpha_{E}^{4}\left(x^{2}-y^{2}\right), \alpha_{E}^{2} \in R,\left.\int_{\partial E \mid \partial \Omega} v\right|_{\partial \Omega} d s=0, \forall E \in T_{l}\left(\Omega_{i}\right)\right.$; for $E_{1}, E_{2} \in T_{l}\left(\Omega_{i}\right)$, if $\partial E_{1} \mid \partial E_{2}=e$, then $\left.\left.\int_{e} v\right|_{\partial E_{1}} d s=\left.\int_{e} v\right|_{\partial E_{2}} d s\right\}$
The global discrete space is defined by

$$
X_{l}(\Omega)=\prod_{i=1}^{N} X_{l}\left(\Omega_{i}\right)
$$

The interface $\Gamma=\bigcup_{i=1}^{N} \partial \Omega_{i} \backslash \partial \Omega$ is broken into a set of disjoint open straight segments $\gamma_{m}(1 \leq m \leq M)$, i.e., $\Gamma=\bigcup_{m=1}^{M} \bar{\gamma}_{m}, \gamma_{m} \cap \gamma=\phi$, if $m \neq n$.

By $\gamma_{m(i)}$ we denote an edge of Ω_{i} called mortar and by $\delta_{m(j)}$ an edge of Ω_{i} that geometrically occupies the same place called nonmortar, then $\gamma_{m(i)=\delta_{m(j)}=\gamma_{m}}$. Since γ_{m} inherits two different triangulations, by $T_{l}\left(\gamma_{m(i)}\right)$ and $T_{l}\left(\delta_{m(j)}\right)$ denote the different triangulations across γ_{m} (Assume the fine side is chosen as mortar). Define $S_{l}\left(\delta_{m(j)}\right)$ to be a subspace of $L^{2}\left(\gamma_{m}\right)$, such that its functions are piecewise constants on $T_{l}\left(\delta_{m(j)}\right)$. The dimension of $S_{l}\left(\delta_{m(j)}\right)$ is equal to the number of elements on the $\delta_{m(j)}$. For each nonmortar edge $\delta_{m(j)}$, define an L^{2} projection operator $Q_{l, \delta}: L^{2}\left(\gamma_{m}\right) \rightarrow S_{l}\left(\delta_{m(j)}\right)$ by

$$
\begin{equation*}
\left(Q_{l, \delta} v, \psi\right)_{L^{2}\left(\delta_{m(j)}\right)}=(v, \psi)_{L^{2}\left(\delta_{m(j)}\right)}, \forall \psi \in S_{l}\left(\delta_{m(j)}\right) \tag{1}
\end{equation*}
$$

The purpose of this paper is to study the multigrid method for mortar element for the rotated Q_{1} element. An intergrid transfer operator is presented for nonnested mortar element spaces. On the basis of this operator, we give a multigrid algorithm. Using the theory developed by Bramble, Pasciak, Xu, we prove the W-cycle multigrid is optimal, i.e., the convergence rate is independent of mesh size and mesh level. Furthermore, a variable V-cycle multigrid preconditioner is developed, which results in a preconditioned system with uniformly bounded condition number.

The remainder of this paper is organized as follows. In section two we introduce Multigrid algorithm. Section three presents some lemmas. Last section gives our results.

2. Multigrid algorithm

We must define a suitable intergrid transfer operator for nonnested mesh space V_{l}. First introduce a local intergrid operator J_{l}^{i} from $X_{l-1}\left(\Omega_{i}\right)$ to $X_{l}\left(\Omega_{i}\right)$ by

$$
\frac{1}{|e|} \int_{e} J_{l}^{i} v d s\left\{\begin{array}{lll}
0 & e \subset \partial \Omega_{i} \cap \partial \Omega & \\
\frac{1}{|e|} \int_{e} v d s & e \subset \partial \Omega_{i} \backslash \partial \Omega & \\
\frac{1}{|e|} \int_{e} v d s & e \not \subset \partial E & E \in T_{l-1}^{i} \\
\frac{1}{2|e|} \int_{e}\left(\left.v\right|_{E_{1}}+\left.v\right|_{E_{2}}\right) d s & e \subset \partial E_{1} \cap \partial E_{2} & E_{1}, E_{2} \in T_{l-1}^{i}
\end{array}\right.
$$

Where $e \in \partial E, E \in T_{l}^{i}$.
Based on the operator J_{l}^{i}, a global intergrid transfer operator $J_{l}: X_{l-1}(\Omega) \rightarrow X_{l}(\Omega)$ introduced as follows.

$$
J_{l} v=\left(J_{l}^{1} v, J_{l}^{2} v^{2}, \cdots, J_{l}^{N} v^{N}\right), \quad \forall v=\left(v^{1}, v^{2}, \cdots, v^{N}\right) \in X_{l-1}(\Omega)
$$

To construct an intergrid operator in mortar element spaces we define an operator $\varepsilon_{l, \delta_{m(j)}}$:

$$
X_{l}(\Omega) \rightarrow X_{l}(\Omega) \quad \text { by } \quad \int_{e} \varepsilon_{l, \delta_{m(j)}}(v) d s= \begin{cases}\int_{e} Q_{l, \delta}\left(\left.I_{l}^{\gamma} Q_{l, \gamma} v\right|_{\gamma_{m(i)}}-\left.v\right|_{\delta_{m(j)}}\right) d s & e \in T_{l}\left(\delta_{m(j)}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Then for any $v \in X_{l}(\Omega)$, let

$$
\begin{equation*}
v^{*}=v+\sum_{m=1}^{M} \varepsilon_{l, \delta_{m(j)}}(v) \tag{2}
\end{equation*}
$$

It is easy to check that $v^{*} \in V_{l}$, since for any $\psi \in S_{l}\left(\delta_{m(j)}\right)$, we can derive

$$
\begin{aligned}
\left.\int_{\delta_{l, m(j)}} v^{*}\right|_{\delta_{m(j)}} \psi d s & =\left.\int_{\delta_{m(j)}} v\right|_{\delta_{m(j)}} \psi d s+\left.\int_{\delta_{m(j)}} \varepsilon_{l, \delta_{m(j)}}(v)\right|_{\delta_{m(j)}} \psi d s \\
& =\left.\int_{\delta_{m(j)}} v\right|_{\delta_{m(j)}} \psi d s+\int_{\delta_{m(j)}} Q_{l, \delta}\left(\left.I_{l}^{\gamma} Q_{l, \gamma} v\right|_{\gamma_{m(i)}}-\left.v\right|_{\delta_{m(j)}}\right) \psi d s \\
& =\left.\int_{\delta_{m(j)}} v\right|_{\delta_{m(j)}} \psi d s+\int_{\delta_{m(j)}}\left(\left.I_{l}^{\gamma} Q_{l, \gamma} v\right|_{\gamma_{m(i)}}-\left.v\right|_{\delta_{m(j)}}\right) \psi d s \\
& =\left.\int_{\delta_{m(j)}} I l_{l}^{\gamma} Q_{l, \gamma} v\right|_{\gamma_{m(i)}} \psi d s \\
& =\left.\int_{\delta_{m(j)}} I l_{l}^{\gamma} Q_{l, \gamma} v^{*}\right|_{\gamma_{m(i)}} \psi d s
\end{aligned}
$$

After above preparation, we can construct an intergrid transfer operator I_{l} in mortar element spaces.

$$
\begin{equation*}
I_{l}: X_{l-1}(\Omega) \rightarrow V_{l} \quad \text { by } \quad I_{l} v=J_{l} v+\sum_{m=1}^{M} \varepsilon_{l, \delta_{m(j)}}\left(J_{l} v\right), \forall v \in X_{l-1}(\Omega) \tag{3}
\end{equation*}
$$

To present our multigrid algorithm, we describe some auxiliary operators. For $l=1,2, \cdots, L$, define A_{l} : $V_{l} \rightarrow V_{l}, P_{l-1}: V_{l} \rightarrow V_{l-1}$, and $P_{l-1}^{0}: V_{l} \rightarrow V_{l-1}$ respectively by $\left(A_{l} u, v\right)=\alpha_{l}(u, v), \forall u, v \in V_{l},\left(P_{l-1}^{0} u, v\right)=$ $\left(u, I_{l} v\right), \forall u \in V_{l}, v \in V_{l-1}, a_{l-1}\left(P_{l-1} u, v\right)=a_{l}\left(u, I_{l} v\right), \forall u \in V_{l}, v \in V_{l-1}$,
Furthermore we must find smoothing operator R_{l}, including Gauss-Seidel, conjugate gradient iterations and so on, which satisfy the following condition.
(R). There exists a constant $C_{R} \geq 1$ independent of l such that

$$
\begin{equation*}
\frac{\|u\|_{0}^{2}}{\lambda_{1}} \leq C_{R}\left(\bar{R}_{l} u, v\right), \forall u \in V_{l} \tag{4}
\end{equation*}
$$

For both $\bar{R}_{l}=\left(I-K_{l}^{*} K_{l}\right) A_{l}^{-1}$ or $\bar{R}_{l}=\left(I-K_{l} K_{l}^{*}\right) A_{l}^{-1}$, where $K_{l}=I-R_{l} A_{l}, K_{l}^{*}=I-R_{l}^{T} A_{l}, R_{l}^{T}$ is the adjoint of R_{l} with respect to $(\because$,$) and \lambda_{l}$ is the maximum eigenvalue of A_{l}.

$$
\text { Define } R_{l}^{(k)}= \begin{cases}R_{l} & k \text { is odd } \\ R_{l}^{T} & k \text { is even }\end{cases}
$$

A general multigrid operator $B_{l}: V_{l} \rightarrow V_{l}$ can be defined recursively as follows.
Multigrid Algorithm. Set $B_{1}=A_{1}^{-1}$. Let $2 \leq l \leq L$ and p be a positive integer, assume that B_{l-1} has been defined and define $B_{1 g}$ for $g \in V_{l}$ by
(1) Set initial value X^{0} and let $q^{0}=0$.
(2) Define x^{k} for $k=1,2, \cdots, m(l)$ by $x^{k}=x^{k-1}+R_{l}^{(k+m(l))}\left(g-A_{l} x^{k-1}\right)$.
(3) Define $y^{m(l)}=x^{m(l)}+I_{l} q^{p} y$, where q^{i} for $i=1, \cdots, p$ are determined by $q^{i}=q^{i-1}+B_{l-1}\left(P_{l-1}^{0}\left(g-A_{l} x^{m(l)}\right)-\right.$ $A_{l-1} q^{i-1}$)
(4) Define y^{k} for $k=m(l)+1, \cdots, 2 m(l)$ by $y^{k}=y^{k-1}+R_{l}^{(k+m(l))\left(g-A_{l} y^{k-1}\right)}$.
(5) Set $B_{1 g}=y^{2 m(l)}$.

Remark. In the Multigrid Algorithm, $m(l)$ gives the number of presmoothing and postsmoothing steps, it can vary as a function of l. If $p=1$, we have a V-cycle method, and $p=2$ denotes a W -cycle method. A variable V-cycle algorithm is one in which the number of smoothing $m(l)$ increase exponentially as l decreases, i.e., the number of smoothing $m(l)$ satisfies $\beta_{0} m(l) \leq m(l-1) \leq \beta_{1} m(l)$, with $1<\beta_{0}<\beta_{1}$.

3. Some lemmas

To reach our conclusion, we present some auxiliary technical lemmas and prove an approximation assumption.
Define an operator $M_{l, i}: X_{l}\left(\Omega_{i}\right) \rightarrow V_{l}^{\frac{1}{2}}\left(\Omega_{i}\right)$ as follows.
Definition 1. Given $v \in X_{l}\left(\Omega_{i}\right)$, let $M_{l, i} v \in V_{l}^{\frac{1}{2}}\left(\Omega_{i}\right)$ by the values of $M_{l, i} v$ at the vertices of the partition $T_{l}^{\frac{1}{2}}\left(\Omega_{i}\right)$.
(1) If P is a central point of $E, E \in T_{l}\left(\Omega_{i}\right)$, then $\left(M_{l, i} v\right)(P)=\frac{1}{4} \sum_{e_{i} \in \partial E} \frac{1}{\left|e_{i}\right|} \int_{e_{i}} v d s$.
(2) If P is a midpoint of one edge $e \in \partial E, E \in T_{l}\left(\Omega_{i}\right)$, then $\left(M_{l, i} v\right)(P)=\frac{1}{\left|e_{i}\right|} \int_{e} v d s$.
(3) If $P \in \Omega_{i, l} \backslash \partial \Omega_{i, l}$, then $\left(M_{l, i} v\right)(P)=\frac{1}{4} \sum_{e_{i}} \frac{1}{\left|e_{i}\right|} \int_{e_{i}} v d s$. Where the sum is taken over all edges e_{i} with the common vertex $P, e_{i} \in \partial E_{i}, E_{i} \in T_{l}\left(\Omega_{i}\right)$.
(4) If $P \in \partial \Omega_{i, l} \backslash\left\{c_{1}, \cdots, c_{n}\right\}$, then $\left(M_{l, i} v\right)(P)=\frac{1}{2}\left(\frac{1}{\left|e_{l}\right|} \int_{e_{l}} v d s+\frac{1}{\left|e_{\gamma}\right|} \int_{e_{\gamma}} v d s\right)$, where $e_{l} \in \partial E_{1} \cap \partial \Omega_{i}$ and $e_{\gamma} \in$ $\partial E_{2} \cap \partial \Omega_{i}$ are the left and right neighbor edges of $P, E_{1}, E_{2} \in T_{l}\left(\Omega_{i}\right), c_{1}, \cdots, c_{n}$ are the vertices of subdomain Ω_{i}.
(5) If $P \in\left\{c_{1}, \cdots, c_{n}\right\}$, then

$$
\left(M_{l, i} v\right)(P)=\frac{\left|e_{l}\right|}{\left|e_{l}\right|+\left|e_{\gamma}\right|}\left(\frac{1}{\left|e_{l}\right|} \int_{e_{l}} v d s\right)+\frac{\left|e_{\gamma}\right|}{\left|e_{l}\right|+\left|e_{\gamma}\right|}\left(\frac{1}{\left|e_{\gamma}\right|} \int_{e_{\gamma}} v d s\right)
$$

For the above operator $M_{l, j}$, we have the following result.
Lemma 1. For any $v \in X_{l}\left(\Omega_{i}\right)$, we have $\left|M_{l, i} v\right|_{H^{1}\left(\Omega_{i}\right)} \approx\|v\|_{l, i}$.
Lemma 2. $\left\|v-Q_{l, \delta} v\right\|_{L^{2}(\gamma m)} \leq h_{l}^{\frac{1}{2}}|v|_{H^{\frac{1}{2}}(\gamma m)} \forall v \in H^{\frac{1}{2}}(\gamma m)$.
Lemma 3. For any $v \in X_{l}\left(\Omega_{i}\right)$, then $\left\|\left.Q_{l, \delta} I_{l}^{\gamma} Q_{l, \gamma} \nu\right|_{\gamma m(i)}-\left.I_{l}^{\gamma} Q_{l, \gamma} \nu\right|_{\gamma m(i)}\right\|_{L^{2}(\gamma m(i))} \leq h_{l}^{\frac{1}{2}}\|v\|_{l, i}$.
$\left\|\left.I I_{l}^{r} Q_{l, r} v\right|_{\gamma m(i)}-\left.Q_{l, r} v\right|_{\gamma m(i)}\right\|_{L^{2}(\gamma m(i))} \leq h_{l}^{\frac{1}{2}}\|v\|_{l, i}$
Lemma 4. For any $v^{i} \in V_{l-1}\left(\Omega_{i}\right)$, we have $\left\|J_{l}^{i} v^{i}\right\|_{l, i} \leq\left\|v^{i}\right\|_{l-1, i},\left\|v^{i}-J_{l}^{i} v^{i}\right\|_{0, i} \leq h_{l}\left\|v^{i}\right\|_{l-1, i}$.
Lemma 5. For any $v \in V_{l-1}$, it holds that $\left\|I_{l} v\right\|_{l} \leq\|v\|_{l-1},\left\|v-I_{l} v\right\|_{0} \leq h_{l}\|v\|_{l-1}$.
Lemma 6. For the operator Π_{l}, we have $\left\|\xi-\Pi_{l} \xi\right\|_{0}+h_{l}\left\|\xi-\Pi_{l} \xi\right\|_{l} \leq h_{l}^{2}|\xi|_{2}, \forall \xi \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$.
Lemma 7. For any $\xi \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$, we have $\left\|\xi-I_{L} \Pi_{l-1} \xi\right\|_{l} \leq h_{l}|\xi|_{2}$.
The proofs of the above all lemmas can be found in relevant references. Let's come to see the last two lemmas.
Lemma 8. The operator P_{l-1} has following property $\left\|v-P_{l-1} v\right\|_{0} \leq h_{l}\|v\|_{l}, \forall v \in V_{l}$.
Proof. Consider the auxiliary problem as follows

$$
\begin{cases}-\triangle \xi=v-P_{l-1} v & \text { in } \Omega \\ \xi=0 & \text { on } \partial \Omega\end{cases}
$$

then $\left\|v-P_{l-1} v\right\|_{0}^{2}=\left(-\triangle \xi, v-P_{l-1} v\right)=\left(\alpha_{l}(\xi, v)-\alpha_{l-1}\left(\xi, P_{l-1} v\right)\right)-\sum_{K \in T_{l}} \oint_{\partial} \frac{\partial \xi}{\partial n} v d s+\sum_{K \in T_{l-1}} \oint_{\partial K} \frac{\partial \xi}{\partial n} P_{l-1} v d s$
$:=F_{1}+F_{2}+F_{3}$
Lemma 4 and Lemma 2 reveal $\left|F_{2}\right| \leq h_{l}|\xi|_{2}\|v\|_{l}=h_{l}\left\|v-P_{l-1} v\right\|_{0}\|v\|_{l}$. Using Lemma 5, we can see $\left\|P_{l-1} v\right\|_{l-1}^{2}=$ $\alpha_{l-1}\left(P_{l-1} v, P_{l-1} v\right)=\alpha_{l}\left(v, I_{l} P_{l-1} v\right) \leq\|v\|_{l}\left\|P_{l-1} v\right\|_{l}$. So $\left\|P_{l-1} v\right\|_{l-1} \leq\|v\|_{l}$.
By Lemma 2 and above inequality, we have $\left|F_{3}\right| \leq h_{l}|\xi|_{2}\left\|P_{l-1} v\right\|_{l-1}=h_{l}\left\|v-P_{l-1} v\right\|_{0}\|v\|_{l}$. Now we estimate F_{1}.

$$
\begin{aligned}
\left|F_{1}\right| & =\left|\alpha_{l}(\xi, v)-\alpha_{l-1}\left(\Pi_{l-1} \xi, P_{l-1} v\right)+\alpha_{l-1}\left(\Pi_{l-1} \xi, P_{l-1} v\right)-\alpha_{l-1}\left(\xi, P_{l-1} v\right)\right| \\
& \leq\left|\alpha_{l}\left(\xi-I_{l} \Pi_{l-1} \xi, v\right)\right|+\left|\alpha_{l-1}\left(\xi-\Pi_{l-1} \xi, P_{l-1} v\right)\right| \\
& \leq h_{l}|\xi|_{2}\left(\|v\|_{l}+\left\|P_{l-1} v\right\|_{l-1}\right) \leq h_{l}|\xi|_{2}\|v\|_{l} \leq \mid v-P_{l-1} v\left\|_{0}\right\| v \|_{l}
\end{aligned}
$$

All the above inequalities give the proof. Now, the approximation assumption theory is given as follows.
Lemma 9. $\left|\alpha_{l}\left(\left(I-I_{l} P_{l-1}\right) v, v\right)\right| \leq\left(\frac{\left\|A_{l} \nu\right\|_{0}^{2}}{\gamma_{l}}\right)^{\frac{1}{2}} \alpha_{l}(v, v)^{\frac{1}{2}}, \forall v \in V_{l}$. Proof. By triangular inequality, Lemma 5 and Lemma 8, we derive $\left\|v-I_{l} P_{l-1} v\right\|_{0} \leq\left\|v-P_{l-1} v\right\|_{0}+\left\|\left(I-I_{l}\right) P_{l-1} v\right\|_{0} \leq h_{l}\left(\|v\|_{l}+\left\|P_{l-1} v\right\|_{l-1}\right) \leq h_{l}\|v\|_{l}$ On the other hand

$$
\begin{aligned}
\left\|v-I_{l} P_{l-1} v\right\|_{l} & =\sup _{\omega \in V_{l}\|\omega\|_{l=1}} \alpha_{l}\left(v-I_{l} P_{l-1} v, \omega\right) \\
& =\sup _{\omega \in V_{l}\|\omega\|_{l=1}} \alpha_{l}\left(v, \omega-I_{l} P_{l-1} \omega\right) \\
& \leq \sup _{\omega \in V_{l}\|\omega\|_{l=1}}\left\|A_{l} v\right\|_{0}\left\|\omega-I_{l} P_{l-1} \omega\right\|_{0} \\
& \leq h_{l}\left\|A_{l} v\right\|_{0}
\end{aligned}
$$

Then, we can obtain

$$
\left|\alpha_{l}\left(\left(I-I_{l} P_{l-1}\right) v, v\right)\right| \leq\left\|\left(I-I_{l} P_{l-1}\right) v\right\|_{l}\|v\|_{l} \leq h_{l}\left\|A_{l} v\right\|_{0}\|v\|_{l} \leq\left(\frac{\left\|A_{l} v\right\|_{0}^{2}}{\lambda_{l}}\right)^{\frac{1}{2}} \alpha_{l}(v, v)^{\frac{1}{2}}
$$

4. Main result

We now state the convergence results for the multigrid algorithm. The convergence rate for the multigrid algorithm on the l th level is measured by a convergence factor

$$
\begin{equation*}
\delta_{l} \text { satisfying }\left|\alpha_{l}\left(\left(I-B_{l} A_{l}\right) v, v\right)\right| \leq \delta_{l} \alpha_{l}(v, v), \forall v \in V_{l} \tag{5}
\end{equation*}
$$

Following the above analysis, we propose two propositions:
Proposition 1. (W-cycle). Under Lemma 9, if $p=2$ and $m(l)=m$ is large enough, then the convergence factor in (5) is $\delta_{l}=\frac{C}{C+m^{\frac{1}{2}}}$
Proposition 2. (variable V-cycle preconditioner) Under Lemma 9, and the number of smoothing $m(l)$ increases as decreases in such a way that $\beta_{0} m(l) \leq m(l-1) \leq m(l)$, hold with $1 \leq \beta_{0} \leq \beta_{1}$. then there exists $M>0$ independent of L such that $C_{0}^{-1} \alpha_{l}(v, v) \leq \alpha_{l}\left(B_{l} A_{l} v, v\right) \leq C_{0} \alpha_{l}(v, v), \forall v \in V_{l}$, with $C_{0}=\frac{M+m(l)^{\frac{1}{2}}}{m(l)^{\frac{1}{2}}}$.

References

C. J. Bi \& L. K. Li. (2003). Multigrid for the mortar element method with locally P1 nonconforming element. Numer. Math. 12: 193-204.
C. Bernardi, Y. Maday \& A. T. Patera. (1993). Domain decompsition by the mortar element method, Asymptotic and numerical methods for partial differential equations with critical parameters. N. A. T. O. ASI, Kluwer Academic Publishers, 269-286.13
D. Bress, W. Dahmen \& C. Wieners. (1999). A multigrid algorithm for mortar finite element method. SIAM J. Numer. Anal. 37: 48-69.
F. B. Belgacem. (1999).The Mortar finite element method with Lagrange multipliers. Numer.Math. 84: 173197.
J. R. Chen \& X. J.Xu. (2002).The mortar element method for Rotated Q1 element. J. Comp. Maths. 20: 313-324.
L. Marcinkowski. (1999). The mortar element method with locally nonconforming element. BIT, 39: 716-739.
P. Kloucek, B.Li \& M.Luskin. (1996).Analysis of a class of nonconforming finite element for crystalline microstructure. Math. Comp. 65: 1111:1135.

