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Abstract

In this paper, a multigrid algorithm is studied for mortar element method for rotated Q1 element, the mortar

condition is only dependent on the degrees of the freedom on subdomains interfaces. We prove the convergence

of W-cycle multigrid and construct a variable V-cycle multigrid preconditioner which is available.
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1. Introduction

The mortar element method is a nonconforming domain decomposition method with non-overlapping subdo-

mains. The meshes on different subdomains need not align across subdomains interfaces, and the matching of

discretizations on adjacent subdomains is only enforced weakly. This method offers the advantages of freely

choosing highly varying mesh sizes on different subdomains. The rotat Q1 element is an important nonconform-

ing element. It was first proposed and analysised for numerically solving the Stokes problem, the rotated Q1

element provides the simplest example of discretely divergence-free nonconforming element on quadrilaterals.

Let Ω ∈ R2 be a rectangular or L-shape bounded domain with boundary ∂Ω. Partition Ω into geometrically

conforming rectangular substructures, i.e..

Ω =
N⋃

k=1
Ωk and Ωk

⋂
Ωl = φ, k � l, Ωk

⋂
Ωl is empty set or a vertex or an edge for k � l.

Let T i
1
= T i

1
(Ωi) be a coarsest quasi-uniform triangulation of the subdomain Ωi, which made of elements that

are rectangles whose edges are parallel to X-axis or Y-axis. Let T1 =
⋃N

i=1 T i
1
. The mesh parameter h1 is the

diameter of the largest element in T1 the global triangulation of Ω. We refine the triangulation T1 to produce

T2 by joining the midpoints of the edges of the rectangles in T1. Obviously, the mesh size h2 in T2 satisfies

h2 =
1
2
h1. Repeating this process, we get a sequel of triangulations T1(l = 1, 2, · · · , L). Let Ωi,l and ∂Ωi,l be the

set of vertices of the triangulation T i
1

that are in Ωi and ∂Ωi respectively.

We construct the rotated Ql element for each triangulation Tl(Ωi) as follows.

Xl(Ωi) = {ν ∈ L2(Ωi)|ν|E = α1
E + α

2
E x + α3

Ey + α4
E(x2 − y2), α2

E ∈ R,
∫
∂E|∂Ω ν|∂Ωds = 0, ∀E ∈ Tl(Ωi); for

E1, E2 ∈ Tl(Ωi), if ∂E1|∂E2 = e, then
∫

e ν|∂E1
ds =

∫
e ν|∂E2

ds}
The global discrete space is defined by

Xl(Ω) =

N∏
i=1

Xl(Ωi)

The interface Γ =
⋃N

i=1 ∂Ωi\∂Ω is broken into a set of disjoint open straight segments γm(1 ≤ m ≤ M), i.e.,

Γ =
⋃M

m=1 γm, γm ∩ γ = φ, if m � n.
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By γm(i) we denote an edge of Ωi called mortar and by δm( j) an edge of Ωi that geometrically occupies the

same place called nonmortar, then γm(i)=δm( j)=γm . Since γm inherits two different triangulations, by Tl(γm(i))

and Tl(δm( j)) denote the different triangulations across γm (Assume the fine side is chosen as mortar). Define

S l(δm( j)) to be a subspace of L2(γm), such that its functions are piecewise constants on Tl(δm( j)). The dimension

of S l(δm( j)) is equal to the number of elements on the δm( j). For each nonmortar edge δm( j), define an L2-

projection operator Ql,δ : L2(γm) → S l(δm( j)) by

(Ql,δν, ψ)L2(δm( j)) = (ν, ψ)L2(δm( j)), ∀ψ ∈ S l(δm( j)) (1)

The purpose of this paper is to study the multigrid method for mortar element for the rotated Q1 element. An

intergrid transfer operator is presented for nonnested mortar element spaces. On the basis of this operator,

we give a multigrid algorithm. Using the theory developed by Bramble, Pasciak, Xu, we prove the W-cycle

multigrid is optimal, i.e., the convergence rate is independent of mesh size and mesh level. Furthermore, a

variable V-cycle multigrid preconditioner is developed, which results in a preconditioned system with uniformly

bounded condition number.

The remainder of this paper is organized as follows. In section two we introduce Multigrid algorithm. Section

three presents some lemmas. Last section gives our results.

2. Multigrid algorithm

We must define a suitable intergrid transfer operator for nonnested mesh space Vl. First introduce a local

intergrid operator Ji
l from Xl−1(Ωi) to Xl(Ωi) by

1

| e |
∫

e
Ji

lνds

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 e ⊂ ∂Ωi ∩ ∂Ω
1
|e|
∫

e νds e ⊂ ∂Ωi \ ∂Ω
1
|e|
∫

e νds e � ∂E E ∈ T i
l−1

1
2|e|
∫

e(ν |E1
+ν |E2

)ds e ⊂ ∂E1 ∩ ∂E2 E1, E2 ∈ T i
l−1

Where e ∈ ∂E, E ∈ T i
l .

Based on the operator Ji
l , a global intergrid transfer operator Jl : Xl−1(Ω) → Xl(Ω) introduced as follows.

Jlν =
(
J1

l ν, J2
l ν

2, · · · , JN
l ν

N), ∀ν = (ν1, ν2, · · · , νN) ∈ Xl−1(Ω)

To construct an intergrid operator in mortar element spaces we define an operator εl, δm( j) :

Xl(Ω) → Xl(Ω) by
∫

e
εl,δm( j) (ν)ds =

{ ∫
e Ql,δ

⎧⎩Iγl Ql,γν |γm(i) −ν |δm( j)

⎫⎭ds e ∈ Tl(δm( j))

0 otherwise

Then for any ν ∈ Xl(Ω), let

ν∗ = ν +
M∑

m=1

εl,δm( j) (ν) (2)

It is easy to check that ν∗ ∈ Vl, since for any ψ ∈ S l(δm( j)), we can derive

∫
δl,m( j)
ν∗|δm( j)ψds =

∫
δm( j)
ν|δm( j)ψds +

∫
δm( j)
εl,δm( j) (ν)|δm( j)ψds

=
∫
δm( j)
ν|δm( j)ψds +

∫
δm( j)

Ql,δ(I
γ
l Ql,γν|γm(i) − ν|δm( j) )ψds

=
∫
δm( j)
ν |δm( j) ψds +

∫
δm( j)

(Iγl Ql,γν|γm(i) − ν|δm( j) )ψds

=
∫
δm( j)

Iγl Ql,γν|γm(i)ψds

=
∫
δm( j)

Iγl Ql,γν
∗|γm(i)ψds
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After above preparation, we can construct an intergrid transfer operator Il in mortar element spaces.

Il : Xl−1(Ω) → Vl by Ilν = Jlν +

M∑
m=1

εl,δm( j) (Jlν), ∀ν ∈ Xl−1(Ω) (3)

To present our multigrid algorithm, we describe some auxiliary operators. For l = 1, 2, · · · , L, define Al :

Vl → Vl, Pl−1 : Vl → Vl−1, and P0
l−1

: Vl → Vl−1 respectively by (Alu, ν) = αl(u, ν), ∀u, ν ∈ Vl, (P0
l−1

u, ν) =
(u, Ilν), ∀u ∈ Vl, ν ∈ Vl−1, al−1(Pl−1u, v) = al(u, Ilv), ∀u ∈ Vl, v ∈ Vl−1,

Furthermore we must find smoothing operator Rl, including Gauss-Seidel, conjugate gradient iterations and so

on, which satisfy the following condition.

(R). There exists a constant CR ≥ 1 independent of l such that

‖u‖2
0

λ1
≤ CR(Rlu, ν), ∀u ∈ Vl (4)

For both Rl = (I − K∗
l Kl)A−1

l or Rl = (I − KlK∗
l )A−1

l , where Kl = I − RlAl, K∗
l = I − RT

l Al, RT
l is the adjoint of

Rl with respect to (.,. ) and λl is the maximum eigenvalue of Al.

Define R(k)
l =

⎧⎪⎪⎨⎪⎪⎩
Rl k is odd

RT
l k is even

A general multigrid operator Bl : Vl → Vl can be defined recursively as follows.

Multigrid Algorithm. Set B1 = A−1
1

. Let 2 ≤ l ≤ L and p be a positive integer, assume that Bl−1 has been

defined and define B1g for g ∈ Vl by

(1) Set initial value X0 and let q0 = 0.

(2) Define xk for k = 1, 2, · · · , m(l) by xk = xk−1 + R(k+m(l))
l (g − Alxk−1).

(3) Define ym(l) = xm(l) + Ilqpy, where qi for i = 1, · · · , p are determined by qi = qi−1 + Bl−1(P0
l−1

(g− Alxm(l))−
Al−1qi−1)

(4) Define yk for k = m(l) + 1, · · · , 2m(l) by yk = yk−1 + R(k+m(l))(g−Alyk−1)

l .

(5) Set B1g = y2m(l).

Remark. In the Multigrid Algorithm, m(l) gives the number of presmoothing and postsmoothing steps, it can

vary as a function of l. If p = 1, we have a V-cycle method, and p = 2 denotes a W-cycle method. A variable

V-cycle algorithm is one in which the number of smoothing m(l) increase exponentially as l decreases, i.e., the

number of smoothing m(l) satisfies β0m(l) ≤ m(l − 1) ≤ β1m(l), with 1 < β0 < β1.

3. Some lemmas

To reach our conclusion, we present some auxiliary technical lemmas and prove an approximation assumption.

Define an operator Ml,i : Xl(Ωi) → V
1
2

l (Ωi) as follows.

Definition 1. Given ν ∈ Xl(Ωi), let Ml,iν ∈ V
1
2

l (Ωi) by the values of Ml,iν at the vertices of the partition T
1
2

l (Ωi).

(1) If P is a central point of E, E ∈ Tl(Ωi), then (Ml,iν)(P) = 1
4

∑
ei∈∂E

1
|ei |
∫

ei
νds.

(2) If P is a midpoint of one edge e ∈ ∂E, E ∈ Tl(Ωi), then (Ml,iν)(P) = 1
|ei |
∫

e νds.

(3) If P ∈ Ωi,l \ ∂Ωi,l, then (Ml,iν)(P) = 1
4

∑
ei

1
|ei |
∫

ei
νds. Where the sum is taken over all edges ei with the

common vertex P, ei ∈ ∂Ei, Ei ∈ Tl(Ωi).

(4) If P ∈ ∂Ωi,l \ {c1, · · · , cn}, then (Ml,iν)(P) = 1
2
( 1
|el |
∫

el
νds + 1

|eγ |
∫

eγ
νds), where el ∈ ∂E1 ∩ ∂Ωi and eγ ∈

∂E2 ∩ ∂Ωi are the left and right neighbor edges of P, E1, E2 ∈ Tl(Ωi), c1, · · · , cn are the vertices of subdomain

Ωi.

48 � www.ccsenet.org/jmr



Journal of Mathematics Research March, 2009

(5) If P ∈ {c1, · · · , cn}, then

(Ml,iν)(P) =
|el|

|el| + |eγ| (
1

|el|
∫

el

νds) +
|eγ|

|el| + |eγ| (
1

|eγ|
∫

eγ
νds)

For the above operator Ml, j, we have the following result.

Lemma 1. For any ν ∈ Xl(Ωi), we have |Ml,iν|H1(Ωi) ≈ ‖ν‖l,i.

Lemma 2. ‖ν − Ql,δν‖L2(γm) ≤ h
1
2

l |v|H 1
2 (γm)

∀ν ∈ H
1
2 (γm).

Lemma 3. For any ν ∈ Xl(Ωi), then ‖Ql,δI
γ

l Ql,γν|γm(i) − Iγl Ql,γν|γm(i)‖L2(γm(i)) ≤ h
1
2

l ‖ν‖l,i.

‖Ir
l Ql,rν|γm(i) − Ql,rν|γm(i)‖L2(γm(i)) ≤ h

1
2

l ‖ν‖l,i

Lemma 4. For any νi ∈ Vl−1(Ωi), we have ‖Ji
lν

i‖l,i ≤ ‖νi‖l−1,i, ‖νi − Ji
lν

i‖0,i ≤ hl‖νi‖l−1,i.

Lemma 5. For any ν ∈ Vl−1, it holds that ‖Ilν‖l ≤ ‖ν‖l−1, ‖ν − Ilν‖0 ≤ hl‖ν‖l−1.

Lemma 6. For the operator Πl, we have ‖ξ − Πlξ‖0 + hl‖ξ − Πlξ‖l ≤ h2
l |ξ|2, ∀ξ ∈ H1

0
(Ω) ∩ H2(Ω).

Lemma 7. For any ξ ∈ H1
0
(Ω) ∩ H2(Ω), we have ‖ξ − ILΠl−1ξ‖l ≤ hl|ξ|2.

The proofs of the above all lemmas can be found in relevant references. Let’s come to see the last two lemmas.

Lemma 8. The operator Pl−1 has following property ‖ν − Pl−1ν‖0 ≤ hl‖ν‖l, ∀ν ∈ Vl.

Proof. Consider the auxiliary problem as follows

⎧⎪⎪⎨⎪⎪⎩
−�ξ = ν − Pl−1ν in Ω

ξ = 0 on ∂Ω

then ‖ν − Pl−1ν‖2
0
= (−�ξ, ν − Pl−1ν) = (αl(ξ, ν) − αl−1(ξ, Pl−1ν)) − ∑

K∈Tl

∮
∂K

∂ξ
∂nνds +

∑
K∈Tl−1

∮
∂K

∂ξ
∂n Pl−1νds

:= F1 + F2 + F3

Lemma 4 and Lemma 2 reveal |F2| ≤ hl|ξ|2‖ν‖l = hl‖ν − Pl−1ν‖0‖ν‖l. Using Lemma 5, we can see ‖Pl−1ν‖2
l−1
=

αl−1(Pl−1ν, Pl−1ν) = αl(ν, IlPl−1ν) ≤ ‖ν‖l‖Pl−1ν‖l. So ‖Pl−1ν‖l−1 ≤ ‖ν‖l.

By Lemma 2 and above inequality, we have |F3| ≤ hl|ξ|2‖Pl−1ν‖l−1 = hl‖ν − Pl−1ν‖0‖ν‖l. Now we estimate F1.

|F1| = |αl(ξ, ν) − αl−1(Πl−1ξ, Pl−1ν) + αl−1(Πl−1ξ, Pl−1ν) − αl−1(ξ, Pl−1ν)|
≤ |αl(ξ − IlΠl−1ξ, ν)| + |αl−1(ξ − Πl−1ξ, Pl−1ν)|
≤ hl|ξ|2(‖ν‖l + ‖Pl−1ν‖l−1) ≤ hl|ξ|2‖ν‖l ≤ |ν − Pl−1ν‖0‖ν‖l

All the above inequalities give the proof. Now, the approximation assumption theory is given as follows.

Lemma 9. |αl((I − IlPl−1)ν, ν)| ≤ ⎧⎩ ‖Alν‖2
0

γl

⎫⎭ 1
2αl(ν, ν)

1
2 , ∀ν ∈ Vl. Proof. By triangular inequality, Lemma 5 and

Lemma 8, we derive ‖ν − IlPl−1ν‖0 ≤ ‖ν − Pl−1ν‖0 + ‖(I − Il)Pl−1ν‖0 ≤ hl(‖ν‖l + ‖Pl−1ν‖l−1) ≤ hl‖ν‖l On the

other hand

‖ν − IlPl−1ν‖l = sup
ω∈Vl,‖ω‖l=1

αl(ν − IlPl−1ν,ω)

= sup
ω∈Vl,‖ω‖l=1

αl(ν,ω − IlPl−1ω)

≤ sup
ω∈Vl,‖ω‖l=1

‖Alν‖0‖ω − IlPl−1ω‖0

≤ hl‖Alν‖0

Then, we can obtain

|αl((I − IlPl−1)ν, ν)| ≤ ‖(I − IlPl−1)ν‖l‖ν‖l ≤ hl‖Alν‖0‖ν‖l ≤
⎧⎪⎩‖Alν‖2

0

λl

⎫⎪⎭ 1
2
αl(ν, ν)

1
2 .
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4. Main result

We now state the convergence results for the multigrid algorithm. The convergence rate for the multigrid

algorithm on the l th level is measured by a convergence factor

δl satisfying |αl((I − BlAl)ν, ν)| ≤ δlαl(ν, ν), ∀ν ∈ Vl (5)

Following the above analysis, we propose two propositions:

Proposition 1. (W-cycle). Under Lemma 9, if p = 2 and m(l) = m is large enough, then the convergence factor

in (5) is δl =
C

C+m
1
2

Proposition 2. (variable V-cycle preconditioner) Under Lemma 9, and the number of smoothing m(l) increases

as decreases in such a way that β0m(l) ≤ m(l − 1) ≤ m(l), hold with 1 ≤ β0 ≤ β1. then there exists M > 0

independent of L such that C−1
0
αl(ν, ν) ≤ αl(BlAlν, ν) ≤ C0αl(ν, ν), ∀ν ∈ Vl, with C0 =

M+m(l)
1
2

m(l)
1
2

.
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